Sustainable Performance Analysis of Power Supply Chain System from the Perspective of Technology and Management
Abstract
:1. Introduction
2. Literature Review
2.1. Performance Evaluation for the Power Industry without Environmental Factors
2.2. Environmental Performance of Power Industry
2.3. Two-Stage DEA Model
2.4. The Relationship between Environmental Performance and Economic Income
2.5. Literature Summary
3. Methodology
3.1. Traditional DDF Model
3.2. The Two-Stage Network Model
- Step 1:
- Let . Model (5) was transformed into model (6).
- Step 2:
- Let . By substituting these equations into model (6), model (6) was transformed into model (7).
- Step 3:
- The optimal solutions were generated by solving model (7). Then, the optimal solutions of model (5) were obtained as follows: .
4. Empirical Analysis
4.1. Data
4.2. Performance Analysis
4.3. Comparison of GE and ME
4.4. Performance Improvement Path
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhou, Y.; Xing, X.; Fang, K.; Liang, D.; Xu, C. Environmental efficiency analysis of power industry in China based on an entropy SBM model. Energy Policy 2013, 57, 68–75. [Google Scholar] [CrossRef]
- Sergi, B.; Azevedo, I.; Xia, T.; Davis, A.; Xu, J. Support for emissions reductions based on immediate and long-term pollution exposure in China. Ecol. Econ. 2019, 158, 26–33. [Google Scholar] [CrossRef]
- Kopas, J.; York, E.; Jin, X.; Harish, S.; Kennedy, R.; Shen, S.V.; Urpelainen, J. Environmental justice in India: Incidence of air pollution from coal-fired power plants. Ecol. Econ. 2020, 176, 106711. [Google Scholar] [CrossRef]
- Jiang, P.; Khishgee, S.; Alimujiang, A.; Dong, H. Cost-effective approaches for reducing carbon and air pollution emissions in the power industry in China. J. Environ. Manag. 2020, 264, 110452. [Google Scholar] [CrossRef] [PubMed]
- Tang, B.-J.; Li, R.; Li, X.-Y.; Chen, H. An optimal production planning model of coal-fired power industry in China: Considering the process of closing down inefficient units and developing CCS technologies. Appl. Energy 2017, 206, 519–530. [Google Scholar] [CrossRef]
- Sun, J.; Xu, S.; Li, G. Analyzing sustainable power supply chain performance. J. Enterp. Inf. Manag. 2020, 34, 79–100. [Google Scholar] [CrossRef]
- Yao, X.; Huang, R.; Du, K. The impacts of market power on power grid efficiency: Evidence from China. China Econ. Rev. 2019, 55, 99–110. [Google Scholar] [CrossRef]
- Sun, J.; Li, G.; Lim, M.K. China’s power supply chain sustainability: An analysis of performance and technology gap. Ann. Oper. Res. 2020. [Google Scholar] [CrossRef]
- Wu, J.; Lv, L.; Sun, J.; Ji, X. A comprehensive analysis of China’s regional energy saving and emission reduction efficiency: From production and treatment perspectives. Energy Policy 2015, 84, 166–176. [Google Scholar] [CrossRef]
- Wu, J.; Sun, J.; Liang, L. Methods and applications of DEA cross-efficiency: Review and future perspectives. Front. Eng. Manag. 2021, 8, 199–211. [Google Scholar] [CrossRef]
- Färe, R.; Grosskopf, S.; Logan, J. The relative performance of publicly-owned and privately-owned electric utilities. J. Public Econ. 1985, 26, 89–106. [Google Scholar] [CrossRef]
