Sustainability Interventions on Agro-Ecosystems: An Experience from Yunnan Province, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sustainability Intervention Framework
2.3. Agro-Ecological Sustainability Index (AESI)
2.4. Data
3. Results
3.1. The Intervention Mechanism and Implementation Process
3.2. Intervention Results at the Provincial Level
3.3. Localized Interventions among Prefectures
4. Discussion
4.1. Lessons from Yunnan’s Experience
4.2. Limitation and Future Improvement
4.3. Contribution to the SDGs
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tilman, D.; Balzer, C.; Hill, J.; Befort, B.L. Global Food Demand and the Sustainable Intensification of Agriculture. Proc. Natl. Acad. Sci. USA 2011, 108, 20260–20264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, Y.; Jenkins, A.; Ferrier, R.C.; Bailey, M.; Gordon, I.J.; Song, S.; Huang, J.; Jia, S.; Zhang, F.; Liu, X.; et al. Addressing China’s Grand Challenge of Achieving Food Security While Ensuring Environmental Sustainability. Sci. Adv. 2015, 1, e1400039. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Dijk, M.; Gramberger, M.; Laborde, D.; Mandryk, M.; Shutes, L.; Stehfest, E.; Valin, H.; Faradsch, K. Stakeholder-Designed Scenarios for Global Food Security Assessments. Glob. Food Secur. 2020, 24, 100352. [Google Scholar] [CrossRef]
- Pingali, P.L. Green Revolution: Impacts, Limits, and the Path Ahead. Proc. Natl. Acad. Sci. USA 2012, 109, 12302–12308. [Google Scholar] [CrossRef] [Green Version]
- Pretty, J. Intensification for Redesigned and Sustainable Agricultural Systems. Science 2018, 362, eaav0294. [Google Scholar] [CrossRef] [Green Version]
- Stevenson, J.R.; Villoria, N.; Byerlee, D.; Kelley, T.; Maredia, M. Green Revolution Research Saved an Estimated 18 to 27 Million Hectares from Being Brought into Agricultural Production. Proc. Natl. Acad. Sci. USA 2013, 110, 8363–8368. [Google Scholar] [CrossRef] [Green Version]
- Therond, O.; Duru, M.; Roger-Estrade, J.; Richard, G. A New Analytical Framework of Farming System and Agriculture Model Diversities. A Review. Agron. Sustain. Dev. 2017, 37, 21. [Google Scholar] [CrossRef]
- DeFries, R.; Fanzo, J.; Remans, R.; Palm, C.; Wood, S.; Anderman, T.L. Metrics for Land-Scarce Agriculture. Science 2015, 349, 238–240. [Google Scholar] [CrossRef]
- Food and Agriculture Organizations. Transforming Food and Agriculture to Achieve the SDGs; FAO: Rome, Italy, 2018; ISBN 978-92-5-130626-0. [Google Scholar]
- Sachs, J.D.; Schmidt-Traub, G.; Mazzucato, M.; Messner, D.; Nakicenovic, N.; Rockström, J. Six Transformations to Achieve the Sustainable Development Goals. Nat. Sustain. 2019, 2, 805–814. [Google Scholar] [CrossRef]
- Hansen, J.W. Is Agricultural Sustainability a Useful Concept? Agric. Syst. 1996, 50, 117–143. [Google Scholar] [CrossRef]
- Pretty, J. Agricultural Sustainability: Concepts, Principles and Evidence. Philos. Trans. R. Soc. B 2008, 363, 447–465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farrell, A.; Hart, M. What Does Sustainability Really Mean?: The Search for Useful Indicators. Environment 1998, 40, 4–31. [Google Scholar] [CrossRef]
- Dahlberg, K. Sustainable Agriculture: Fad or Harbinger? Bioscience 1991, 41, 337–340. [Google Scholar] [CrossRef]
- Yunlong, C.; Smit, B. Sustainability in Agriculture: A General Review. Agric. Ecosyst. Environ. 1994, 49, 299–307. [Google Scholar] [CrossRef]
- Van Cauwenbergh, N.; Biala, K.; Bielders, C.; Brouckaert, V.; Franchois, L.; Garcia Cidad, V.; Hermy, M.; Mathijs, E.; Muys, B.; Reijnders, J.; et al. SAFE—A Hierarchical Framework for Assessing the Sustainability of Agricultural Systems. Agric. Ecosyst. Environ. 2007, 120, 229–242. [Google Scholar] [CrossRef]
