Nitrogen Enriched Organic Fertilizer (NEO) and Its Effect on Ryegrass Yield and Soil Fauna Feeding Activity under Controlled Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experiment Design
2.2. Growing Conditions and Yield
2.3. Feeding Activity of Soil Fauna
2.4. Statistical Analyzes
3. Results
3.1. Dry Matter Yields
3.2. Soil Fauna Feeding Activity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. Fertilizers Indicators. FAOSTAT 2022. Rome, Italy. Available online: https://www.fao.org/faostat/en/#data/EF (accessed on 30 January 2022).
- Matson, P.A.; Parton, W.J.; Power, A.G.; Swift, M.J. Agricultural intensification and ecosystem properties. Science 1997, 277, 504–509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, C.; Tian, H. Global nitrogen and phosphorus fertilizer use for agriculture production in the past half century: Shifted hot spots and nutrient imbalance. Earth Syst. Sci. Data 2017, 9, 181–192. [Google Scholar] [CrossRef] [Green Version]
- Savci, S. Investigation of Effect of Chemical Fertilizers on Environment. APCBEE Procedia 2012, 1, 287–292. [Google Scholar] [CrossRef] [Green Version]
- Körschens, M.; Albert, E.; Armbruster, M.; Barkusky, D.; Baumecker, M.; Behle-Schalk, L.; Bischoff, R.; Čergan, Z.; Ellmer, F.; Herbst, F.; et al. Effect of mineral and organic fertilization on crop yield, nitrogen uptake, carbon and nitrogen balances, as well as soil organic carbon content and dynamics: Results from 20 European long-term field experiments of the twenty-first century. Arch. Agron. Soil Sci. 2013, 59, 1017–1040. [Google Scholar] [CrossRef]
- Harris, S.L.; Thom, E.R.; Clark, D.A. Effect of high rates of nitrogen fertiliser on perennial ryegrass growth and morphology in grazed dairy pasture in northern New Zealand. New Zealand J. Agric. Res. 1996, 39, 159–169. [Google Scholar] [CrossRef]
- Cinar, S.; Özkurt, M.; Cetin, R. Effects of nitrogen fertilization rates on forage yield and quality of annual ryegrass (Lolium multiflorum l.) in central black sea climatic zone in turkey. Appl. Ecol. Environ. Res. 2020, 18, 417–432. [Google Scholar] [CrossRef]
- Abraha, A.B.; Truter, W.F.; Annandale, J.G.; Fessehazion, M.K. Forage yield and quality response of annual ryegrass (Lolium multiflorum) to different water and nitrogen levels. Afr. J. Range Forage Sci. 2015, 32, 125–131. [Google Scholar] [CrossRef] [Green Version]
- Siebert, J.; Sunnemann, M.; Auge, H.; Berger, S.; Cesarz, S.; Ciobanu, M.; Guerrero-Ramirez, N.R.; Eisenhauer, N. The effects of drought and nutrient addition on soil organisms vary across taxonomic groups, but are constant across seasons. Sci. Rep. 2019, 9, 639. [Google Scholar] [CrossRef] [Green Version]
- Bünemann, E.K.; Schwenke, G.D.; Van Zwieten, L. Impact of agricultural inputs on soil organisms—A review. Soil Res. 2006, 44, 379–406. [Google Scholar] [CrossRef] [Green Version]
- Bell, C.W.; Asao, S.; Calderon, F.; Wolk, B.; Wallenstein, M.D. Plant nitrogen uptake drives rhizosphere bacterial community assembly during plant growth. Soil Biol. Biochem. 2015, 85, 170–182. [Google Scholar] [CrossRef]
- Yuan, J.; Zhao, M.; Li, R.; Huang, Q.; Rensing, C.; Shen, Q. Lipopeptides produced by B. amyloliquefaciens NJN-6 altered the soil fungal community and non-ribosomal peptides genes harboring microbial community. Appl. Soil Ecol. 2017, 117–118, 96–105. [Google Scholar] [CrossRef]
- Känkänen, H.; Eriksson, C. Effects of undersown crops on soil mineral N and grain yield of spring barley. Eur. J. Agron. 2007, 27, 25–34. [Google Scholar] [CrossRef]
- Aronsson, H.; Hansen, E.M.; Thomsen, I.K.; Liu, J.; Øgaard, A.F.; Känkänen, H.; Ulén, B. The ability of cover crops to reduce nitrogen and phosphorus losses from arable land in southern Scandinavia and Finland. J. Soil Water Conserv. 2016, 71, 41. [Google Scholar] [CrossRef] [Green Version]
- Karlsson-Strese, E.M.; Umaerus, M.; Rydberg, I. Strategy for Catch Crop Development: I. Hypothetical Ideotype and Screening of Species. Acta Agric. Scand. Sect. B—Soil Plant Sci. 1996, 46, 106–111. [Google Scholar] [CrossRef]
- Jung, G.A.; Van Wijk, A.J.P.; Hunt, W.F.; Watson, C.E. Ryegrasses. In Cool-Season Forage Grasses; American Society of Agronomy, Inc.: Madison, WI, USA, 1996; pp. 605–641. [Google Scholar]
- N2Applied. Nitrogen Enriched Organic Fertiliser. Available online: https://n2applied.com/ (accessed on 24 August 2021).
