Insight into the Composition of the Stabilized Residual from a Full-Scale Mechanical-Biological Treatment (MBT) Plant in Terms of the Potential Recycling and Recovery of Its Contaminants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Technological Characteristics of the MBT Plant
2.2. Analysis of Composition and Particle Size Distribution of <80 mm Fraction and SR
2.3. Similarity Analyses
3. Results and Discussion
3.1. Distribution of Particle Size Fractions within the <80 mm Fraction and in SR in Each Season of Collection
3.2. Composition and Percent Share of Biodegradable Waste in the <80 mm and SR Particle Size Fractions in Each Collection Season
3.3. Contaminants, Their Composition and the Contamination Ratio (CR) in the <80 mm Fraction and SR in Each Season
3.4. Similarities in the Composition of Particle Size Fractions Separated from the <80 mm Fraction and SR
3.5. Potential Utilisation of the SR
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Montejo, C.; Tonini, D.; Márquez, M.C.; Astrup, T.F. Mechanical-biological treatment: Performance and potentials. An LCA of 8 MBT plants including waste characterization. J. Environ. Manag. 2013, 128, 661–673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soyez, K.; Plickert, S. Mechanical-biological pre-treatment of waste: State of the art and potentials of biotechnology. Acta Biotechnol. 2002, 22, 271–284. [Google Scholar] [CrossRef]
- Fricke, K.; Santen, H.; Wallmann, R. Comparison of selected aerobic and anaerobic procedures for MSW treatment. Waste Manag. 2005, 25, 799–810. [Google Scholar] [CrossRef] [PubMed]
- Montejo, C.; Ramos, P.; Costa, C.; Márquez, M.C. Analysis of the presence of improper materials in the composting process performed in ten MBT plants. Bioresour. Technol. 2010, 101, 8267–8272. [Google Scholar] [CrossRef]
- Berthe, C.; Redon, E.; Feuillade, G. Fractionation of the organic matter contained in leachate resulting from two modes of landfilling: An indicator of waste degradation. J. Hazard. Mater. 2008, 154, 262–271. [Google Scholar] [CrossRef]
- Lim, L.Y.; Bong, C.P.C.; Lee, C.T.; Klemes, J.J.; Sarmidi, M.R.; Lim, J.S. Review on the current composting practices and the potential of improvement using two-stage composting. Chem. Eng. Trans. 2017, 61, 1051–1056. [Google Scholar]
- Onwosi, C.O.; Igbokwe, V.C.; Odimba, J.N.; Eke, I.E.; Nwankwoala, M.O.; Iroh, I.N.; Lewis Ezeogu, L.I. Composting technology in waste stabilization: On the methods, challenges and future prospects. J. Environ. Manag. 2017, 190, 140–157. [Google Scholar] [CrossRef]
- Colon, J.; Martinez-Blanco, J.; Gabarrell, X.; Artola, A.; Sanchez, A.; Rieradevall, J.; Font, X. Environmental assessment of home composting. Resour. Conserv. Recycl. 2010, 54, 893–904. [Google Scholar] [CrossRef] [Green Version]
- Adani, F.; Ubbiali, C.; Generini, P. The determination of biological stability of composts using the Dynamic Respiration Index: The results of experience after two years. Waste Manag. 2006, 26, 41–48. [Google Scholar] [CrossRef]
- Gómez, R.B.; Lima, F.V.; Ferrer, A.S. The use of respiration indices in the composting process: A review. Waste Manag. Res. 2006, 24, 37–47. [Google Scholar] [CrossRef] [Green Version]
- Ponsá, S.; Gea, T.; Sánchez, A. Different indices to express biodegradability in organic solid wastes. J. Environ. Qual. 2010, 39, 706–712. [Google Scholar] [CrossRef] [Green Version]