- Schader, C.; Baumgart, L.; Landert, J.; Muller, A.; Ssebunya, B.; Blockeel, J.; Weisshaidinger, R.; Petrasek, R.; Mészáros, D.; Padel, S.; et al. Using the Sustainability Monitoring and Assessment Routine (SMART) for the Systematic Analysis of Trade-Offs and Synergies between Sustainability Dimensions and Themes at Farm Level. Sustainability 2016, 8, 274. [Google Scholar] [CrossRef] [Green Version]
- Cristiana, P.; Tecco, N.; Dansero, E.; Girgenti, V.; Sottile, F. Evaluating the Sustainability in Complex Agri-Food Systems: The SAEMETH Framework. Sustainability 2015, 7, 6721–6741. [Google Scholar] [CrossRef] [Green Version]
- Paracchini, M.L.; Bulgheroni, C.; Borreani, G.; Tabacco, E.; Banterle, A.; Bertoni, D.; Rossi, G.; Parolo, G.; Origgi, R.; De Paola, C. A Diagnostic System to Assess Sustainability at a Farm Level: The SOSTARE Model. Agric. Syst. 2015, 133, 35–53. [Google Scholar] [CrossRef]
- Ostrom, E. A General Framework for Analyzing Sustainability of Social-Ecological Systems. Science 2009, 325, 419–422. [Google Scholar] [CrossRef]
- Bockstaller, C.; Guichard, L.; Keichinger, O.; Girardin, P.; Galan, M.-B.; Gaillard, G. Comparison of Methods to Assess the Sustainability of Agricultural Systems: A Review. Agron. Sustain. Dev. 2009, 29, 223–235. [Google Scholar] [CrossRef] [Green Version]
- Häni, F.; Braga, F.; Stämpfli, A.; Keller, T.; Porsche, H. RISE, a Tool for Holistic Sustainability Assessment at the Farm Level. Int. Food Agribus. Manag. Rev. 2003, 6, 78–90. [Google Scholar] [CrossRef]
- Lampridi, M.; Sørensen, C.; Bochtis, D. Agricultural Sustainability: A Review of Concepts and Methods. Sustainability 2019, 11, 5120. [Google Scholar] [CrossRef] [Green Version]
- Schindler, J.; Graef, F.; König, H.J. Methods to Assess Farming Sustainability in Developing Countries. A Review. Agron. Sustain. Dev. 2015, 35, 1043–1057. [Google Scholar] [CrossRef] [Green Version]
- Struik, P.C.; Kuyper, T.W. Sustainable Intensification in Agriculture: The Richer Shade of Green. A Review. Agron. Sustain. Dev. 2017, 37, 39. [Google Scholar] [CrossRef]
- Siebrecht, N. Sustainable Agriculture and Its Implementation Gap—Overcoming Obstacles to Implementation. Sustainability 2020, 12, 3853. [Google Scholar] [CrossRef]
- Nordhagen, S.; Nielsen, J.; van Mourik, T.; Smith, E.; Klemm, R. Fostering CHANGE: Lessons from Implementing a Multi-Country, Multi-Sector Nutrition-Sensitive Agriculture Project. Eval. Program Plan. 2019, 77, 101695. [Google Scholar] [CrossRef] [PubMed]
- Dale, V.H.; Kline, K.L.; Lopez-Ridaura, S.; Eichler, S.E.; Ortiz-Monasterio, I.; Ramirez, L.F. Towards More Sustainable Agricultural Landscapes: Lessons from Northwestern Mexico and the Western Highlands of Guatemala. Futures 2020, 124, 102647. [Google Scholar] [CrossRef]
- Bryan, B.A.; Gao, L.; Ye, Y.; Sun, X.; Connor, J.D.; Crossman, N.D.; Stafford-Smith, M.; Wu, J.; He, C.; Yu, D.; et al. China’s Response to a National Land-System Sustainability Emergency. Nature 2018, 559, 193–204. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, Z.; Zheng, H.; Xiao, Y.; Polasky, S.; Liu, J.; Xu, W.; Wang, Q.; Zhang, L.; Xiao, Y.; Rao, E.; et al. Improvements in Ecosystem Services from Investments in Natural Capital. Science 2016, 352, 1455–1459. [Google Scholar] [CrossRef]
- Frayer, J.; Sun, Z.; Müller, D.; Munroe, D.K.; Xu, J. Analyzing the Drivers of Tree Planting in Yunnan, China, with Bayesian Networks. Land Use Policy 2014, 36, 248–258. [Google Scholar] [CrossRef]
- Chen, Z.; Shi, D. Spatial Structure Characteristics of Slope Farmland Quality in Plateau Mountain Area: A Case Study of Yunnan Province, China. Sustainability 2020, 12, 7230. [Google Scholar] [CrossRef]
