Quantifying Ecosystem Services of High Mountain Lakes across Different Socio-Ecological Contexts
Abstract
:1. Introduction
- Identifying the most important ES of small high mountain lakes;
- Selecting suitable indicators for the biophysical quantification of the selected ES;
- Evaluating ES in relationship to socio-ecological characteristics of the study lakes.
2. Materials and Methods
2.1. Study Sites
2.2. Identification of Key ES
2.3. Selection of ES Indicators
2.3.1. Surface Water for Non-Drinking Purposes (Water)
2.3.2. Maintaining Populations and Habitats (Habitat)
2.3.3. Outdoor Recreation (Recreation)
2.3.4. Aesthetic Value (Aesthetic)
2.3.5. Entertainment and Representation (Representation)
2.3.6. Scientific Research (Research)
2.3.7. Educational Value (Education)
2.3.8. Existence, Option, or Bequest Value (Existence)
2.3.9. Total ES Index
2.4. Evaluation of ES within the Local Socio-Ecological Context
3. Results
3.1. Key ES of High Mountain Lakes
3.2. Socio-Ecological Differences
- Group 1 (Antholzer See and Pragser Wildsee) is characterised by large lake size, low elevation, good accessibility, a high number of beneficiaries (in particular, tourists) and high visitation rates.
- Group 2 (Langsee) is located at high elevation in a landscape with predominantly bare rocks. Although it has a very high number of beneficiaries (in particular, residents), visitation rates are lower than for Group 1 due to a high access time.
- Group 3 (Fischersee, Unterer Klaffersee, Rauhenbergsee, Oberer Klaffersee, Kapuzinersee, Pfannsee) comprises small, high-elevated, and remote lakes that are difficult to reach. Compared to Groups 1 and 2, this group has less beneficiaries and lower visitation rates.
- Group 4 (Obersee, Hüttensee, Twenger Almsee, Schönalmsee, Unterer Wirpitschsee, Tiefenbachsee) includes lakes that are on average lower elevated and easier accessible than Groups 2 and 3, but the number of beneficiaries and visitation rates are similar to Group 3.
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Parameter | Ultra-Oligotrophic | Oligotrophic | Mesotrophic | Eutrophic |
---|---|---|---|---|
Total phosphorus [µg/L] | <4.85 | 4.85–13.3 | 14.5–49.0 | 38.0–189.0 |
Chlorophyll a [µg/L] | <0.8 | 0.8–3.4 | 3.0–7.4 | 6.7–31.0 |
Secchi depth [m] | >10 | 5.3–16.5 | 2.4–7.4 | 1.5–4.0 |
ES | South Tyrol | Niedere Tauern |
---|---|---|
Water | x | |
Habitat | x | x |
Recreation | x | x |
Aesthetic | x | x |
Representation | x | |
Research | x | |
Education | x | |
Existence | x |
ES | Indicator | Unit | Antholzer See—Lago di Anterselva | Pragser Wildsee—Lago di Braies | Langsee—Lago Lungo | Fischersee (Saldurseen) | Unterer Klaffersee | Rauhenbergsee | Oberer Klaffersee | Kapuzinersee | Pfannsee | Obersee | Hüttensee | Twenger Almsee | Schönalmsee | Unterer Wirpitschsee | Tiefenbachsee |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