- Adani, F.; Tambone, F.; Gotti, A. Biostabilization of municipal solid waste. Waste Manag. 2004, 24, 775–783. [Google Scholar] [CrossRef]
- Ball, A.S.; Shahsavari, E.; Aburto-Medina, A.; Kadali, K.K.; Shaiban, A.A.; Stewart, R.J. Biostabilization of municipal solid waste fractions from an Advanced Waste Treatment plant. J. King Saud Univ. Sci. 2017, 29, 145–150. [Google Scholar] [CrossRef] [Green Version]
- Robinson, H.D.; Knox, K.; Bone, B.D.; Picken, A. Leachate quality from landfilled MBT waste. Waste Manag. 2005, 25, 383–391. [Google Scholar] [CrossRef]
- Rotter, V.S.; Kost, T.; Winkler, J.; Bilitewski, B. Material flow analysis of RDF-production processes. Waste Manag. 2004, 24, 1005–1021. [Google Scholar] [CrossRef]
- Ghisellini, P.; Cialani, C.; Ulgiati, S. A review on circular economy: The expected transition to a balanced interplay of environmental and economic systems. J. Clean. Prod. 2016, 114, 11–32. [Google Scholar] [CrossRef]
- Lieder, M.; Rashid, A. Towards circular economy implementation: A comprehensive review in context of manufacturing industry. J. Clean. Prod. 2016, 115, 36–51. [Google Scholar] [CrossRef]
- EC (European Commission). Closing the Loop—An EU Action Plan for the Circular Economy. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions; European Commission: Brussels, Belgium, 2015. [Google Scholar]
- Nei, M.; Li, W.H. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. USA 1979, 76, 5269–5273. [Google Scholar] [CrossRef] [Green Version]
- Sokal, R.R.; Michener, C.D. A statistical method for evaluating systematic relationships. Univ. Kansas, Sci. Bull. 1958, 38, 1409–1438. [Google Scholar]
- Page, R.D.M. TreeView: An application to display phylogenetic trees on personal computers. Bioinformatics 1996, 12, 357–358. [Google Scholar] [CrossRef] [Green Version]
- Połomka, J.; Jędrczak, A. Potential of mineral fraction in compost-like-output, methods of its obtaining and the possibility of using it in the context of circular economy. Materials 2020, 13, 3023. [Google Scholar] [CrossRef] [PubMed]
- Dias, N.; Carvalho, M.T.; Pina, P. Characterization of Mechanical Biological Treatment reject aiming at packaging glass recovery for recycling. Miner. Eng. 2012, 29, 72–76. [Google Scholar] [CrossRef]
- Edjabou, E.M.; Jensen, M.B.; Götze, R.; Pivnenko, K.; Petersen, C.; Scheutz, C.; Astrup, T.F. Municipal solid waste composition: Sampling methodology, statistical analyses, and case study evaluation. Waste Manag. 2015, 36, 12–23. [Google Scholar] [CrossRef] [Green Version]
- Council Directive 1999/31/EC of 26 April 1999 on the landfill of waste. Off. J. Eur. Community 1999, 182, 1–19.
- Adani, F.; Scatigna, L.; Genevini, P. Biostabilization of mechanically separated municipal solid waste fraction. Waste Manag. Res. 2000, 18, 471–477. [Google Scholar] [CrossRef]
- Bernat, K.; Zielińska, M.; Cydzik-Kwiatkowska, A.; Wojnowska-Baryła, I. Biogas production from different size fractions separated from solid waste and the accompanying changes in the community structure of methanogenic Archaea. Biochem. Eng. J. 2015, 100, 30–40. [Google Scholar] [CrossRef]