- Statistical Bureau of Yunnan Province. Yunnan Statistical Yearbook. 2020. Available online: http://stats.yn.gov.cn/tjsj/tjnj/ (accessed on 20 September 2020). (In Chinese)
- Xiao, Y.; Xiao, Q.; Sun, X. Ecological Risks Arising from the Impact of Large-Scale Afforestation on the Regional Water Supply Balance in Southwest China. Sci. Rep. 2020, 10, 4150. [Google Scholar] [CrossRef] [Green Version]
- Kropff, M.; Bouma, J.; Jones, J. Systems Approaches for the Design of Sustainable Agro-Ecosystems. Agric. Syst. 2001, 70, 369–393. [Google Scholar] [CrossRef]
- Forrester, J.W. System Dynamics, Systems Thinking, and Soft OR. Syst. Dyn. Rev. 1994, 10, 245–256. [Google Scholar] [CrossRef]
- Groenleer, M.; Jiang, T.; de Jong, M.; de Bruijn, H. Applying Western Decision-Making Theory to the Study of Transport Infrastructure Development in China: The Case of the Harbin Metro. Policy Soc. 2012, 31, 73–85. [Google Scholar] [CrossRef]
- Feng, L.; Wu, Q.; Wu, W.; Liao, W. Decision-Maker-Oriented VS. Collaboration: China’s Public Participation in Environmental Decision-Making. Sustainability 2020, 12, 1334. [Google Scholar] [CrossRef] [Green Version]
- Jin, Y.; Andersson, H.; Zhang, S. Air Pollution Control Policies in China: A Retrospective and Prospects. Int. J. Environ. Res. Public Health 2016, 13, 1219. [Google Scholar] [CrossRef] [Green Version]
- Xue, L.; Zhao, J. Truncated Decision Making and Deliberative Implementation: A Time-Based Policy Process Model for Transitional China. Policy Stud. J. 2020, 48, 298–326. [Google Scholar] [CrossRef]
- Yao, L.; Zhao, M.; Xu, T. China’s Water-Saving Irrigation Management System: Policy, Implementation, and Challenge. Sustainability 2017, 9, 2339. [Google Scholar] [CrossRef] [Green Version]
- Heilmann, S.; Melton, O. The Reinvention of Development Planning in China, 1993–2012—Topic—Institute for Advanced Historical and Social Research. Mod. China 2013, 39, 580–628. [Google Scholar] [CrossRef]
- González-Chang, M.; Wratten, S.D.; Shields, M.W.; Costanza, R.; Dainese, M.; Gurr, G.M.; Johnson, J.; Karp, D.S.; Ketelaar, J.W.; Nboyine, J.; et al. Understanding the Pathways from Biodiversity to Agro-Ecological Outcomes: A New, Interactive Approach. Agric. Ecosyst. Environ. 2020, 301, 107053. [Google Scholar] [CrossRef]
- Kéfi, S.; Holmgren, M.; Scheffer, M. When Can Positive Interactions Cause Alternative Stable States in Ecosystems? Funct. Ecol. 2016, 30, 88–97. [Google Scholar] [CrossRef]
- Lu, Y.; Zhang, Y.; Cao, X.; Wang, C.; Wang, Y.; Zhang, M.; Ferrier, R.C.; Jenkins, A.; Yuan, J.; Bailey, M.J.; et al. Forty Years of Reform and Opening up: China’s Progress toward a Sustainable Path. Sci. Adv. 2019, 5, eaau9413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abayomi, K.; de la Pena, V.; Lall, U.; Levy, M. Quantifying Sustainability: Methodology for and Determinants of an Environmental Sustainability Index. In Green Finance and Sustainability: Environmentally-Aware Business Models and Technologies; Luo, Z.W., Ed.; IGI Global: Hershey, PA, USA, 2011; pp. 74–89. [Google Scholar]
- Virtanen, P.; Gommers, R.; Oliphant, T.E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.; Bright, J.; et al. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nat. Methods 2020, 17, 261–272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roland, S.; Beatrix, V.; Renáta, G.P. Possible Methods for Price Forecasting. In Proceedings of the MultiScience MicroCAD International Scientific Conference, University of Miskolc, Miskolc, Hungary, 21–22 April 2016; ISBN 978-963-358-113-1. [Google Scholar] [CrossRef]
- Lloyd, J. Forecasting Based on Creeping Trend with Harmonic Weights. 2015. Available online: https://slideplayer.com/slide/4611935/ (accessed on 8 January 2020).