WATER | Storage capacity | 106 m3 | 11.04 | 5.30 | 2.58 | 0.03 | 0.5 | 0.2 | 0.6 | 0.1 | 0.0 | 0.8 | 0.2 | 0.4 | 0.2 | 0.1 | 0.1 |
Water availability | 106 m3 y−1 | 8453 | 10,888 | 1182 | 13 | 836 | 463 | 627 | 957 | 972 | 2429 | 4528 | 118 | 273 | 1142 | 1228 | |
HABITAT | Littoral substrate complexity | index | 0.40 | 0.66 | 0.56 | 0.79 | 0.59 | 0.73 | 0.97 | 0.63 | 0.58 | 0.48 | 0.49 | 0.36 | 0.41 | 0.52 | 0.42 |
Shoreline development | index | 2.11 | 2.76 | 3.22 | 2.31 | 2.12 | 2.42 | 2.44 | 2.26 | 3.33 | 2.53 | 2.44 | 2.01 | 2.33 | 2.00 | 2.47 | |
Riparian vegetation complexity | index | 0.89 | 0.70 | 0.45 | 0.13 | 0.36 | 0.11 | 0.00 | 0.28 | 0.33 | 0.68 | 0.81 | 0.65 | 0.70 | 0.70 | 0.75 | |
Trophic state | index | 4.00 | 4.00 | 3.00 | 3.00 | nd | 4.00 | 4.00 | 5.00 | 5.00 | 4.00 | 4.00 | 4.00 | 4.00 | 5.00 | 4.00 | |
Nitrate | NO3-N mg l−1 | 0.22 | 0.30 | 0.13 | 0.06 | 0.11 | 0.13 | 0.09 | 0.11 | 0.08 | 0.23 | 0.20 | 0.00 | 0.00 | 0.11 | 0.08 | |
Plant species | n | 13.0 | 7.0 | 2.0 | 1.0 | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | |
RECREATION | Access difficulty | index | 0 | 0 | 3 | 3 | 4 | 4 | 4 | 4 | 3 | 1 | 1 | 2 | 2 | 2 | 2 |
Access level | index | 1 | 1 | 2 | 2 | 3 | 3 | 2 | 2 | 3 | 2 | 2 | 2 | 2 | 2 | 2 | |
Warm days | days y−1 | 56.50 | 58.71 | 14.65 | 0.90 | 21.10 | 0.24 | 0.10 | 0.57 | 1.62 | 6.24 | 9.43 | 0.71 | 0.71 | 5.62 | 3.19 | |
Hiking at lake | m | 0.71 | 1.23 | 0.25 | 0.30 | 0.00 | 0.00 | 0.36 | 0.43 | 0.00 | 0.31 | 0.42 | 0.59 | 0.12 | 0.29 | 0.06 | |
Tourist facilities | n km−1 | 2.89 | 3.63 | 0.35 | 0.00 | 0.00 | 0.00 | 0.89 | 0.00 | 0.00 | 0.00 | 0.00 | 2.87 | 0.94 | 0.00 | 0.00 | |
AESTHETIC | Water clarity | m | 7.6 | 7.6 | 6.4 | 4.5 | nd | 8.8 | 8.2 | 10.8 | 7.4 | 8.2 | 6.0 | 8.5 | 8.8 | 6.0 | 4.5 |
Littoral preference | index | 0.10 | 0.18 | 0.20 | 0.33 | 0.13 | 0.17 | 0.62 | 0.11 | 0.12 | 0.17 | 0.19 | 0.12 | 0.12 | 0.15 | 0.15 | |
Land cover preference | index | 0.40 | 0.45 | 0.10 | 0.18 | 0.13 | 0.20 | 0.20 | 0.15 | 0.15 | 0.22 | 0.35 | 0.10 | 0.17 | 0.26 | 0.21 | |
Landscape beauty | index | 7.53 | 7.54 | 10.45 | 8.88 | 11.08 | 11.07 | 12.02 | 10.50 | 11.53 | 10.52 | 9.13 | 11.10 | 11.04 | 9.78 | 9.61 | |
REPRESENTATION | Videos | n | 860 | 102,000 | 1200 | 121 | 881 | 881 | 881 | 881 | 8 | 456 | 113 | 124 | 42 | 209 | 31 |
Google Trends | n | 0.16 | 2.05 | 0.12 | 0.02 | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | |
n | 16,224 | 426,829 | 2272 | 230 | 904 | 904 | 904 | 904 | 23 | 295 | 300 | 425 | 48 | 211 | 25 | ||
RESEARCH | Access time | min | 5 | 5 | 210 | 150 | 300 | 300 | 315 | 240 | 210 | 130 | 90 | 135 | 210 | 90 | 110 |
Access difficulty | index | 0 | 0 | 3 | 3 | 4 | 4 | 4 | 4 | 3 | 1 | 1 | 2 | 2 | 2 | 2 | |
Livestock farming | % | 9.52 | 14.05 | 0.00 | 0.00 | 8.22 | 0.00 | 0.00 | 6.20 | 11.50 | 37.69 | 41.59 | 85.35 | 95.61 | 50.72 | 37.07 | |
