Analyzing the Characteristics of Green Bond Markets to Facilitate Green Finance in the Post-COVID-19 World
Abstract
:1. Introduction
2. Literature Review
2.1. An Introduction to Green Finance and Green Bonds
2.2. Characteristics and Challenges of Green Bonds
3. Methodology and Data Description
3.1. Data and Description of Variables
3.2. Methodology
4. Empirical Analysis
4.1. Summary Statistics
4.2. Mean-Variance Analysis
4.3. Regression Analysis
4.4. Test and Diagnostics
5. Conclusions and Policy Implications
5.1. Conclusions and Further Steps
5.2. Policy Implications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. Summary Statistics with the Reduced Sample, Using Data from Bloomberg New Energy Finance
Item | Observations | Mean | Std. Dev. | Min | Max |
---|---|---|---|---|---|
Rate of return | 366 | 3.515615 | 3.595249 | −0.216 | 48.955 |
Days to maturity | 760 | 1806.713 | 1212.08 | 145 | 11,217 |
Amount issued | 760 | 4.38 × 108 | 5.52 × 108 | 9.98 × 107 | 4.33 × 109 |
Coupon rate | 760 | 3.425405 | 2.185087 | 0 | 15.5 |
Private | 760 | 0.9052632 | 0.293044 | 0 | 1 |
Banking | 760 | 0.5578947 | 0.4969639 | 0 | 1 |
Manufacturing | 760 | 0.0578947 | 0.2336981 | 0 | 1 |
Power/Utilities | 760 | 0.1263158 | 0.3324237 | 0 | 1 |
Others | 760 | 0.1631579 | 0.369753 | 0 | 1 |
Item | Observations | Mean | Std. Dev. | Min | Max |
---|---|---|---|---|---|
Rate of return | 603 | 0.9731144 | 3.362978 | −0.572 | 80.075 |
Days to maturity | 1140 | 5578.874 | 30,351.63 | 147 | 36,6305 |
Amount issued | 1140 | 6.66 × 108 | 4.68 × 108 | 1.00 × 108 | 4.46 × 109 |
Coupon rate | 1140 | 1.162737 | 0.9079918 | 0 | 7.125 |
Private | 1140 | 0.7894737 | 0.4078614 | 0 | 1 |
Banking | 1140 | 0.322807 | 0.4677548 | 0 | 1 |
Manufacturing | 1140 | 0.0210526 | 0.1436228 | 0 | 1 |
Power/Utilities | 1140 | 0.2877193 | 0.4528983 | 0 | 1 |
Others | 1140 | 0.1578947 | 0.3648023 | 0 | 1 |
Item | Observations | Mean | Std. Dev. | Min | Max |
---|---|---|---|---|---|
Rate of return | 205 | 2.666659 | 1.306911 | −0.3 | 7.72 |
Days to maturity | 432 | 4122.398 | 3229.278 | 245 | 13,655 |
Amount issued | 432 | 5.26 × 108 | 3.72 × 108 | 9.51 × 107 | 2.25 × 109 |
Coupon rate | 432 | 2.958718 | 1.474915 | 0 | 8 |
Private | 432 | 0.7222222 | 0.4484225 | 0 | 1 |
Banking | 432 | 0.1388889 | 0.3462315 | 0 | 1 |
Manufacturing | 432 | 0.0555556 | 0.229327 | 0 | 1 |
Power/Utilities | 432 | 0.3333333 | 0.4719511 | 0 | 1 |
Others | 432 | 0.1944444 | 0.3962313 | 0 | 1 |
Appendix A.2. Summary Statistics by Sector
Item | Observations | Mean | Std. Dev. | Min | Max | |
---|---|---|---|---|---|---|
Public sector | Rate of return | 40 | 2.78625 | 1.938086 | −0.216 | 9.03 |
Days to maturity | 72 | 2501.5 | 1105.893 | 555 | 4815 | |
Amount issued | 72 | 6.47 × 108 | 4.60 × 108 | 1.10 × 108 | 2.24 × 109 | |
Coupon rate | 72 | 2.273056 | 1.815014 | 0 | 7.125 | |