- Jędrczak, A.; Myszograj, S.; Połomka, J. The composition and properties of Polish waste focused on biostabilisation in MBT plants during the heating season. Energies 2020, 13, 1072. [Google Scholar] [CrossRef] [Green Version]
- Połomka, J.; Jędrczak, A. Efficiency of waste processing in the MBT system. Waste Manag. 2019, 96, 9–14. [Google Scholar] [CrossRef]
- Cesaro, A.; Belgiorno, V.; Guida, M. Compost from organic solid waste: Quality assessment and European regulations for its sustainable use. Resour. Conserv. Recycl. 2015, 94, 72–79. [Google Scholar] [CrossRef]
- Bayard, R.; de Araújo Morais, J.; Ducom, G.; Achour, F.; Rouez, M.; Gourdon, R. Assessment of the effectiveness of an industrial unit of mechanical-biological treatment of municipal solid waste. J. Hazard. Mater. 2010, 175, 23–32. [Google Scholar] [CrossRef]
- Sidełko, R.; Siebielska, I.; Janowska, B.; Skubała, A. Assessment of biological stability of organic waste processed under aerobic conditions. J. Clean. Prod. 2017, 164, 1563–1570. [Google Scholar] [CrossRef]
- Dias, N.; Belo, N.; Máximo, A.; Carvalho, M.T. Recovery of glass contained in the heavy residual fraction of Portuguese mechanical Biological Treatment Plants. J. Clean. Prod. 2014, 79, 271–275. [Google Scholar] [CrossRef]
- Dias, N.; Máximo, A.; Belo, N.; Carvalho, M.T. Packaging glass contained in the heavy residual fraction refused by Portuguese Mechanical and Biological Treatment plants. Resour. Conserv. Recycl. 2014, 85, 98–105. [Google Scholar] [CrossRef]
- Cesaro, A.; Russo, L.; Farina, A.; Belgiorno, V. Organic fraction of municipal solid waste from mechanical selection: Biological stabilization and recovery options. Environ. Sci. Pollut. Res. 2016, 23, 1565–1575. [Google Scholar] [CrossRef]
- MacLeod, I.; Savage, A.L.; Pahl, O.; Baird, J. Decline in microbial activity does not necessarily indicate an end to biodegradation in MSW-biowaste: A case study. Bioresour. Technol. 2008, 99, 8626–8630. [Google Scholar] [CrossRef]
- Farrell, M.; Jones, D.L. Use of composts in the remediation of heavy metal contaminated soil. J. Hazard. Mater. 2010, 175, 575–582. [Google Scholar] [CrossRef]
- Pantini, S.; Verginelli, I.; Lombardi, F. Analysis and modeling of metals release from MBT wastes through batch and up-flow column tests. Waste Manag. 2015, 38, 22–32. [Google Scholar] [CrossRef]
- Pantini, S.; Verginelli, I.; Lombardi, F.; Scheutz, C.; Kjeldsen, P. Assessment of biogas production from MBT waste under different operating conditions. Waste Manag. 2015, 43, 37–49. [Google Scholar] [CrossRef] [Green Version]
- Angermeier, R.; Tintner, J.; Smidt, E.; Ottner, R.; Matiasch, L.; Binner, E.; Böhm, K. Development of mechanically biologically treated municipal solid waste under different vegetation types. J. Environ. Eng. 2011, 137, 340–346. [Google Scholar] [CrossRef]
- Połomka, J.; Jędrczak, A.; Myszograj, S. Recovery of stabilizer glass in innovative MBT Installation—An analasys of new technological procedure. Materials 2020, 13, 1356. [Google Scholar] [CrossRef] [Green Version]
Module | |
---|---|
Time (weeks) | 4 |
Air supplied (m3/h) | 324 |
Fan operation time (s) | 60 |
Fan break time (s) | 240 |
Covered piles | |
Time (weeks) | 4 |
Air supplied (m3/h) | 324–405 |
Fan operation time (s) | 80 |
Fan break time (s) | 240–260 |
Uncovered piles | |
Time (weeks) | 4 |
Composition (%) | S | A | W | Sp | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