EDUCATION | Littoral structure complexity | index | 0.40 | 0.66 | 0.56 | 0.79 | 0.59 | 0.73 | 0.97 | 0.63 | 0.58 | 0.48 | 0.49 | 0.36 | 0.41 | 0.52 | 0.42 |
Access time | min | 5 | 5 | 210 | 150 | 300 | 300 | 315 | 240 | 210 | 130 | 90 | 135 | 210 | 90 | 110 | |
Beneficiaries | n | 63,274 | 71,847 | 257,252 | 25,496 | 16,786 | 16,786 | 16,786 | 16,786 | 34,761 | 34,761 | 34,761 | 41,060 | 18,971 | 18,971 | 18,971 | |
EXISTENCE | Protected area | category | 2 | 2 | 2 | 0 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 1 | 1 | 1 | 1 |
Lake abundance | n | 8 | 5 | 21 | 10 | 31 | 27 | 29 | 28 | 17 | 17 | 16 | 30 | 30 | 35 | 37 | |
Agricultural intensity | % | 9.52 | 14.05 | 0.00 | 0.00 | 8.22 | 0.00 | 0.00 | 6.20 | 11.50 | 37.69 | 41.59 | 85.35 | 95.61 | 50.72 | 37.07 |
Type | Variable | Unit | Antholzer See—Lago di Anterselva | Pragser Wildsee—Lago di Braies | Langsee—Lago Lungo | Fischersee (Saldurseen) | Unterer Klaffersee | Rauhenbergsee | Oberer Klaffersee | Kapuzinersee | Pfannsee | Obersee | Hüttensee | Twenger Almsee | Schönalmsee | Unterer Wirpitschsee | Tiefenbachsee |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Lake | Lake area | 103 m2 | 432.42 | 358.23 | 195.89 | 5.35 | 38.36 | 27.60 | 53.23 | 22.73 | 14.46 | 72.51 | 46.69 | 29.91 | 52.47 | 27.41 | 34.66 |
Lake perimeter | m | 2771 | 3309 | 2846 | 338 | 831 | 804 | 1127 | 682 | 800 | 1360 | 1055 | 696 | 1068 | 662 | 918 | |
Watershed area | 103 m2 | 18,871 | 29,306 | 1994 | 31 | 801 | 444 | 605 | 922 | 1215 | 3020 | 5672 | 132 | 306 | 1281 | 1378 | |
Environment | Elevation | m a.s.l. | 1642 | 1493 | 2381 | 2758 | 2103 | 2264 | 2310 | 2146 | 1968 | 1673 | 1502 | 2118 | 2112 | 1701 | 1844 |
Terrain ruggedness | index | 576 | 598 | 713 | 955 | 734 | 788 | 728 | 827 | 708 | 749 | 743 | 663 | 678 | 609 | 624 | |
Precipitation | mm y−1 | 955 | 859 | 1113 | 1285 | 1550 | 1543 | 1535 | 1544 | 1554 | 1541 | 1524 | 1472 | 1472 | 1466 | 1466 | |
Land cover | Forest/shrub | % | 28.96 | 32.88 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.40 | 0.00 |
Grasslands/heathland | % | 10.34 | 14.05 | 0.00 | 0.00 | 8.22 | 0.00 | 0.00 | 6.20 | 11.50 | 37.79 | 44.99 | 85.35 | 95.61 | 62.08 | 37.07 | |
Sparsely vegetated areas | % | 24.25 | 24.57 | 73.39 | 96.97 | 91.78 | 100.00 | 100.00 | 93.80 | 66.91 | 40.31 | 38.73 | 14.65 | 4.39 | 37.52 | 62.93 | |
Bare rocks/glaciers/water | % | 36.45 | 28.50 | 26.61 | 3.03 | 0.00 | 0.00 | 0.00 | 0.00 | 21.58 | 21.90 | 16.28 | 0.00 | 0.00 | 0.00 | 0.00 | |
Accessibility | Access time | min | 5 | 5 | 210 | 150 | 300 | 300 | 315 | 240 | 210 | 130 | 90 | 135 | 210 | 90 | 110 |
Distance to path | m | 0 | 0 | 4 | 22 | 154 | 511 | 9 | 12 | 298 | 3 | 2 | 2 | 5 | 4 | 0 | |
Distance to road | m | 304 | 642 | 4811 | 4993 | 8114 | 7971 | 8859 | 9323 | 7145 | 7102 | 6281 | 1399 | 1491 | 2383 | 2268 | |
