CO2 Utilization Strategy for Sustainable Cultivation of Mushrooms and Lettuces
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Cultivation Conditions
2.2. Mushroom and Lettuce Mixed Cultivation Systems
2.3. CO2 Behavior Models for the Cultivation Systems
2.4. Simulation Conditions for the Non-Continuous and Continuous Cultivation
2.5. Evaluation of Continuous Cultivation
2.6. Statistical Analysis
3. Results and Discussion
3.1. Simulated CO2 Behavior in Non-continuous and Continuous Cultivation Conditions
3.2. Evaluation of Continuous Cultivation of Lettuce and Mushroom
3.3. Esitmation of Accumulated CO2 Emission into the Air
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Teng, N.; Wang, J.; Chen, T.; Wu, X.; Wang, Y.; Lin, J. Elevated CO2 induces physiological, biochemical and structural changes in leaves of Arabidopsis thaliana. New Phytol. 2006, 172, 92–103. [Google Scholar] [CrossRef]
- Wiltshire, A.J.; Kay, G.; Gornall, J.L.; Betts, R.A. The impact of climate, CO2 and population on regional food and water resources in the 2050s. Sustainability 2013, 5, 2129–2151. [Google Scholar] [CrossRef] [Green Version]
- Reddy, A.R.; Rasineni, G.K.; Raghavendra, A.S. The impact of global elevated CO2 concentration on photosynthesis and plant productivity. Curr. Sci. 2010, 99, 46–57. [Google Scholar]
- Nederhoff, E.M.; Vegter, J.G. Canopy photosynthesis of tomato, cucumber and sweet pepper in greenhouse: Measurements compared to models. Ann. Bot. 1994, 73, 421–427. [Google Scholar] [CrossRef]
- Oreggioni, G.D.; Luberti, M.; Tassou, S.A. Agricultural greenhouse CO2 utilization in anaerobic-digestion-based biomethane production plants: A techno-economic and environmental assessment and comparison with CO2 geological storage. Appl. Energy 2019, 242, 1753–1766. [Google Scholar] [CrossRef]
- Chalabi, Z.S.; Biro, A.; Bailey, B.J.; Aikman, D.P.; Cockshull, K.E. Optimal control strategies for carbon dioxide enrichment in greenhouse tomato crops e part II: Using the exhaust gases of natural gas fired boilers. Biosyst. Eng. 2002, 81, 323–332. [Google Scholar] [CrossRef]
- Mortensen, L.M. Review, CO2 enrichment in greenhouses. crop responses. Sci. Hortic. 1987, 33, 1–25. [Google Scholar] [CrossRef]
- Kuroyanagi, T.; Yasuba, K.; Higashide, T.; Iwasaki, Y.; Takaichi, M. Efficiency of carbon dioxide enrichment in an unventilated greenhouse. Biosyst. Eng. 2014, 119, 58–68. [Google Scholar] [CrossRef]
- Thavivongse, S.; Buppachat, M. Grey oyster mushroom for food security versus CO2 emission. J. Environ. Res. Dev. 2013, 7, 1363–1368. [Google Scholar]
- Jang, M.J.; Ha, T.M.; Lee, Y.H.; Ju, Y.C. Growth characteristics of variety of oyster mushroom (Pleurotus ostreatus) as affected by number of air exchanges. Prot. Hortic. Plant Fact. 2009, 18, 208–214. [Google Scholar]
- Leadley, P.W.; Niklaus, P.A.; Stocker, R. A field study of the effects of elevated CO2 on plant biomass and community structure in a calcareous grassland. Oecologia 1999, 118, 39–49. [Google Scholar] [CrossRef]
- Kitaya, Y.; Tani, A.; Kiyota, M.; Aiga, I. Plant growth and gas balance in a plant and mushroom cultivation system. Adv. Space Res. 1994, 14, 281–284. [Google Scholar] [CrossRef]
- Jung, D.H.; Kim, C.K.; Oh, K.H.; Lee, D.H.; Kim, M.S.; Shin, J.H.; Son, J.E. Analyses of CO2 concentration and balance in a closed production system for king oyster mushroom and lettuce. Hortic. Sci. Technol. 2014, 10, 628–635. [Google Scholar]
- Padmanabha, M.; Streif, S. Design and validation of a low cost programmable controlled environment for study and production of plants, mushroom, and insect larvae. Appl. Sci. 2019, 9, 5166. [Google Scholar] [CrossRef] [Green Version]
- Jung, D.H.; Son, J.E. Carbon dioxide emission modeling of king oyster mushroom before and after thinning processes according to temperature and growth stage. J. Bio-Environ. Control. 2021, 30, 140–148. [Google Scholar] [CrossRef]
- Jung, D.H.; Kim, D.; Yoon, H.I.; Moon, T.W.; Park, K.S.; Son, J.E. Modeling the canopy photosynthetic rate of romaine lettuce (Lactuca sativa L.) grown in a plant factory at varying CO2 concentrations and growth stages. Hortic. Environ. Biotechnol. 2016, 57, 487–492. [Google Scholar] [CrossRef]
- Gitelson, I.I.; Lisovsky, G.M.; MacElroy, R.D. Manmade Closed Ecological Systems; CRC Press: London, UK, 2003; pp. 179–182. [Google Scholar]