- Golany, B.; Roll, Y.; Rybak, D. Measuring efficiency of power plants in Israel by data envelopment analysis. IEEE Trans. Eng. Manag. 1994, 41, 291–301. [Google Scholar] [CrossRef]
- Sueyoshi, T.; Goto, M. Slack-adjusted DEA for time series analysis: Performance measurement of Japanese electric power generation industry in 1984–1993. Eur. J. Oper. Res. 2001, 133, 232–259. [Google Scholar] [CrossRef]
- Arocena, P. Cost and quality gains from diversification and vertical integration in the electricity industry: A DEA approach. Energy Econ. 2008, 30, 39–58. [Google Scholar] [CrossRef]
- Sueyoshi, T.; Goto, M. Efficiency-based rank assessment for electric power industry: A combined use of Data Envelopment Analysis (DEA) and DEA-Discriminant Analysis (DA). Energy Econ. 2012, 34, 634–644. [Google Scholar] [CrossRef]
- Xin-Gang, Z.; Zhen, W. The technical efficiency of China’s wind power list enterprises: An estimation based on DEA method and micro-data. Renew. Energy 2019, 133, 470–479. [Google Scholar] [CrossRef]
- Zhang, N.; Kong, F.; Choi, Y.; Zhou, P. The effect of size-control policy on unified energy and carbon efficiency for Chinese fossil fuel power plants. Energy Policy 2014, 70, 193–200. [Google Scholar] [CrossRef]
- Chen, W.; Zhou, K.; Yang, S. Evaluation of China’s electric energy efficiency under environmental constraints: A DEA cross efficiency model based on game relationship. J. Clean. Prod. 2017, 164, 38–44. [Google Scholar] [CrossRef]
- Wang, K.; Zhang, J.; Wei, Y.-M. Operational and environmental performance in China’s thermal power industry: Taking an effectiveness measure as complement to an efficiency measure. J. Environ. Manag. 2017, 192, 254–270. [Google Scholar] [CrossRef]
- Sartori, S.; Witjes, S.; Campos, L.M. Sustainability performance for Brazilian electricity power industry: An assessment integrating social, economic and environmental issues. Energy Policy 2017, 111, 41–51. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Li, J.; Zhao, W.; Yuan, X.-C.; Yang, G.-L. Undesirable and desirable energy congestion measurements for regional coal-fired power generation industry in China. Energy Policy 2019, 125, 122–134. [Google Scholar] [CrossRef]
- Cooper, W.; Deng, H.; Gu, B.; Li, S.; Thrall, R. Using DEA to improve the management of congestion in Chinese industries (1981–1997). Socio Econ. Plan. Sci. 2001, 35, 227–242. [Google Scholar] [CrossRef]
- Zhou, D.; Meng, F.; Bai, Y.; Cai, S. Energy efficiency and congestion assessment with energy mix effect: The case of APEC countries. J. Clean. Prod. 2017, 142, 819–828. [Google Scholar] [CrossRef]
- Seiford, L.M.; Zhu, J. Profitability and marketability of the top 55 U.S. commercial banks. Manag. Sci. 1999, 45, 1270–1288. [Google Scholar] [CrossRef] [Green Version]
- Kao, C.; Hwang, S.-N. Efficiency decomposition in two-stage data envelopment analysis: An application to non-life insurance companies in Taiwan. Eur. J. Oper. Res. 2008, 185, 418–429. [Google Scholar] [CrossRef]
- Chen, Y.; Cook, W.D.; Li, N.; Zhu, J. Additive efficiency decomposition in two-stage DEA. Eur. J. Oper. Res. 2009, 196, 1170–1176. [Google Scholar] [CrossRef]