Banking/Finance | Rate of return | 221 | 3.086752 | 1.548352 | −0.059 | 6.95 |
Days to maturity | 424 | 1466.811 | 820.2578 | 145 | 4797 | |
Amount issued | 424 | 5.05 × 108 | 6.85 × 108 | 1.02 × 108 | 4.33 × 109 | |
Coupon rate | 424 | 3.296255 | 1.611012 | 0 | 6.5 | |
Manufacturing | Rate of return | 17 | 3.903 | 7.30048 | −0.184 | 26.092 |
Days to maturity | 44 | 1914.045 | 939.1773 | 472 | 4305 | |
Amount issued | 44 | 2.69 × 108 | 1.71 × 108 | 1.00 × 108 | 7.05 × 108 | |
Coupon rate | 44 | 2.105455 | 2.437531 | 0 | 7.5 | |
Power/Utilities | Rate of return | 37 | 5.32027 | 7.92042 | 0.744 | 48.955 |
Days to maturity | 96 | 1922.677 | 1069.983 | 218 | 4723 | |
Amount issued | 96 | 2.85 × 108 | 1.42 × 108 | 9.98 × 107 | 5.90 × 108 | |
Coupon rate | 96 | 3.845875 | 1.855951 | 0.85 | 7.9 | |
Others | Rate of return | 51 | 4.507686 | 3.735481 | 0.231 | 17.395 |
Days to maturity | 124 | 2437.669 | 1938.155 | 174 | 11,217 | |
Amount issued | 124 | 2.67 × 108 | 1.44 × 108 | 1.00 × 108 | 6.00 × 108 | |
Coupon rate | 124 | 4.678968 | 3.273824 | 0.09 | 15.5 |
Item | Observations | Mean | Std. Dev. | Min | Max | |
---|---|---|---|---|---|---|
Public sector | Rate of return | 153 | 0.9720131 | 1.020399 | −0.556 | 3.263 |
Days to maturity | 240 | 2667.183 | 1878.802 | 147 | 11,266 | |
Amount issued | 240 | 8.56 × 108 | 7.43 × 108 | 1.16 × 108 | 4.46 × 109 | |
Coupon rate | 240 | 1.16585 | 0.8552492 | 0 | 3.3 | |
Banking/Finance | Rate of return | 184 | 0.4063315 | 0.5703005 | −0.572 | 2.615 |
Days to maturity | 368 | 2601.359 | 1844.092 | 151 | 12,251 | |
Amount issued | 368 | 6.35 × 108 | 3.32 × 108 | 1.06 × 108 | 1.74 × 109 | |
Coupon rate | 368 | 0.6791848 | 0.5777155 | 0 | 2.5 | |
Manufacturing | Rate of return | 11 | 9.553909 | 23.62808 | 0.221 | 80.075 |
Days to maturity | 24 | 2298.333 | 1084.292 | 753 | 4692 | |
Amount issued | 24 | 3.65 × 108 | 2.55 × 108 | 1.08 × 108 | 8.37 × 108 | |
Coupon rate | 24 | 2.371333 | 2.296941 | 0.5 | 7.125 | |
Power/Utilities | Rate of return | 176 | 0.9256023 | 0.6572373 | −0.224 | 3.602 |
Days to maturity | 328 | 12,709.1 | 55,942.4 | 473 | 366,305 | |
Amount issued | 328 | 6.79 × 108 | 3.68 × 108 | 1.09 × 108 | 1.93 × 109 | |
Coupon rate | 328 | 1.374195 | 0.7278362 | 0 | 4.496 | |
Others | Rate of return | 79 | 1.206405 | 0.8654128 | −0.202 | 4.732 |
Days to maturity | 180 | 2993.033 | 1406.762 | 888 | 9954 | |
Amount issued | 180 | 4.93 × 108 | 2.89 × 108 | 1.00 × 108 | 1.14 × 109 | |
Coupon rate | 180 | 1.600711 | 0.9940294 | 0.1 | 5 |
Item | Observations | Mean | Std. Dev. | Min | Max | |
---|---|---|---|---|---|---|
Public sector | Rate of return | 59 | 1.973627 | 1.518473 | −0.3 | 7.72 |
Days to maturity | 120 | 3083.367 | 2605.471 | 265 | 12,148 | |
Amount issued | 120 | 4.47 × 108 | 3.33 × 108 | 1.00 × 108 | 1.20 × 109 | |