>60 mm | 60–40 mm | 40–10 mm | >60 mm | 60–40 mm | 40–10 mm | >60 mm | 60–40 mm | 40–10 mm | >60 mm | 60–40 mm | 40–10 mm | |
Biodegradable waste | ||||||||||||
Vegetable waste | 4.72 | 6.15 | 15.88 | 1.39 | 5.31 | 4.00 | 0 | 0.67 | 13.45 | 0.11 | 1.66 | 4.54 |
Other organic waste | 0.32 | 0.27 | 0.28 | 17.71 | 0.23 | 8.50 | 0 | 0.16 | 8.02 | 0 | 11.49 | 14.32 |
Food animal waste | 0.31 | 0.73 | 0.29 | 0 | 0.63 | 0.04 | 0 | 0 | 0.30 | 0 | 2.79 | 0.66 |
Paper, cardboard | 4.64 | 4.06 | 2.61 | 0.69 | 3.51 | 0.66 | 5.00 | 7.98 | 8.83 | 3.02 | 10.79 | 1.28 |
Textile waste | 3.31 | 1.29 | 0.24 | 0.31 | 1.12 | 0 | 0 | 0 | 0 | 2.37 | 1.28 | 0 |
Sum | 13.30 | 12.50 | 19.30 | 20.10 | 10.80 | 13.20 | 5.00 | 8.80 | 30.60 | 5.50 | 28.00 | 20.80 |
Plastic waste | ||||||||||||
PET | 0.65 | 0.30 | 0 | 0 | 0 | 0.07 | 0 | 0 | 0 | 3.80 | 0.48 | 0 |
PS | 0.94 | 0.64 | 0 | 0.44 | 2.47 | 0 | 0 | 1.08 | 0 | 1.60 | 0 | 0 |
PP | 0.52 | 0 | 0 | 0.47 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
HD-PE | 1.63 | 1.39 | 0.08 | 0.17 | 0.27 | 0 | 0 | 0 | 0.38 | 0 | 0.08 | 0 |
Films | 10.41 | 5.88 | 1.11 | 4.58 | 1.95 | 0.48 | 0 | 4.36 | 0.43 | 10.50 | 3.09 | 0.92 |
Other | 2.45 | 1.85 | 1.15 | 0.63 | 0.01 | 0.43 | 4.11 | 0.19 | 0.76 | 0 | 2.75 | 1.41 |
Sum | 16.60 | 10.06 | 2.35 | 6.30 | 4.70 | 0.99 | 4.11 | 5.62 | 1.57 | 15.90 | 6.40 | 2.33 |
Glass waste | ||||||||||||
Packaging | 0.18 | 5.67 | 9.31 | 0.10 | 6.84 | 17.33 | 0 | 5.53 | 15.59 | 1.87 | 2.64 | 5.38 |
Technical | 0.66 | 0.21 | 0 | 0 | 5.49 | 2.14 | 0 | 0 | 0 | 0 | 0 | 0 |
Sum | 0.85 | 5.88 | 9.31 | 0.10 | 12.33 | 19.47 | 0 | 5.53 | 15.59 | 1.87 | 2.64 | 5.38 |
Metal waste | ||||||||||||
Ferrous metals | 0.58 | 0.15 | 0 | 0 | 0 | 0.27 | 0 | 0 | 0.05 | 0 | 1.38 | 0.67 |
Non-ferrous metals | 0.50 | 1.10 | 0.01 | 0 | 0 | 0 | 0 | 0 | 0.03 | 0 | 0.41 | 0 |
Aluminum foil | 0 | 0.19 | 0.21 | 0 | 0 | 0.09 | 0 | 0 | 0.38 | 0 | 0 | 0 |
Mineral waste | 0 | 1.96 | 1.60 | 1.35 | 4.18 | 1.65 | 3.98 | 7.52 | 3.22 | 0 | 0.78 | 1.87 |
Electronic waste | 0.31 | 0 | 0.51 | 0.13 | 2.04 | 0.27 | 0 | 0 | 0 | 0.50 | 0.66 | 0 |
Multi-material waste | 1.03 | 0.57 | 0 | 0.14 | 1.15 | 0.34 | 7.48 | 0.51 | 0 | 0 | 0.63 | 0 |
Sum | 2.43 | 3.97 | 2.33 | 1.63 | 7.36 | 2.62 | 11.47 | 8.03 | 3.68 | 0.50 | 3.86 | 2.54 |
Others | ||||||||||||
Styrofoam | 0 | 0 | 0.11 | 0 | 0.05 | 0.01 | 0 | 0 | 0 | 0 | 0 | 0 |
Diapers | 0.66 | 0.23 | 0.12 | 0 | 0.33 | 0 | 0 | 0 | 0 | 4.28 | 0 | 0 |
Sum | 0.66 | 0.23 | 0.23 | 0 | 0.38 | 0.01 | 0 | 0 | 0 | 4.28 | 0 | 0 |
Total | 33.84 | 32.64 | 33.52 | 28.13 | 35.57 | 36.30 | 20.57 | 27.99 | 51.44 | 28.04 | 40.91 | 31.05 |
Composition (%) | S | A | W | Sp | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
>60 mm | 60–40 mm | 40–10 mm | >60 mm | 60–40 mm | 40–10 mm | >60 mm | 60–40 mm | 40–10 mm | >60 mm | 60–40 mm | 40–10 mm | |
Biodegradable waste | ||||||||||||
Vegetable waste | 0.05 | 0.16 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Other organic waste | 0.95 | 1.42 | 0.76 | 0 | 0.67 | 4.46 | 0 | 1.99 | 0.60 | 0 | 0 | 0 |
Food animal waste | 0 | 1.44 | 0.02 | 0 | 0.21 | 0.03 | 0 | 0 | 0.13 | 0 | 0 | 0 |
Paper, cardboard | 1.75 | 2.38 | 0.96 | 0.34 | 0.39 | 5.32 | 3.80 | 1.91 | 0.08 | 0 | 4.36 | 1.58 |
Textile waste | 3.45 | 3.30 | 0.43 | 0.64 | 0.32 | 0.19 | 0 | 0 | 0 | 0.60 | 3.34 | 1.82 |