- Wang, Q.; Wu, Z.; Chen, X. Decomposition weights and overall efficiency in a two-stage DEA model with shared resources. Comput. Ind. Eng. 2019, 136, 135–148. [Google Scholar] [CrossRef]
- Zhu, W.; Zhang, Q.; Wang, H. Fixed costs and shared resources allocation in two-stage network DEA. Ann. Oper. Res. 2017, 278, 177–194. [Google Scholar] [CrossRef]
- Chu, J.; Wu, J.; Chu, C.; Zhang, T. DEA-based fixed cost allocation in two-stage systems: Leader-follower and satisfaction degree bargaining game approaches. Omega 2020, 94, 102054. [Google Scholar] [CrossRef]
- Sun, J.; Li, G.; Wang, Z. Technology heterogeneity and efficiency of China’s circular economic systems: A game meta-frontier DEA approach. Resour. Conserv. Recycl. 2019, 146, 337–347. [Google Scholar] [CrossRef]
- Yin, P.; Chu, J.; Wu, J.; Ding, J.; Yang, M.; Wang, Y. A DEA-based two-stage network approach for hotel performance analysis: An internal cooperation perspective. Omega 2020, 93, 102035. [Google Scholar] [CrossRef]
- Taskin, F.; Zaim, O. The role of international trade on environmental efficiency: A DEA approach. Econ. Model. 2001, 18, 1–17. [Google Scholar] [CrossRef]
- Halkos, G.E.; Tzeremes, N.G. Exploring the existence of Kuznets curve in countries’ environmental efficiency using DEA window analysis. Ecol. Econ. 2009, 68, 2168–2176. [Google Scholar] [CrossRef]
- Wang, Q.; Su, B.; Sun, J.; Zhou, P.; Zhou, D. Measurement and decomposition of energy-saving and emissions reduction performance in Chinese cities. Appl. Energy 2015, 151, 85–92. [Google Scholar] [CrossRef]
- Halkos, G.E.; Polemis, M.L. The impact of economic growth on environmental efficiency of the electricity sector: A hybrid window DEA methodology for the USA. J. Environ. Manag. 2018, 211, 334–346. [Google Scholar] [CrossRef]
- Kuosmanen, T. Weak disposability in nonparametric production analysis with undesirable outputs. Am. J. Agric. Econ. 2005, 87, 1077–1082. [Google Scholar] [CrossRef]
- Pyatt, G.; Shephard, R.W. Theory of cost and production functions. Econ. J. 1972, 82, 1059. [Google Scholar] [CrossRef]
- Chung, Y.; Färe, R.; Grosskopf, S. Productivity and undesirable outputs: A directional distance function approach. J. Environ. Manag. 1997, 51, 229–240. [Google Scholar] [CrossRef] [Green Version]
- Chambers, R.G.; Chung, Y.; Färe, R. Benefit and distance functions. J. Econ. Theory 1996, 70, 407–419. [Google Scholar] [CrossRef]
- Picazo-Tadeo, A.J.; Castillo-Giménez, J.; Beltrán-Esteve, M. An intertemporal approach to measuring environmental performance with directional distance functions: Greenhouse gas emissions in the European Union. Ecol. Econ. 2014, 100, 173–182. [Google Scholar] [CrossRef]
- Li, H.-L.; Zhu, X.-H.; Chen, J.-Y.; Jiang, F.-T. Environmental regulations, environmental governance efficiency and the green transformation of China’s iron and steel enterprises. Ecol. Econ. 2019, 165, 106397. [Google Scholar] [CrossRef]
- Färe, R.; Grosskopf, S. Directional distance functions and slacks-based measures of efficiency. Eur. J. Oper. Res. 2010, 206, 702. [Google Scholar] [CrossRef]