Coupon rate | 120 | 2.060917 | 1.905424 | 0 | 8 | |
Banking/Finance | Rate of return | 27 | 2.594 | 1.033445 | −0.004 | 4.205 |
Days to maturity | 60 | 2902.767 | 2313.379 | 245 | 10,886 | |
Amount issued | 60 | 7.24 × 108 | 6.14 × 108 | 1.10 × 108 | 2.25 × 109 | |
Coupon rate | 60 | 2.847733 | 1.344723 | 0.25 | 5.25 | |
Manufacturing | Rate of return | 13 | 2.812 | 1.428624 | 0.05 | 5.219 |
Days to maturity | 24 | 3279.167 | 1107.982 | 1140 | 5422 | |
Amount issued | 24 | 9.77 × 108 | 3.39 × 108 | 4.50 × 108 | 1.50 × 109 | |
Coupon rate | 24 | 2.633333 | 1.938997 | 0 | 5.5 | |
Power/Utilities | Rate of return | 67 | 2.92809 | 0.9791559 | 0.068 | 4.512 |
Days to maturity | 144 | 5643.694 | 3752.187 | 705 | 12,103 | |
Amount issued | 144 | 4.31 × 108 | 1.68 × 108 | 9.51 × 107 | 7.50 × 108 | |
Coupon rate | 144 | 3.449056 | 0.7427922 | 1 | 4.6 | |
Others | Rate of return | 39 | 3.267821 | 1.166826 | 0.789 | 7.079 |
Days to maturity | 84 | 4110.881 | 3026.646 | 894 | 13,655 | |
Amount issued | 84 | 5.33 × 108 | 5.33 × 108 | 1.00 × 108 | 1.23 × 109 | |
Coupon rate | 84 | 3.572952 | 0.8995293 | 1.625 | 5.875 |
Appendix A.3. Theoretical Framework for Policy Recommendation
References
- Sachs, J.; Woo, T.W.; Yoshino, N.; Taghizadeh-Hesary, F. Handbook of Green Finance : Energy Security and Sustainable Development; Springer Singapore and Asian Development Bank Institute: Singapore, 2019. [Google Scholar]
- Paris: International Energy Agency. World Energy Investment 2019—Data Tables. Available online: https://www.iea.org/reports/world-energy-investment-2019 (accessed on 22 November 2020).
- Peimani, H. Financial Barriers for Development of Renewable and Green Energy Projects in Asia. In Handbook of Green Finance: Energy Security and Sustainable Development; Sachs, J., Wing, T.W., Yoshino, N., Taghizadeh-Hesary, F., Eds.; Springer Singapore and Asian Development Bank Institute: Singapore, 2019; pp. 15–34. [Google Scholar]
- Noh, H.J. Financial Strategies to Accelerate Green Growth. In Handbook of Green Finance: Energy Security and Sustainable Development; Sachs, J., Wing, T.W., Yoshino, N., Taghizadeh-Hesary, F., Eds.; Springer Singapore and Asian Development Bank Institute: Singapore, 2019; pp. 37–62. [Google Scholar]
- Yoshino, N.; Taghizadeh-Hesary, F.; Nakahigashi, M. Modelling the Social Funding and Spillover Tax for Addressing the Green Energy Financing Gap. Econ. Model. 2019, 77, 34–41. [Google Scholar] [CrossRef]
- London: Climate Bonds Initiative. Green Bonds: The State of the Market. 2018. Available online: https://www.climatebonds.net/files/reports/cbi_gbm_final_032019_web.pdf (accessed on 22 November 2020).
- London: Climate Bonds Initiative. Green Bonds: Global State of the Market. 2019. Available online: https://www.climatebonds.net/resources/reports/green-bonds-global-state-market-2019 (accessed on 22 November 2020).