- Hendrickx, L.; de Wever, H.; Hermans, V.; Mastroleo, F.; Morin, N.; Wilmotte, A.; Janssen, P.; Mergeay, M. Microbial ecology of the closed artificial ecosystem MELiSSA (Micro-Ecological Life Support System Alternative): Reinventing and compartmentalizing the Earth’s food and oxygen regeneration system for long-haul space exploration missions. Res. Microbiol. 2006, 157, 77–86. [Google Scholar] [CrossRef] [PubMed]
- Volk, T.; Rummel, J.D. Mass balances for a biological life support system simulation model. Adv. Space Res. 1987, 7, 141–148. [Google Scholar] [CrossRef] [Green Version]
- Chanter, D.O.; Thornley, J.H.M. Mycelial growth and the initiation and growth of sporophores in the mushroom crop: A mathematical model. Microbiology 1978, 106, 55–65. [Google Scholar] [CrossRef] [Green Version]
- Ryu, J.S.; Kim, M.K.; Cho, S.H.; Yun, Y.C.; Seo, W.M.; Lee, H.S. Optimal CO2 level for cultivation of Pleurotus eryngii. J. Mushroom 2005, 3, 95–99. [Google Scholar]
- Van Gerrewey, T.; Vandecruys, M.; Ameloot, N.; Perneel, M.; van Labeke, M.C.; Boon, N.; Geelen, D. Microbe-plant growing media interactions modulate the effectiveness of bacterial amendments on lettuce performance inside a plant factory with artificial lighting. Agronomy 2020, 10, 1456. [Google Scholar] [CrossRef]
- Esmaili, M.; Aliniaeifard, S.; Mashal, M.; Ghorbanzadeh, P.; Seif, M.; Gavilan, M.U.; Carrillo, F.F.; Lastochkina, O.; Li, T. CO2 enrichment and increasing light intensity till a threshold level, enhance growth and water use efficiency of lettuce plants in controlled environment. Not. Bot. Horti. Agrobot. 2020, 48, 2244–2262. [Google Scholar] [CrossRef]
- Gattuso, J.P.; Magnan, A.; Billé, R.; Cheung, W.W.L.; Howes, E.L.; Joos, F.; Allemand, D.; Bopp, L.; Cooley, S.R.; Eakin, C.M.; et al. Contrasting futures for ocean and society from different anthropogenic CO2 emissions scenarios. Science 2015, 349, 6243. [Google Scholar] [CrossRef] [PubMed]
- Hare, B.; Meinshausen, M. How much warming are we committed to and how much can be avoided? Clim. Chang. 2006, 75, 111–149. [Google Scholar] [CrossRef]
- Malhi, G.S.; Kaur, M.; Kaushik, P. Impact of climate change on agriculture and its mitigation strategies: A review. Sustainability 2021, 13, 1318. [Google Scholar] [CrossRef]
- Pisante, M.; Stagnari, F.; Grant, C.A. Agricultural innovations for sustainable crop production intensification. Ital. J. Agron. 2012, 7, 300–311. [Google Scholar] [CrossRef] [Green Version]
Parameter | Description | Unit | Value |
---|---|---|---|
Volume of the lettuce or mushroom chamber | L | 400 | |
Volume of the mixing chamber | L | 125 | |
Flow rate between the lettuce chamber n and mixing chamber | L∙min−1 | 62 | |
Flow rate between the mushroom and mixing chambers | L∙min−1 | 62 | |
Flow rate between the mixing chamber and external air | L∙min−1 | 62 | |
Unit conversion factor at 20 ℃ (CO2 μmol∙mol−1 to CO2 g∙L−1) | g∙L−1/(μmol∙mol−1) | 1.83 × 10−6 | |
Number of lettuces in the chamber n at a specific growth stage | ea | 15 | |
Number of mushroom bottles in the chamber at a specific growth stage | ea | 12 | |
CO2 concentration in the lettuce chamber n | μmol∙mol−1 | ||
CO2 concentration in the mushroom chamber | μmol∙mol−1 | ||
CO2 concentration in the mixing chamber | μmol∙mol−1 | ||
CO2 concentration in the external air | μmol∙mol−1 | 500 | |
Photosynthetic rate of a lettuce at a specific growth stage in the chamber n | μmol∙s−1 | ||
Respiration rate of a mushroom at specific growth stage in the chamber | μmol∙s−1 | ||
Days after transplanting (DAT) for lettuce and days after scratching (DAS) for mushroom | day | ||
n | Lettuce chamber number | 1, 2, 3 |
Period | Chamber 1 | Chamber 2 | Chamber 3 |
---|---|---|---|
00:00–08:00 | Dark | Light | Light |
08:00–16:00 | Light | Dark | Light |
16:00–24:00 | Light | Light | Dark |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jung, D.-H.; Son, J.-E. CO2 Utilization Strategy for Sustainable Cultivation of Mushrooms and Lettuces. Sustainability 2021, 13, 5434. https://doi.org/10.3390/su13105434
Jung D-H, Son J-E. CO2 Utilization Strategy for Sustainable Cultivation of Mushrooms and Lettuces. Sustainability. 2021; 13(10):5434. https://doi.org/10.3390/su13105434
Chicago/Turabian StyleJung, Dae-Ho, and Jung-Eek Son. 2021. "CO2 Utilization Strategy for Sustainable Cultivation of Mushrooms and Lettuces" Sustainability 13, no. 10: 5434. https://doi.org/10.3390/su13105434
APA StyleJung, D. -H., & Son, J. -E. (2021). CO2 Utilization Strategy for Sustainable Cultivation of Mushrooms and Lettuces. Sustainability, 13(10), 5434. https://doi.org/10.3390/su13105434