- Chang, T.-P.; Hu, J.-L. Total-factor energy productivity growth, technical progress, and efficiency change: An empirical study of China. Appl. Energy 2010, 87, 3262–3270. [Google Scholar] [CrossRef]
- Fukuyama, H.; Weber, W.L. A directional slacks-based measure of technical inefficiency. Socio Econ. Plan. Sci. 2009, 43, 274–287. [Google Scholar] [CrossRef]
- Wang, K.; Wei, Y.-M.; Huang, Z. Environmental efficiency and abatement efficiency measurements of China’s thermal power industry: A data envelopment analysis based materials balance approach. Eur. J. Oper. Res. 2018, 269, 35–50. [Google Scholar] [CrossRef]
- Yu, X.; Jin, L.; Wang, Q.; Zhou, D. Optimal path for controlling pollution emissions in the Chinese electric power industry considering technological heterogeneity. Environ. Sci. Pollut. Res. 2019, 26, 11087–11099. [Google Scholar] [CrossRef]
- Sun, J.; Xu, S.; Li, G. Does China’s power supply chain systems perform well? A data-based path-index meta-frontier analysis. Ind. Manag. Data Syst. 2020. [Google Scholar] [CrossRef]
- Park, S.-U.; LeSourd, J.-B. The efficiency of conventional fuel power plants in South Korea: A comparison of parametric and non-parametric approaches. Int. J. Prod. Econ. 2000, 63, 59–67. [Google Scholar] [CrossRef]
- Sun, C.; Liu, X.; Li, A. Measuring unified efficiency of Chinese fossil fuel power plants: Intermediate approach combined with group heterogeneity and window analysis. Energy Policy 2018, 123, 8–18. [Google Scholar] [CrossRef]
- Eguchi, S.; Takayabu, H.; Lin, C. Sources of inefficient power generation by coal-fired thermal power plants in China: A metafrontier DEA decomposition approach. Renew. Sustain. Energy Rev. 2021, 138, 110562. [Google Scholar] [CrossRef]
- Li, L. Carbon emission reduction of power enterprises in subtropical and temperate regions of China. Trop. Conserv. Sci. 2019, 12. [Google Scholar] [CrossRef]
- Long, X.; Wu, C.; Zhang, J.; Zhang, J. Environmental efficiency for 192 thermal power plants in the Yangtze River delta considering heterogeneity: A metafrontier directional slacks-based measure approach. Renew. Sustain. Energy Rev. 2018, 82, 3962–3971. [Google Scholar] [CrossRef]
- Wu, C.; Oh, K.; Long, X.; Zhang, J. Effect of installed capacity size on environmental efficiency across 528 thermal power stations in North China. Environ. Sci. Pollut. Res. 2019, 26, 29822–29833. [Google Scholar] [CrossRef]
- Wang, C.; Cao, X.; Mao, J.; Qin, P. The changes in coal intensity of electricity generation in Chinese coal-fired power plants. Energy Econ. 2019, 80, 491–501. [Google Scholar] [CrossRef]
- Zhao, H.; Zhao, H.; Guo, S. Operational efficiency of Chinese provincial electricity grid enterprises: An evaluation employing a three-stage data envelopment analysis (DEA) Model. Sustainability 2018, 10, 3168. [Google Scholar] [CrossRef] [Green Version]
- Tang, H.; Yu, S. Evaluation of operational efficiency of power grid enterprises based on DEA. Technoecon. Manag. Res. 2012, 4, 8–11. (In Chinese) [Google Scholar] [CrossRef]
- Tone, K.; Tsutsui, M. Network DEA: A slacks-based measure approach. Eur. J. Oper. Res. 2009, 197, 243–252. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Wang, M.; Liu, X.; Xiang, Y. Evaluating investment strategies for distribution networks based on yardstick competition and DEA. Electr. Power Syst. Res. 2019, 174, 105868. [Google Scholar] [CrossRef]