- Agliardi, E.; Agliardi, R. Financing Environmentally-Sustainable Projects with Green Bonds. Environ. Dev. Econ. 2019, 24, 608–623. [Google Scholar] [CrossRef] [Green Version]
- Baker, M.; Bergstresser, D.; Serafeim, G.; Wurgler, J. Financing the Response to Climate Change: The Pricing and Ownership of U.S. Available online: https://www.nber.org/system/files/working_papers/w25194/w25194.pdf (accessed on 22 November 2020).
- Gianfrate, G.; Peri, M. The Green Advantage: Exploring the Convenience of Issuing Green Bonds. J. Clean. Prod. 2019, 219, 127–135. [Google Scholar] [CrossRef]
- Zerbib, O. The Effect of Pro-Environmental Preferences on Bond Prices: Evidence from Green Bonds. J. Bank. Financ. 2019, 98, 39–60. [Google Scholar] [CrossRef]
- Zou, C.; Zhao, Q.; Zhang, G.; Xiong, B. Energy revolution: From a fossil energy era to a new energy era. Nat. Gas Ind. B 2016, 3, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Taghizadeh-Hesary, F.; Yoshino, N. Sustainable Solutions for Green Financing and Investment in Renewable Energy Projects. Energies 2020, 13, 788. [Google Scholar] [CrossRef] [Green Version]
- OECD. OECD Companion to the Inventory of Support. Measures for Fossil Fuels 2015; OECD Publishing: Paris, France, 2015. [Google Scholar] [CrossRef]
- Coady, D.; Parry, I.; Sears, L.; Shang, B. How Large Are Global Energy Subsidies? IMF Working Paper No. WP/15/105; International Monetary Fund: Washington, DC, USA, 2015. [Google Scholar]
- Pham, L. Is It Risky to Go Green? A Volatility Analysis of the Green Bond Market. J. Sustain. Financ. Invest. 2016, 6, 263–291. [Google Scholar] [CrossRef]
- Naeem, M.A.; Nguyen, T.T.H.; Nepal, R.; Ngo, Q.-T.; Taghizadeh-Hesary, F. Asymmetric relationship between green bonds and commodities: Evidence from extreme quantile approach. Financ. Res. Lett. 2021, 101983. [Google Scholar] [CrossRef]
- Broadstock, D.; Cheng, L. Time-Varying Relation Between Black and Green Bond Price Benchmarks: Macroeconomic Determinants for the First Decade. Financ. Res. Lett. 2019, 29, 17–22. [Google Scholar] [CrossRef]
- CBI. Green Bond Principles & Climate Bonds Standard. Available online: https://www.climatebonds.net/market/best-practice-guidelines (accessed on 22 November 2020).
- Flaherty, M.; Gevorkyan, A.; Radpour, S.; Semmler, W. Financing Climate Policies Through Climate Bonds—A Three Stage Model and Empirics. Res. Int. Bus. Financ. 2017, 42, 468–479. [Google Scholar] [CrossRef]
- Hyun, S.; Park, D.; Tian, S. Pricing of Green Labeling: A Comparison of Labeled and Unlabeled Green Bonds. Financ. Res. Lett. 2020, 101816. [Google Scholar] [CrossRef]
- Bachelet, M.J.; Becchetti, L.; Manfredonia, S. The Green Bonds Premium Puzzle: The Role of Issuer Characteristics and Third-Party Verification. Sustainable 2019, 11, 1098. [Google Scholar] [CrossRef] [Green Version]
- Hachenberg, B.; Schiereck, D. Are Green Bonds Priced Differently from Conventional Bonds? J. Asset Manag. 2018, 19, 371–383. [Google Scholar] [CrossRef]