Beneficiaries | Residents | n | 48,713 | 54,533 | 221,542 | 20,319 | 14,880 | 14,880 | 14,880 | 14,880 | 32,330 | 32,330 | 32,330 | 38,290 | 18,363 | 18,363 | 18,363 |
Overnights | 103 n y−1 | 2621 | 3117 | 6428 | 932 | 343 | 343 | 343 | 343 | 438 | 438 | 438 | 499 | 109 | 109 | 109 | |
Visitation rates | n | 87 | 348 | 7 | 1 | 3 | 1 | 2 | 1 | 1 | 1 | 6 | 2 | 2 | 2 | 2 |
References
- Allan, J.D.; Manning, N.F.; Smith, S.D.; Dickinson, C.E.; Joseph, C.A.; Pearsall, D.R. Ecosystem services of Lake Erie: Spatial distribution and concordance of multiple services. J. Great Lakes Res. 2017, 43, 678–688. [Google Scholar] [CrossRef]
- Fu, B.; Xu, P.; Wang, Y.; Yan, K.; Chaudhary, S. Assessment of the ecosystem services provided by ponds in hilly areas. Sci. Total Environ. 2018, 642, 979–987. [Google Scholar] [CrossRef] [PubMed]
- Sterner, R.W.; Keeler, B.; Polasky, S.; Poudel, R.; Rhude, K.; Rogers, M. Ecosystem services of Earth’s largest freshwater lakes. Ecosyst. Serv. 2020, 41, 101046. [Google Scholar] [CrossRef]
- Reynaud, A.; Lanzanova, D. A Global Meta-Analysis of the Value of Ecosystem Services Provided by Lakes. Ecol. Econ. 2017, 137, 184–194. [Google Scholar] [CrossRef] [PubMed]
- Burkhard, B.; Maes, J. (Eds.) Mapping Ecosystem Services; Pensoft Publishers: Sofia, Bulgaria, 2017. [Google Scholar]
- Fischer, A.; Eastwood, A. Coproduction of ecosystem services as human–nature interactions—An analytical framework. Land Use Policy 2016, 52, 41–50. [Google Scholar] [CrossRef]
- Costanza, R.; De Groot, R.; Sutton, P.; van der Ploeg, S.; Anderson, S.J.; Kubiszewski, I.; Farber, S.; Turner, R.K. Changes in the global value of ecosystem services. Glob. Environ. Chang. 2014, 26, 152–158. [Google Scholar] [CrossRef]
- De Groot, R.S.; Alkemade, R.; Braat, L.; Hein, L.; Willemen, L. Challenges in integrating the concept of ecosystem services and values in landscape planning, management and decision making. Ecol. Complex. 2010, 7, 260–272. [Google Scholar] [CrossRef]
- Kandziora, M.; Burkhard, B.; Müller, F. Interactions of ecosystem properties, ecosystem integrity and ecosystem service indicators—A theoretical matrix exercise. Ecol. Indic. 2013, 28, 54–78. [Google Scholar] [CrossRef]
- Jones, L.; Norton, L.; Austin, Z.; Browne, A.L.; Donovan, D.; Emmett, B.A.; Grabowski, Z.J.; Howard, D.C.; Jones, J.P.G.; Kenter, J.O.; et al. Stocks and flows of natural and human-derived capital in ecosystem services. Land Use Policy 2016, 52, 151–162. [Google Scholar] [CrossRef]
- Moser, K.A.; Baron, J.S.; Brahney, J.; Oleksy, I.A.; Saros, J.E.; Hundey, E.J.; Sadro, S.A.; Kopáček, J.; Sommaruga, R.; Kainz, M.J.; et al. Mountain lakes: Eyes on global environmental change. Glob. Planet. Chang. 2019, 178, 77–95. [Google Scholar] [CrossRef] [Green Version]