- Graves, D.B.; Bakken, L.B.; Jensen, M.B.; Ingels, R. Plasma Activated Organic Fertilizer. Plasma Chem. Plasma Processing 2019, 39, 1–19. [Google Scholar] [CrossRef]
- Ingels, R.; Graves, D. Improving Organic Fertilizer and Nitrogen Use Efficiency via Air Plasma and Distributed Renewable Energy. Plasma Med. 2016, 5. [Google Scholar] [CrossRef]
- McLaughlin, A.; Mineau, P. The impact of agricultural practices on biodiversity. Agric. Ecosyst. Environ. 1995, 55, 201–212. [Google Scholar] [CrossRef]
- Geisseler, D.; Scow, K.M. Long-term effects of mineral fertilizers on soil microorganisms—A review. Soil Biol. Biochem. 2014, 75, 54–63. [Google Scholar] [CrossRef]
- Wahyuningsih, R.; Marchand, L.; Pujianto, S.; Caliman, J. Impact of inorganic fertilizer to soil biological activity in an oil palm plantation. IOP Conf. Ser. Earth Environ. Sci. 2019, 336, 012017. [Google Scholar] [CrossRef]
- Graenitz, J.; Bauer, R. The effect of fertilization and crop rotation on biological activity in a 90 year long-term experiment. Bodenkultur 2000, 51, 99–105. [Google Scholar]
- Wei, M.; Hu, G.; Wang, H.; Bai, E.; Lou, Y.; Zhang, A.; Zhuge, Y. 35 years of manure and chemical fertilizer application alters soil microbial community composition in a Fluvo-aquic soil in Northern China. Eur. J. Soil Biol. 2017, 82, 27–34. [Google Scholar] [CrossRef]
- Pelosi, C.; Boros, G.; van Oort, F.; Schmidt, O. Soil Oligochaeta communities after 9 decades of continuous fertilization in a bare fallow experiment. Soil Org. 2020, 92, 129–141. [Google Scholar] [CrossRef]
- Silva, D.M.d.; Jacques, R.J.S.; Silva, D.A.A.d.; Santana, N.A.; Vogelmann, E.; Eckhardt, D.P.; Antoniolli, Z.I. Effects of pig slurry application on the diversity and activity of soil biota in pasture areas. Ciência Rural 2016, 46, 1756–1763. [Google Scholar] [CrossRef] [Green Version]
- Yara. YaraMila™. Available online: https://www.yara.com/crop-nutrition/products-and-solutions/global-fertilizer-brands/yaramila/ (accessed on 30 August 2021).
- Yara. YaraLiva™. Available online: https://www.yara.com/crop-nutrition/products-and-solutions/global-fertilizer-brands/yaraliva/ (accessed on 30 August 2021).
- Lighting, L. ATS300W Specs Sheet. Available online: https://lumatek-lighting.com/lumatek-ats-300w/ (accessed on 30 January 2022).
- Yiotis, C.; McElwain, J.C.; Osborne, B.A. Enhancing the productivity of ryegrass at elevated CO2 is dependent on tillering and leaf area development rather than leaf-level photosynthesis. J. Exp. Bot. 2020, 72, 1962–1977. [Google Scholar] [CrossRef] [PubMed]
- Beecher, M.; Boland, T.M.; O’Donovan, M.; Eva Lewis, E. Comparing drying protocols for perennial ryegrass samples in preparation for chemical analysis. In Proceedings of the 22nd International Grassland Congress, Sydney, Australia, 13–15 September 2013; pp. 639–642. [Google Scholar]
- TerraProtecta. The Bait-Lamina Test. Available online: http://www.terra-protecta.de/en/bait_strips.html (accessed on 24 August 2021).