- Chiesa, M.; Barua, S. The Surge of Impact Borrowing: The Magnitude and Determinants of Green Bond Supply and Its Heterogeneity Across Markets. J. Sustain. Financ. Invest. 2019, 9, 138–161. [Google Scholar] [CrossRef]
- Tang, D.; Zhang, Y. Do Shareholders Benefit from Green Bonds? J. Corp. Financ. 2020, 61. [Google Scholar] [CrossRef]
- MacAskill, S.; Roca, E.; Liu, B.; Stewart, R.A.; Sahin, O. Is There a Green Premium in the Green Bond Market? Systematic Literature Review Revealing Premium Determinants. J. Clean. Prod. 2021, 280 Pt 2. [Google Scholar] [CrossRef]
- Sartzetakis, E. Green Bonds as an Instrument to Finance Low Carbon Transition. Econ. Chang. Restruct. 2020, 1–25. [Google Scholar] [CrossRef]
- Reboredo, J.; Ugolini, A. Price Connectedness Between Green Bond and Financial Markets. Econ. Model. 2020, 88, 25–38. [Google Scholar] [CrossRef]
- Febi, W.; Schäfer, D.; Stephan, A.; Sun, C. The Impact of Liquidity Risk on the Yield Spread of Green Bonds. Financ. Res. Lett. 2018, 27, 53–59. [Google Scholar] [CrossRef]
- Yoshino, N.; Hossain, M.; Taghizadeh-Hesary, F. Enhancing Financial Connectivity Between Asia and Europe: Implications for Infrastructure Convergence Between the Two Regions. Asian Econ. Pap. 2020, 19, 84–101. [Google Scholar] [CrossRef]
- Komendantova, N.; Schinko, T.; Patt, A. De-Risking Policies as a Substantial Determinant of Climate Change Mitigation Costs in Developing Countries: Case Study of the Middle East and North African Region. Energy Policy 2019, 127, 404–411. [Google Scholar] [CrossRef] [Green Version]
- Carafa, L.; Frisari, G.; Vidican, G. Electricity Transition in the Middle East and North Africa: A De-Risking Governance Approach. J. Clean. Prod. 2016, 128, 34–47. [Google Scholar] [CrossRef]
- Taghizadeh-Hesary, F.; Yoshino, N. The Way to Induce Private Participation in Green Finance and Investment. Financ. Res. Lett. 2019, 31, 98–103. [Google Scholar] [CrossRef]
- Revelli, C. Re-embedding Financial Stakes Within Ethical and Social Values in Socially Responsible Investing (SRI). Res. Int. Bus. Financ. 2016, 38, 1–5. [Google Scholar] [CrossRef]
- Paranque, B.; Revelli, C. Ethico-economic Analysis of Impact Finance: The Case of Green Bonds. Res. Int. Bus. Financ. 2019, 47, 57–66. [Google Scholar] [CrossRef]
- Willmott, H. Creating ‘Value’ Beyond the Point of Production: Branding, Financialization and Market Capitalization. Organization 2010, 17, 517–542. [Google Scholar] [CrossRef]
- Lagoarde-Segot, T. Financing the Sustainable Development Goals. Sustainability 2020, 12, 2775. [Google Scholar] [CrossRef] [Green Version]
- Yoshino, N.; Taghizadeh-Hesary, F.; Otsuka, M. Covid-19 and Optimal Portfolio Selection for Investment in Sustainable Development Goals. Financ. Res. Lett. 2020, 101695. [Google Scholar] [CrossRef]
- Chiapello, E. The work of Financialisation. In The Making of Finance; Lenglet, M., Chambost, I., Tadjeddine, Y., Eds.; Routledge: London, UK, 2019; pp. 192–200. [Google Scholar]
- Walter, C. Sustainable Financial Risk Modelling Fitting the SDGs: Some Reflections. Sustainability 2020, 12, 7789. [Google Scholar] [CrossRef]