- Battarbee, R.W.; Kernan, M.; Rose, N. Threatened and stressed mountain lakes of Europe: Assessment and progress. Aquat. Ecosyst. Health Manag. 2009, 12, 118–128. [Google Scholar] [CrossRef]
- Schmeller, D.S.; Loyau, A.; Bao, K.; Brack, W.; Chatzinotas, A.; De Vleeschouwer, F.; Friesen, J.; Gandois, L.; Hansson, S.V.; Haver, M.; et al. People, pollution and pathogens—Global change impacts in mountain freshwater ecosystems. Sci. Total Environ. 2018, 622–623, 756–763. [Google Scholar] [CrossRef] [Green Version]
- Williamson, C.E.; Saros, J.E.; Vincent, W.F.; Smol, J.P. Lakes and reservoirs as sentinels, integrators, and regulators of climate change. Limnol. Oceanogr. 2009, 54, 2273–2282. [Google Scholar] [CrossRef]
- Heino, J.; Alahuhta, J.; Bini, L.M.; Cai, Y.; Heiskanen, A.S.; Hellsten, S.; Kortelainen, P.; Kotamäki, N.; Tolonen, K.T.; Vihervaara, P.; et al. Lakes in the era of global change: Moving beyond single-lake thinking in maintaining biodiversity and ecosystem services. Biol. Rev. 2021, 96, 89–106. [Google Scholar] [CrossRef]
- Allan, J.D.; Smith, S.D.P.; McIntyre, P.B.; Joseph, C.A.; Dickinson, C.E.; Marino, A.L.; Biel, R.G.; Olson, J.C.; Doran, P.J.; Rutherford, E.S.; et al. Using cultural ecosystem services to inform restoration priorities in the Laurentian Great Lakes. Front. Ecol. Environ. 2015, 13, 418–424. [Google Scholar] [CrossRef] [Green Version]
- Ho, L.T.; Goethals, P.L.M. Opportunities and Challenges for the Sustainability of Lakes and Reservoirs in Relation to the Sustainable Development Goals (SDGs). Water 2019, 11, 1462. [Google Scholar] [CrossRef] [Green Version]
- Sadro, S.; Melack, J.M.; Sickman, J.O.; Skeen, K. Climate warming response of mountain lakes affected by variations in snow. Limnol. Oceanogr. Lett. 2019, 4, 9–17. [Google Scholar] [CrossRef] [Green Version]
- Weckström, K.; Weckstrom, J.; Huber, K.; Kamenik, C.; Schmidt, R.; Salvenmoser, W.; Rieradevall, M.; Weisse, T.; Psenner, R.; Kurmayer, R. Impacts of Climate Warming on Alpine Lake Biota Over the Past Decade. Arct. Antarct. Alp. Res. 2016, 48, 361–376. [Google Scholar] [CrossRef] [Green Version]
- Meisch, C.; Schirpke, U.; Huber, L.; Rüdisser, J.; Tappeiner, U. Assessing Freshwater Provision and Consumption in the Alpine Space Applying the Ecosystem Service Concept. Sustainability 2019, 11, 1131. [Google Scholar] [CrossRef] [Green Version]
- Guo, Z.; Zhang, L.; Li, Y. Increased Dependence of Humans on Ecosystem Services and Biodiversity. PLoS ONE 2010, 5, e13113. [Google Scholar] [CrossRef]
- Schirpke, U.; Altzinger, A.; Leitinger, G.; Tasser, E. Change from agricultural to touristic use: Effects on the aesthetic value of landscapes over the last 150 years. Landsc. Urban Plan. 2019, 187, 23–35. [Google Scholar] [CrossRef]
- Willibald, F.; van Strien, M.J.; Blanco, V.; Grêt-Regamey, A. Predicting outdoor recreation demand on a national scale—The case of Switzerland. Appl. Geogr. 2019, 113, 102111. [Google Scholar] [CrossRef]