- Department of Agriculture and Rural Affairs of Yunnan Province. Government Information for Public. 2020. Available online: https://nync.yn.gov.cn/zwgk/ (accessed on 20 September 2020). (In Chinese)
- The People’s Government of Yunnan Province. Government Information for Public. 2020. Available online: http://www.yn.gov.cn/zwgk/ (accessed on 21 September 2020). (In Chinese)
- Forestry and Grassland Administration of Yunnan Province. Government Information for Public. 2020. Available online: http://lcj.yn.gov.cn/html/zhengwugongkai/ (accessed on 11 November 2020). (In Chinese)
- National Development and Reform Commission. Comprehensive Treatment Program of Rocky Desertification in Karst Area. 2016. Available online: https://www.ndrc.gov.cn/xxgk/zcfb/ghwb/201604/W020190905497812570892.pdf (accessed on 20 September 2020). (In Chinese)
- Department of Agriculture and Rural Affairs of Yunnan Province. The Opinions on Accelerating Well-Facilitated Farmland Construction. 2016. Available online: https://nync.yn.gov.cn/zwgk/content/index?id=6465848 (accessed on 20 September 2020). (In Chinese)
- Tang, H.; Yun, W.; Liu, W.; Sang, L. Structural Changes in the Development of China’s Farmland Consolidation in 1998–2017: Changing Ideas and Future Framework. Land Use Policy 2019, 89, 104212. [Google Scholar] [CrossRef]
- The People’s Government of Yunnan Province. The Plan for Modernization of Highland Agriculture in Yunnan Province (2016–2020). 2016. Available online: http://www.yn.gov.cn/zwgk/zcwj/zxwj/201910/P020191031637959053927.pdf (accessed on 21 September 2020). (In Chinese)
- Department of Agriculture and Rural Affairs of Yunnan Province. Opinions on Strengthening Management to Promote Healthy Pesticide Industry. 2017. Available online: https://nync.yn.gov.cn/zwgk/content/index?id=6915993 (accessed on 21 September 2020). (In Chinese)
- Department of Agriculture and Rural Affairs of Yunnan Province. Implementation Opinions on Improving Ecological Compensation Mechanism. 2017. Available online: https://nync.yn.gov.cn/zwgk/content/index?id=6692200 (accessed on 21 September 2020). (In Chinese)
- Li, Y. Eco-compensation in Yunnan Province: Experiences and Future Priorities. 2016. Available online: https://events.development.asia/system/files/materials/2016/11/201611-eco-compensation-yunnan-province-experiences-and-future-priorities.pdf (accessed on 11 November 2020).
- The People’s Government of Yunnan Province. Work Plan for Soil Pollution Prevention and Control in Yunnan Province. 2017. Available online: http://www.yn.gov.cn/ztgg/yn_hbzt/zcwj/201702/P020190708667498315734.pdf (accessed on 11 November 2020). (In Chinese)
- Cui, Z.; Zhang, H.; Chen, X.; Zhang, C.; Ma, W.; Huang, C.; Zhang, W.; Mi, G.; Miao, Y.; Li, X.; et al. Pursuing Sustainable Productivity with Millions of Smallholder Farmers. Nature 2018, 555, 363–366. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Wu, J. The Sustainability of Agricultural Development in China: The Agriculture–Environment Nexus. Sustainability 2018, 10, 1776. [Google Scholar] [CrossRef] [Green Version]
- Baoshan Daily. Significant Achievements in Comprehensive Agricultural Development in Baoshan Prefecture. 2011. Available online: http://www.baoshandaily.com/html/20110616/content_130818949716118.html (accessed on 5 November 2020). (In Chinese).
- Baoshan Daily. Proposal of Baoshan’s Twelve Five-Year Plan. 2011. Available online: http://www.baoshandaily.com/html/20110114/content_129496964912010_7.html (accessed on 5 November 2020). (In Chinese).