Sum | 6.20 | 8.70 | 2.17 | 0.98 | 1.60 | 10.00 | 3.80 | 3.90 | 0.80 | 0.60 | 7.70 | 3.40 |
Plastic waste | ||||||||||||
PET | 0.35 | 0 | 0.03 | 1.30 | 0 | 0.25 | 0 | 0 | 1.17 | 3.14 | 1.14 | 0 |
PS | 0 | 0 | 0 | 0 | 2.16 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
PP | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
HD-PE | 0 | 4.41 | 0 | 0 | 1.37 | 1.43 | 0 | 0 | 0.61 | 0 | 0 | 0.94 |
Films | 8.11 | 8.79 | 3.76 | 22.97 | 5.84 | 0.81 | 10 | 10.75 | 5.11 | 14.14 | 18.33 | 0.12 |
Other | 5.67 | 1.35 | 3.88 | 0 | 2.81 | 1.88 | 0 | 6.41 | 1.50 | 0 | 0.28 | 2.57 |
Sum | 14.12 | 14.54 | 7.66 | 24.27 | 12.18 | 4.38 | 10.18 | 17.15 | 8.39 | 17.28 | 19.75 | 4.03 |
Glass waste | ||||||||||||
Packaging | 8.19 | 7.01 | 9.87 | 2.38 | 13.44 | 18.79 | 0 | 1.27 | 24.82 | 0 | 2.15 | 18.75 |
Technical | 0 | 4.93 | 3.28 | 0 | 0 | 0.67 | 0 | 0 | 1.00 | 0 | 0 | 2.00 |
Sum | 8.19 | 11.94 | 13.15 | 2.38 | 13.44 | 19.46 | 0 | 1.27 | 25.51 | 0 | 2.15 | 20.33 |
Metal waste | ||||||||||||
Ferrous metals | 0.17 | 0 | 0 | 1.68 | 0.16 | 0.14 | 0 | 3.00 | 0.56 | 0 | 0 | 1.35 |
Non-ferrous metals | 0 | 0.47 | 3.28 | 0 | 0 | 0 | 6.00 | 0 | 0 | 0 | 0 | 0.14 |
Aluminum foil | 0 | 0.71 | 1.66 | 0 | 0.91 | 0.09 | 0 | 0 | 0.12 | 0 | 0 | 0.12 |
Mineral waste | 4.48 | 0 | 1.64 | 0 | 4.13 | 1.33 | 10.41 | 6.15 | 0.73 | 15.88 | 2.08 | 2.90 |
Electronic waste | 0 | 0 | 0.02 | 0.21 | 0 | 0.48 | 0 | 0 | 0 | 0 | 0 | 0 |
Multi-material waste | 0.21 | 0.29 | 0 | 1.35 | 0.27 | 0 | 0 | 0 | 0 | 0 | 0 | 2.00 |
Sum | 4.86 | 1.47 | 6.59 | 3.23 | 5.48 | 2.03 | 16.49 | 9.48 | 1.61 | 15.88 | 2.08 | 6.17 |
Others | ||||||||||||
Styrofoam | 0 | 0 | 0.25 | 0 | 0.06 | 0.01 | 0 | 0 | 1.43 | 0 | 0.63 | 0 |
Diapers | 0 | 0.15 | 0 | 0 | 0.38 | 0.11 | 0 | 0 | 0 | 0 | 0 | 0 |
Sum | 0 | 0 | 0 | 0 | 0.44 | 0.13 | 0 | 0 | 1.43 | 0 | 0.63 | 0 |
Total | 33.37 | 36.81 | 29.82 | 30.86 | 33.15 | 35.99 | 30.47 | 31.80 | 37.73 | 33.76 | 32.31 | 33.93 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bernat, K.; Wojnowska-Baryła, I.; Zaborowska, M.; Samul, I. Insight into the Composition of the Stabilized Residual from a Full-Scale Mechanical-Biological Treatment (MBT) Plant in Terms of the Potential Recycling and Recovery of Its Contaminants. Sustainability 2021, 13, 5432. https://doi.org/10.3390/su13105432
Bernat K, Wojnowska-Baryła I, Zaborowska M, Samul I. Insight into the Composition of the Stabilized Residual from a Full-Scale Mechanical-Biological Treatment (MBT) Plant in Terms of the Potential Recycling and Recovery of Its Contaminants. Sustainability. 2021; 13(10):5432. https://doi.org/10.3390/su13105432
Chicago/Turabian StyleBernat, Katarzyna, Irena Wojnowska-Baryła, Magdalena Zaborowska, and Izabela Samul. 2021. "Insight into the Composition of the Stabilized Residual from a Full-Scale Mechanical-Biological Treatment (MBT) Plant in Terms of the Potential Recycling and Recovery of Its Contaminants" Sustainability 13, no. 10: 5432. https://doi.org/10.3390/su13105432
APA StyleBernat, K., Wojnowska-Baryła, I., Zaborowska, M., & Samul, I. (2021). Insight into the Composition of the Stabilized Residual from a Full-Scale Mechanical-Biological Treatment (MBT) Plant in Terms of the Potential Recycling and Recovery of Its Contaminants. Sustainability, 13(10), 5432. https://doi.org/10.3390/su13105432