- Lagoarde-Segot, T.; Martínez, E.A. Ecological finance theory: New foundations. Int. Rev. Financ. Anal. 2021, 75, 101741. [Google Scholar] [CrossRef]
Name of Variable | Observations | Unit | Description | Source |
---|---|---|---|---|
Rate of return | 1174 | % | Rate of return on investment, as measured on 10 January each year. | Bloomberg NEF |
Days to maturity | 1174 | Days | Remaining days before the principal of a security is due and payable. | Bloomberg NEF |
Amount issued | 1174 | $ | Cumulative amount issued from the original security pricing date through to the current date for debt securities. The amount will include taps/increases or reopenings. | Bloomberg NEF |
Coupon rate | 1174 | % | Current interest rate of the security. | Bloomberg NEF |
Issuer name | 1174 | / | Name of the issuing entity. | Bloomberg NEF |
Region of issuance | 1174 | / | Set of dummy variables, with possible values being Asia and the Pacific, Europe, and North America/Others. | Bloomberg NEF |
Sector of issuance | 1174 | / | Set of dummy variables, with possible values being banking and finance, public, manufacturing, power and utilities, construction, and others. | Authors’ compilation, based on issuer name provided by Bloomberg NEF |
Amount Issued (USD million) | Time to Maturity | |||||
---|---|---|---|---|---|---|
Item | Asia-Pacific | Europe | North America | Asia-Pacific | Europe | North America |
Observations | 624 | 835 | 3899 | 608 | 823 | 3886 |
Mean | 288.28 | 349.73 | 49.71 | 8505.14 | 4624.98 | 4502.73 |
Standard deviation | 443.31 | 628.25 | 129.91 | 46,149.90 | 25,339.42 | 2067.03 |
Minimum | 0.99 | 0.38 | 0.02 | 161 | 19 | 24 |
Maximum | 4355.1 | 7558.6 | 2250.0 | 364,635.0 | 364,877.0 | 36,594.0 |
Asia–Europe vs. North America | Asia–North America vs. Europe | Europe–North America vs. Asia | |
---|---|---|---|
Rate of Return | 0.43 *** (0.00) | 0.66 *** (0.00) | 0.52 *** (0.00) |
Amount Issued | 0.12 *** (0.00) | 0.43 *** (0.00) | 0.41 *** (0.00) |
Time to Maturity | 0.26 *** (0.00) | 0.23 *** (0.00) | 0.43 *** (0.00) |
Coupon Rate | 0.39 *** (0.00) | 0.63 *** (0.00) | 0.46 *** (0.00) |
Item | Full Sample | Asia-Pacific | Europe | North America | ||||
---|---|---|---|---|---|---|---|---|
Pooled OLS | GLS Regression (Random Effect) | Pooled OLS | GLS Regression (Random Effect) | Pooled OLS | GLS Regression (Random Effect) | Pooled OLS | GLS Regression (Random Effect) | |
Days to maturity | −9.78 × 10−7 (1.07 × 10−6) | −9.78 × 10−7 (1.15 × 10−6) | 8.80 × 10−6 (7.28 × 10−5) | 4.97 × 10−6 (8.85 × 10−5) | −1.15 × 10−6 (1.74 × 10−6) | −1.15 × 10−6 (1.51 × 10−6) | 3.87 × 10−5 *** (1.08 × 10−5) | 4.85 × 10−5 *** (1.28 × 10−5) |
Coupon Rate | 1.20 *** (0.20) | 1.20 *** (0.20) | 1.14 *** (0.13) | 1.14 *** (0.16) | 1.57 ** (0.69) | 1.57 *** (0.56) | 0.78 *** (0.04) | 0.76 *** (0.04) |
Banking | −0.05 (0.20) | −0.05 (0.27) | −0.62 *** (0.19) | −0.57 ** (0.24) | 0.33 (0.38) | 0.33 (0.31) | −0.07 (0.14) | −0.04 (0.18) |
Manufacturing | 2.27 (1.82) | 2.27 (1.85) | 1.84 (1.20) | 1.79 (1.50) | 5.30 (4.87) | 5.30 (4.70) | −0.06 (0.11) | 0.05 (0.13) |