- The People’s Government of Baoshan Prefecture. Work Opinions on Summer Harvest Crop Production and Winter Agricultural Development. 2016. Available online: http://www.baoshan.gov.cn/info/egovinfo/1001/zw_nry/01525525-X-06_A/2016-0217003.htm (accessed on 5 November 2020). (In Chinese)
- Yuxi News. The Urgent Need for Rocky Desertification Prevention as 700 Square Kilometers Fertile Land Has Turned into Wasteland, 2012. Available online: http://www.yuxinews.com/xw/sh/1272271.shtml (accessed on 11 November 2020). (In Chinese).
- Department of Agriculture and Rural Affairs of Yuxi Prefecture. Agricultural Plan for Three-Lakes Ecological and Economic Area in Yuxi (2016–2025), 2016. Available online: http://112.33.19.76/uploadfile_temp/document/20170907150909854.pdf (accessed on 11 November 2020). (In Chinese).
- Forestry and Grassland Administration of Yunnan Province. Wenshan Prefecture Completed 1.15 Million Mu of Vegetation Restoration in the Rocky Desertification Area in the Past 7 years, 2017. Available online: http://lcj.yn.gov.cn/html/2017/zuixindongtai_0915/49137.html (accessed on 11 November 2020). (In Chinese)
- Department of Agriculture and Rural Affairs of Wenshan Prefecture. Training Conference for Land Quality Improvement and Fertilizer Reduction, 2018. Available online: https://nync.yn.gov.cn/news166/20181225/7009966.shtml (accessed on 11 November 2020). (In Chinese)
- Liu, J.; Dietz, T.; Carpenter, S.R.; Alberti, M.; Folke, C.; Moran, E.; Pell, A.N.; Deadman, P.; Kratz, T.; Lubchenco, J.; et al. Complexity of Coupled Human and Natural Systems. Science 2007, 317, 1513–1516. [Google Scholar] [CrossRef] [Green Version]
- van Meter, K.J.; Basu, N.B. Catchment Legacies and Time Lags: A Parsimonious Watershed Model to Predict the Effects of Legacy Storage on Nitrogen Export. PLoS ONE 2015, 10, e0125971. [Google Scholar] [CrossRef]
- Schultz, L.; Folke, C.; Österblom, H.; Olsson, P. Adaptive Governance, Ecosystem Management and Natural Capital. Proc. Natl. Acad. Sci. USA 2015, 112, 7369–7374. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Cao, S. Lack of Integrated Solutions Hinders Environmental Recovery in China. Ecol. Eng. 2013, 54, 233–235. [Google Scholar] [CrossRef]
- Schut, M.; van Asten, P.; Okafor, C.; Hicintuka, C.; Mapatano, S.; Nabahungu, N.L.; Kagabo, D.; Muchunguzi, P.; Njukwe, E.; Dontsop-Nguezet, P.M.; et al. Sustainable Intensification of Agricultural Systems in the Central African Highlands: The Need for Institutional Innovation. Agric. Syst. 2016, 145, 165–176. [Google Scholar] [CrossRef]
- Pagliacci, F.; Defrancesco, E.; Mozzato, D.; Bortolini, L.; Pezzuolo, A.; Pirotti, F.; Pisani, E.; Gatto, P. Drivers of Farmers’ Adoption and Continuation of Climate-Smart Agricultural Practices. A Study from Northeastern Italy. Sci. Total Environ. 2020, 710, 136345. [Google Scholar] [CrossRef]
- Defrancesco, E.; Gatto, P.; Mozzato, D. To Leave or Not to Leave? Understanding Determinants of Farmers’ Choices to Remain in or Abandon Agri-Environmental Schemes. Land Use Policy 2018, 76, 460–470. [Google Scholar] [CrossRef]
- Millennium Institute. The Impact of Agroecology on the Achievement of the Sustainable Development Goals (SDGs), 2018. Available online: https://www.agroecology-pool.org/modelling-results/ (accessed on 4 November 2020).