- Liu, X.; Wu, J. Energy and environmental efficiency analysis of China’s regional transportation sectors: A slack-based DEA approach. Energy Syst. 2015, 8, 747–759. [Google Scholar] [CrossRef]
- Sun, J.; Li, G.; Wang, Z. Optimizing China’s energy consumption structure under energy and carbon constraints. Struct. Chang. Econ. Dyn. 2018, 47, 57–72. [Google Scholar] [CrossRef]
Notation/Variable | Explanation |
---|---|
The ith input of | |
The kth undesirable output of | |
The rth desirable output of | |
The dth input of | |
The zth output of | |
The tth undesirable output of | |
The weights of | |
The weights of | |
Emission reduction factor | |
The weights of under the group-frontier | |
The weights of under the meta-frontier | |
The weights of under the group-frontier | |
The weights of under the meta-frontier | |
Reduction potential of inputs in | |
Reduction potential of undesired outputs of | |
Reduction potential of inputs in | |
Reduction potential of undesired outputs in | |
Increased potential of desired outputs in |
Areas | Provinces |
---|---|
Low-income area | Gansu, Guizhou, Yunnan, Qinghai |
Lower-middle-income area | Guangxi, Henan, Sichuan, Shaanxi, Shanxi |
Middle-income area | Hebei, Anhui, Heilongjiang, Jiangxi, Jilin, Hunan |
Upper-middle-income area | Hubei, Inner Mongolia, Shandong, Liaoning, Guangdong |
High-income area | Jiangsu, Tianjin, Zhejiang, Beijing |
Region | GE | ME | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
2014 | 2015 | 2016 | 2017 | Average | 2014 | 2015 | 2016 | 2017 | Average | |
Beijing | 0.4910 | 0.7599 | 0.7187 | 1.0000 | 0.7424 | 0.4839 | 0.7596 | 0.7124 | 1.0000 | 0.7390 |
Tianjin | 0.3478 | 0.4761 | 0.2831 | 0.4751 | 0.3955 | 0.3357 | 0.4460 | 0.2608 | 0.4476 | 0.3725 |
Jiangsu | 1.0000 | 0.9388 | 1.0000 | 1.0000 | 0.9847 | 0.5491 | 0.5488 | 0.5593 | 0.6051 | 0.5656 |
Zhejiang | 0.9522 | 0.9630 | 1.0000 | 1.0000 | 0.9788 | 0.5440 | 0.5393 | 0.5930 | 0.5425 | 0.5547 |
Hebei | 1.0000 | 0.8346 | 0.7809 | 0.8116 | 0.8568 | 0.5757 | 0.3226 | 0.2877 | 0.2921 | 0.3695 |
Shandong | 0.4292 | 0.3872 | 0.3046 | 0.3219 | 0.3607 | 0.3497 | 0.3416 | 0.2956 | 0.3096 | 0.3241 |
Guangdong | 0.9085 | 0.9141 | 1.0000 | 1.0000 | 0.9557 | 0.8585 | 0.8800 | 0.8965 | 1.0000 | 0.9088 |
Liaoning | 1.0000 | 1.0000 | 0.8559 | 1.0000 | 0.9640 | 0.3115 | 0.3110 | 0.2914 | 0.4076 | 0.3304 |
Jilin | 0.7847 | 1.0000 | 0.7199 | 1.0000 | 0.8762 | 0.2689 | 0.2912 | 0.2446 | 0.5378 | 0.3357 |
Heilongjiang | 0.8750 | 0.7499 | 0.6428 | 0.6741 | 0.7355 | 0.2413 | 0.2824 | 0.2315 | 0.2424 | 0.2494 |
Shanxi | 0.5615 | 0.5126 | 0.4951 | 0.5476 | 0.5292 | 0.1606 | 0.1454 | 0.1338 | 0.1365 | 0.1441 |
Anhui | 0.5866 | 0.6124 | 0.5523 | 0.7084 | 0.6149 | 0.2257 | 0.2145 | 0.1947 | 0.2216 | 0.2141 |
Jiangxi | 1.0000 | 1.0000 | 0.9013 | 1.0000 | 0.9753 | 0.4191 | 0.2997 | 0.2811 | 0.3178 | 0.3294 |
Henan | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.4200 | 0.2888 | 0.2918 | 0.2736 | 0.3186 |