- Törne, E.v. Assessing feeding activities of soil-living animals. Bait-lamina-tests. Pedobiologia 1990, 34, 89–101. [Google Scholar]
- Hamel, C.; Schellenberg, M.P.; Hanson, K.; Wang, H. Evaluation of the “bait-lamina test” to assess soil microfauna feeding activity in mixed grassland. Appl. Soil Ecol. 2007, 36, 199–204. [Google Scholar] [CrossRef]
- Kratz, W. Bait-lamina test, general aspect, applications and prespectives. Environ. Sci. Pollut. Res. 1998, 5, 3. [Google Scholar]
- Jänsch, S.; Scheffczyk, A.; Römbke, J. The bait-lamina earthworm test: A possible addition to the chronic earthworm toxicity test? Euro-Mediterr. J. Environ. Integr. 2017, 2, 5. [Google Scholar] [CrossRef]
- ISO18311(E). Soil Quality—Method for Testing Effects of Soil Contaminants on the Feeding Activity of Soil Dwelling Organisms in the Field—Bait-Lamina Test" for Approval for the Next Stage (FDIS) until 2015-04-17 (see Recommendation Paris-2). 2015. Available online: https://www.iso.org/obp/ui/es/#iso:std:iso:18311:ed-1:v1:en (accessed on 24 August 2021).
- Gardi, C.; Montanarella, L.; Arrouays, D.; Bispo, A.; Lemanceau, P.; Jolivet, C.; Mulder, C.; Ranjard, L.; Römbke, J.; Rutgers, M.; et al. Soil biodiversity monitoring in Europe: Ongoing activities and challenges. Eur. J. Soil Sci. 2009, 60, 807–819. [Google Scholar] [CrossRef] [Green Version]
- Simpson, J.E.; Slade, E.; Riutta, T.; Taylor, M.E. Factors Affecting Soil Fauna Feeding Activity in a Fragmented Lowland Temperate Deciduous Woodland. PLoS ONE 2012, 7, e29616. [Google Scholar] [CrossRef] [Green Version]
- Rożen, A.; Sobczyk, Ł.; Liszka, K.; Weiner, J. Soil faunal activity as measured by the bait-lamina test in monocultures of 14 tree species in the Siemianice common-garden experiment, Poland. Appl. Soil Ecol. 2010, 45, 160–167. [Google Scholar] [CrossRef]
- FAO. State of Knowledge of Soil Biodiversity—Status, Challenges and Potentialities; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2020. [Google Scholar]
- Tao, H.-H.; Slade, E.M.; Willis, K.J.; Caliman, J.-P.; Snaddon, J.L. Effects of soil management practices on soil fauna feeding activity in an Indonesian oil palm plantation. Agric. Ecosyst. Environ. 2016, 218, 133–140. [Google Scholar] [CrossRef] [Green Version]
- Birkhofer, K.; Bezemer, T.M.; Bloem, J.; Bonkowski, M.; Christensen, S.; Dubois, D.; Ekelund, F.; Fließbach, A.; Gunst, L.; Hedlund, K.; et al. Long-term organic farming fosters below and aboveground biota: Implications for soil quality, biological control and productivity. Soil Biol. Biochem. 2008, 40, 2297–2308. [Google Scholar] [CrossRef]
- Sánchez-Moreno, S.; Ferris, H. Suppressive service of the soil food web: Effects of environmental management. Agric. Ecosyst. Environ. 2007, 119, 75–87. [Google Scholar] [CrossRef]
- Kosolpova, A.; Yamaltdinova, V.; Mitrofanova, E.; Fomin, D.; Teterlev, I. Biological activity of soil depending on fertilizer systems. Bulg. J. Agric. Sci. 2016, 22, 921–926. [Google Scholar]
- van der Wal, A.; Geerts, R.H.E.M.; Korevaar, H.; Schouten, A.J.; op Akkerhuis, G.A.J.M.J.; Rutgers, M.; Mulder, C. Dissimilar response of plant and soil biota communities to long-term nutrient addition in grasslands. Biol. Fertil. Soils 2009, 45, 663–667. [Google Scholar] [CrossRef]
- Wang, S.; Chen, H.Y.H.; Tan, Y.; Fan, H.; Ruan, H. Fertilizer regime impacts on abundance and diversity of soil fauna across a poplar plantation chronosequence in coastal Eastern China. Sci. Rep. 2016, 6, 20816. [Google Scholar] [CrossRef] [PubMed]