- Gliessman, S. Defining Agroecology. Agroecol. Sustain. Food Syst. 2018, 42, 599–600. [Google Scholar] [CrossRef] [Green Version]
Index | Sub-Indices | Variables |
---|---|---|
Agro-ecological sustainability index (AESI) | Agricultural output index | Grain production (rice, wheat, maize, tubers) |
Cash crop production (sugar cane, oilseeds, tobacco) | ||
Fruit production | ||
GDP from agriculture (provincial/prefecture scales) | ||
Negative ecological impact index | Chemical fertilizer usage | |
Pesticide usage | ||
Plastic mulch usage | ||
Water usage | ||
Total cropping area | ||
Positive ecological impact index | Reforestation area (restore damaged woodland) | |
Water reservoir capacity (infrastructures for hilly areas to collect and distribute water to cope with droughts) | ||
Irrigation area (for dryland, expanding irrigation areas mean bringing more water to local systems and allocating water effectively, thus considered a positive impact) |
Name | Objectives | Time Frame | Key Points | References |
---|---|---|---|---|
Comprehensive treatment program of rocky desertification in karst area | Curb desertification expansion, stabilize ecosystem, optimize agricultural structure | 2008–2020 | 1. Central government funds the key counties, local governments fund the other counties. Standard: 2000–2500 CNY per hectare (286–357 USD). 2. Conserve fragile vegetation and reforest. 3. Improve grassland and develop husbandry properly. 4. Build terraced farmland and water facilities. | [29,53] |
Well-facilitated farmland construction program | Stabilize agricultural production, construct at least 800,000 hectares well-facilitated farmland | 2014–2020 | 1. Multiple funding sources (government, agricultural companies, farmers). 2. Merge fragmented farmland. 3. Improve soil quality. 4. Build irrigation facilities. 5. Redesign road and construct farmland shelterbelt. 6. Digitalize farmland information on a monitoring map. | [54,55] |
Modern highland agriculture plan | Enlarge agricultural production, secure food safety, improve sustainability, enhance innovation and technology | 2016–2020 | 1. Optimize the spatial distribution and structure of agriculture. 2. Enhance agricultural infrastructure (land, irrigation, machine, technology, markets, information) 3. Encourage moderate-scale land merger; promote agricultural brand; integrate agriculture, manufacturing, and service sectors. 4. Protect arable land quantitatively and qualitatively; develop water-efficiency and circular agriculture; protect environment (zero increase in chemical fertilizer and pesticide). | [56] |
Tighten pesticide regulation | Eliminate toxic pesticide and develop biopesticide, improve pesticide efficiency and quality | 2017–2025 | 1. Support registration of environmental friendly pesticide; restrict highly risky pesticides and withdraw registration of toxic pesticide. 2. Move pesticide producers to the chemistry industry zone, eliminate high pollution production capacity. 3. Tighten sales license (qualified distributors, traceable sales). 4. Help farmers to choose and use pesticide scientifically (increase efficiency, decrease quantity). 5. Strengthen law enforcement capacity, punish illegal activities. | [57] |
Ecological compensation | Build compensation mechanism that covers major ecological fragile areas by 2020, promote green production manner and green lifestyle | 2017–2020 | 1. Set up funds at provincial, prefecture, and county level governments. 2. Cover major ecological systems such as forest, grassland, watershed, and farmland. 3. Compensation from higher-level governments to lower-level governments if ecological standards are achieved, deduction otherwise. 4. Beneficiaries compensate protectors; downstream areas compensate upstream areas. 5. Trans-regional cooperation. | [58,59] |
Soil pollution prevention | Stop deteriorated soil pollution by 2020, improve soil quality by 2030 | 2017–2030 | 1. Clarify soil quality situation; build soil monitoring network. 2. Protect existing farmland from pollution. 3. Prevent pollution of newly developed farmland. 4. Control pollution source, especially mining sites and agricultural pollution. | [60] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, J.; Fan, X.; Jintrawet, A.; Weyerhaeuser, H. Sustainability Interventions on Agro-Ecosystems: An Experience from Yunnan Province, China. Sustainability 2021, 13, 5698. https://doi.org/10.3390/su13105698
Fan J, Fan X, Jintrawet A, Weyerhaeuser H. Sustainability Interventions on Agro-Ecosystems: An Experience from Yunnan Province, China. Sustainability. 2021; 13(10):5698. https://doi.org/10.3390/su13105698
Chicago/Turabian StyleFan, Jun, Xingming Fan, Attachai Jintrawet, and Horst Weyerhaeuser. 2021. "Sustainability Interventions on Agro-Ecosystems: An Experience from Yunnan Province, China" Sustainability 13, no. 10: 5698. https://doi.org/10.3390/su13105698
APA StyleFan, J., Fan, X., Jintrawet, A., & Weyerhaeuser, H. (2021). Sustainability Interventions on Agro-Ecosystems: An Experience from Yunnan Province, China. Sustainability, 13(10), 5698. https://doi.org/10.3390/su13105698