Hubei | 1.0000 | 1.0000 | 0.9887 | 0.4856 | 0.8686 | 0.3426 | 0.3409 | 0.2662 | 0.2706 | 0.3051 |
Hunan | 1.0000 | 0.8935 | 1.0000 | 0.9780 | 0.9679 | 0.4215 | 0.3096 | 0.3225 | 0.3318 | 0.3464 |
Inner Mongolia | 0.1457 | 0.2252 | 0.1253 | 0.2797 | 0.1940 | 0.1378 | 0.1431 | 0.1159 | 0.1605 | 0.1393 |
Guangxi | 1.0000 | 1.0000 | 0.9363 | 1.0000 | 0.9841 | 0.3831 | 0.4079 | 0.7502 | 0.3954 | 0.4841 |
Sichuan | 0.7492 | 0.7673 | 1.0000 | 1.0000 | 0.8791 | 0.1815 | 0.2252 | 0.3589 | 0.2363 | 0.2505 |
Guizhou | 1.0000 | 1.0000 | 0.8106 | 1.0000 | 0.9526 | 0.2889 | 0.3050 | 0.2492 | 0.3022 | 0.2863 |
Yunnan | 1.0000 | 0.9137 | 0.8458 | 1.0000 | 0.9399 | 0.2572 | 0.2825 | 0.4672 | 1.0000 | 0.5017 |
Shaanxi | 0.6629 | 0.5069 | 0.5840 | 0.8978 | 0.6629 | 0.3294 | 0.1938 | 0.2394 | 0.1983 | 0.2402 |
Gansu | 0.4456 | 0.3882 | 0.7279 | 0.4935 | 0.5138 | 0.1418 | 0.1390 | 0.3039 | 0.1605 | 0.1863 |
Qinghai | 1.0000 | 1.0000 | 1.0000 | 0.7015 | 0.9254 | 0.4272 | 0.4031 | 1.0000 | 0.3149 | 0.5363 |
Areas | Max | Min | Median | Mean | Std. |
---|---|---|---|---|---|
Low-income area | 1.0000 | 0.3882 | 0.9568 | 0.8329 | 0.2124 |
Lower-middle income area | 1.0000 | 0.4951 | 0.9171 | 0.8111 | 0.2046 |
Middle-income area | 1.0000 | 0.5523 | 0.8548 | 0.8377 | 0.1506 |
Upper-middle-income area | 1.0000 | 0.1253 | 0.8822 | 0.6686 | 0.3438 |
High-income area | 1.0000 | 0.2831 | 0.9455 | 0.7754 | 0.2604 |
Areas | Max | Min | Median | Mean | Std. |
---|---|---|---|---|---|
Low-income area | 1.0000 | 0.1390 | 0.3031 | 0.3777 | 0.2517 |
Lower-middle-income area | 1.0000 | 0.1338 | 0.2918 | 0.3922 | 0.2578 |
Middle-income area | 0.5757 | 0.1947 | 0.2895 | 0.3074 | 0.0934 |
Upper-middle-income area | 1.0000 | 0.1159 | 0.3112 | 0.4015 | 0.2659 |
High-income area | 1.0000 | 0.2608 | 0.5464 | 0.5579 | 0.1643 |
Low-Income Area | Lower-Middle-Income Area | Middle-Income Area | Upper-Middle-Income Area | High-Income Area | |
---|---|---|---|---|---|
Type 1 | Shaanxi | Heilongjiang | |||
Type 2 | Guizhou, Yunnan | Guangxi, Henan, Sichuan | Hebei, Jiangxi, Jilin, Hunan | Hubei, Liaoning | Jiangsu, Zhejiang |
Type 3 | Qinghai | Guangdong | |||
Type 4 | Gansu | Shanxi | Anhui | Inner Mongolia, Shandong | Tianjin, Beijing |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, F.; Du, Y.; Hu, D.; Zhang, B. Sustainable Performance Analysis of Power Supply Chain System from the Perspective of Technology and Management. Sustainability 2021, 13, 5972. https://doi.org/10.3390/su13115972
Huang F, Du Y, Hu D, Zhang B. Sustainable Performance Analysis of Power Supply Chain System from the Perspective of Technology and Management. Sustainability. 2021; 13(11):5972. https://doi.org/10.3390/su13115972
Chicago/Turabian StyleHuang, Feihua, Yue Du, Debao Hu, and Bin Zhang. 2021. "Sustainable Performance Analysis of Power Supply Chain System from the Perspective of Technology and Management" Sustainability 13, no. 11: 5972. https://doi.org/10.3390/su13115972
APA StyleHuang, F., Du, Y., Hu, D., & Zhang, B. (2021). Sustainable Performance Analysis of Power Supply Chain System from the Perspective of Technology and Management. Sustainability, 13(11), 5972. https://doi.org/10.3390/su13115972