- Sandor, M.; Brad, T.; Maxim, A.; Sandor, V.; Onica, B. The Effect of Fertilizer Regime on Soil Fauna. Bull. Univ. Agric. Sci. Vet. Med. Cluj-Napoca 2016, 73, 2. [Google Scholar] [CrossRef] [Green Version]
- Briones, M.J.I. The Serendipitous Value of Soil Fauna in Ecosystem Functioning: The Unexplained Explained. Front. Environ. Sci. 2018, 6, 149. [Google Scholar] [CrossRef]
Trial One | Fertilizing Treatment | Organic Fertilizer (tons ha−1) | Kg N in Yara Mila18-3-15 (kg ha−1) | Kg N in Organic Fertilizer (kg ha−1) | Kg N in Yara Liva 16-0-0 (kg ha−1) | Total kg N (kg ha−1) |
---|---|---|---|---|---|---|
1 | No fertilizer | - | - | - | - | 0 |
2 | Mineral fertilizer 115 kg N ha−1 | 115 | 115 | |||
3 | Mineral fertilizer 145 kg N ha−1 | 145 | 145 | |||
4 | Mineral fertilizer 175 kg N ha−1 | 175 | 175 | |||
5 | Mineral fertilizer 205 kg N ha−1 | 205 | 205 | |||
6 | Mineral fertilizer 235 kg N ha−1 | 235 | 235 | |||
7 | NEO type A 175.4 kg N ha−1 | 50 | 175.4 | 175.4 | ||
8 | NEO type B 175.4 kg N ha−1 | 50 | 175.4 | 175.4 | ||
9 | NEO type C 175.4 kg N ha−1 | 50 | 175.4 | 175.4 | ||
10 | Organic fertilizer 73 kg N ha−1 | 55 | 73 | 73 | ||
11 | Organic fertilizer + MF 115 kg N ha−1 | 55 | 73 | 42 | 115 | |
12 | Organic fertilizer + MF 145 kg N ha−1 | 55 | 73 | 72 | 145 | |
13 | Organic fertilizer + MF 175 kg N ha−1 | 55 | 73 | 102 | 175 | |
14 | Organic fertilizer + MF 205 kg N ha−1 | 55 | 73 | 132 | 205 | |
Trial Two | Fertilizing Treatment | Organic Fertilizer (tons ha−1) | Kg N in Yara Mila18-3-15 (kg ha−1) | Kg N in Organic Fertilizer (kg ha−1) | Kg N in Yara Liva 16-0-0 (kg ha−1) | Total kg N (kg ha−1) |
1 | No fertilizer | - | - | - | - | 0 |
2 | Mineral fertilizer 60 kg N ha−1 | 60 | 60 | |||
3 | Mineral fertilizer 80 kg N ha−1 | 80 | 80 | |||
4 | Mineral fertilizer 115 kg N ha−1 | 115 | 115 | |||
5 | Mineral fertilizer 135 kg N ha−1 | 135 | 135 | |||
6 | Mineral fertilizer 155 kg N ha−1 | 155 | 155 | |||
7 | Mineral fertilizer 175 kg N ha−1 | 175 | 175 | |||
8 | NEO type A 175.4 kg N ha−1 | 50 | 175.4 | 175.4 | ||
9 | NEO type B 175.4 kg N ha−1 | 50 | 175.4 | 175.4 | ||
10 | NEO type C 175.4 kg N ha−1 | 50 | 175.4 | 175.4 | ||
11 | Organic fertilizer 73 kg N ha−1 | 55 | 73 | 73 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mousavi, H.; Cottis, T.; Hoff, G.; Solberg, S.Ø. Nitrogen Enriched Organic Fertilizer (NEO) and Its Effect on Ryegrass Yield and Soil Fauna Feeding Activity under Controlled Conditions. Sustainability 2022, 14, 2005. https://doi.org/10.3390/su14042005
Mousavi H, Cottis T, Hoff G, Solberg SØ. Nitrogen Enriched Organic Fertilizer (NEO) and Its Effect on Ryegrass Yield and Soil Fauna Feeding Activity under Controlled Conditions. Sustainability. 2022; 14(4):2005. https://doi.org/10.3390/su14042005
Chicago/Turabian StyleMousavi, Hesam, Thomas Cottis, Gina Hoff, and Svein Øivind Solberg. 2022. "Nitrogen Enriched Organic Fertilizer (NEO) and Its Effect on Ryegrass Yield and Soil Fauna Feeding Activity under Controlled Conditions" Sustainability 14, no. 4: 2005. https://doi.org/10.3390/su14042005
APA StyleMousavi, H., Cottis, T., Hoff, G., & Solberg, S. Ø. (2022). Nitrogen Enriched Organic Fertilizer (NEO) and Its Effect on Ryegrass Yield and Soil Fauna Feeding Activity under Controlled Conditions. Sustainability, 14(4), 2005. https://doi.org/10.3390/su14042005