Power/Utilities | −0.13 (0.18) | −0.13 (0.21) | 1.04 (1.00) | 0.97 (1.05) | −0.30 * (0.15) | −0.30 (0.20) | −0.07 (0.11) | 0.03 (0.15) |
Others | −0.45 ** (0.23) | −0.45 * (0.25) | −0.52 (0.34) | −0.42 (0.45) | −0.35 (0.33) | −0.35 (0.33) | −0.04 (0.12) | 0.05 (0.16) |
2018 | 0.11 (0.11) | 0.11 (0.08) | 0.06 (0.23) | 0.25 * (0.13) | 0.07 (0.22) | 0.07 (0.15) | 0.10 (0.13) | −0.00496 (0.06) |
2019 | 0.25 ** (0.11) | 0.25 *** (0.08) | −0.05 (0.25) | −0.01 (0.19) | 0.33 * (0.18) | 0.33 *** (0.11) | 0.27 ** (0.12) | 0.36 *** (0.07) |
2020 | −0.20 (0.17) | −0.20 (0.16) | −0.63 ** (0.24) | −0.60 *** (0.17) | 0.08 (0.30) | 0.08 (0.29) | −0.66 *** (0.10) | −0.69 *** (0.05) |
Asia | 0.65 * (0.38) | 0.65 (0.43) | ||||||
Europe | 0.49 (0.56) | 0.49 (0.55) | ||||||
Asia—Banking | −0.76 * (0.41) | −0.76 (0.51) | ||||||
Europe—Banking | 0.08 (0.24) | 0.08 (0.31) | ||||||
Constant | −0.90 (0.70) | −0.90 (0.70) | 0.06 (0.33) | 5.83 × 10−3 (0.40) | −1.11 (0.96) | −1.11 (0.77) | 0.51 *** (0.13) | 0.50 *** (0.13) |
Observations | 1174 | 1174 | 366 | 366 | 603 | 603 | 205 | 205 |
R-squared | 0.41 | 0.61 | 0.47 | 0.56 | 0.26 | 0.49 | 0.86 | 0.87 |
Item | Regional sample | Test Statistic | Probability |
---|---|---|---|
Full Sample | 2.22 | 0.00 *** | |
Poolability test | Asia and the Pacific | 5.00 | 0.00 *** |
Europe | 1.08 | 0.24 | |
North America and other issuers | 31.13 | 0.00 *** |
Item | Full Sample | Asia-Pacific | Europe | North America |
---|---|---|---|---|
Idiosyncratic error term, | 2.67 | 2.03 | 3.31 | 0.28 |
<0.00 | 1.52 | <0.00 | 0.33 | |
Fraction of variance due to individual heterogeneity | <0.00 | 0.36 | <0.00 | 0.59 |
Item | Asia and the Pacific | Europe | North America |
---|---|---|---|
Risks | High | Low | Moderate |
Return | High | Low | Moderate |
Homogeneity between bonds | Heterogeneous | Homogenous | Heterogeneous |
Sector of issuance | Dominated by banking and finance | Well-balanced between public, utilities, and banking and other issuers | Well-balanced, between public, utilities, and banking and other issuers |
Size | Large | Large | Small |
Maturity | Long-term | Medium-term | Medium-term |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taghizadeh-Hesary, F.; Yoshino, N.; Phoumin, H. Analyzing the Characteristics of Green Bond Markets to Facilitate Green Finance in the Post-COVID-19 World. Sustainability 2021, 13, 5719. https://doi.org/10.3390/su13105719
Taghizadeh-Hesary F, Yoshino N, Phoumin H. Analyzing the Characteristics of Green Bond Markets to Facilitate Green Finance in the Post-COVID-19 World. Sustainability. 2021; 13(10):5719. https://doi.org/10.3390/su13105719
Chicago/Turabian StyleTaghizadeh-Hesary, Farhad, Naoyuki Yoshino, and Han Phoumin. 2021. "Analyzing the Characteristics of Green Bond Markets to Facilitate Green Finance in the Post-COVID-19 World" Sustainability 13, no. 10: 5719. https://doi.org/10.3390/su13105719
APA StyleTaghizadeh-Hesary, F., Yoshino, N., & Phoumin, H. (2021). Analyzing the Characteristics of Green Bond Markets to Facilitate Green Finance in the Post-COVID-19 World. Sustainability, 13(10), 5719. https://doi.org/10.3390/su13105719