- Miró, A.; O’Brien, D.; Tomàs, J.; Buchaca, T.; Sabás, I.; Osorio, V.; Lucati, F.; Pou-Rovira, Q.; Ventura, M. Rapid amphibian community recovery following removal of non-native fish from high mountain lakes. Biol. Conserv. 2020, 251, 108783. [Google Scholar] [CrossRef]
- Senetra, A.; Dynowski, P.; Cieślak, I.; Źróbek-Sokolnik, A. An Evaluation of the Impact of Hiking Tourism on the Ecological Status of Alpine Lakes—A Case Study of the Valley of Dolina Pięciu Stawów Polskich in the Tatra Mountains. Sustainability 2020, 12, 2963. [Google Scholar] [CrossRef] [Green Version]
- Schirpke, U.; Scolozzi, R.; Dean, G.; Haller, A.; Jäger, H.; Kister, J.; Kovács, B.; Sarmiento, F.O.; Sattler, B.; Schleyer, C. Cultural ecosystem services in mountain regions: Conceptualising conflicts among users and limitations of use. Ecosyst. Serv. 2020, 46, 101210. [Google Scholar] [CrossRef]
- Grizzetti, B.; Lanzanova, D.; Liquete, C.; Reynaud, A.; Cardoso, A.C. Assessing water ecosystem services for water resource management. Environ. Sci. Policy 2016, 61, 194–203. [Google Scholar] [CrossRef]
- Boeraeve, F.; Dufrene, M.; De Vreese, R.; Jacobs, S.; Pipart, N.; Turkelboom, F.; Verheyden, W.; Dendoncker, N. Participatory identification and selection of ecosystem services: Building on field experiences. Ecol. Soc. 2018, 23, 27. [Google Scholar] [CrossRef]
- Haines-Young, R.; Potschin, M. Common International Classification of Ecosystem Services (CICES) V5. In Guidance on the Application of the Revised Structure; Fabis Consulting Ltd.: Nottingham, UK, 2018. [Google Scholar]
- Millennium Ecosystem Assessment. Ecosystems and Human Well-Being: Wetlands and Water Synthesis; World Resources Institute: Washington, DC, USA, 2005. [Google Scholar]
- Hernández-Morcillo, M.; Plieninger, T.; Bieling, C. An empirical review of cultural ecosystem service indicators. Ecol. Indic. 2013, 29, 434–444. [Google Scholar] [CrossRef]
- Cheng, X.; Van Damme, S.; Li, L.; Uyttenhove, P. Evaluation of cultural ecosystem services: A review of methods. Ecosyst. Serv. 2019, 37, 100925. [Google Scholar] [CrossRef]
- Milcu, A.I.; Hanspach, J.; Abson, D.; Fischer, J. Cultural Ecosystem Services: A Literature Review and Prospects for Future Research. Ecol. Soc. 2013, 18, 44. [Google Scholar] [CrossRef] [Green Version]
- Maes, J.; Liquete, C.; Teller, A.; Erhard, M.; Paracchini, M.L.; Barredo, J.I.; Grizzetti, B.; Cardoso, A.; Somma, F.; Petersen, J.-E.; et al. An indicator framework for assessing ecosystem services in support of the EU Biodiversity Strategy to 2020. Ecosyst. Serv. 2016, 17, 14–23. [Google Scholar] [CrossRef] [Green Version]
- Maes, J.; Teller, A.; Erhard, M.; Murphy, P.; Paracchini, M.; Barredo, J.; Grizzeti, B.; Cardoso, A.; Somma, F.; Petersen, J.-E.; et al. Mapping and Assessment of Ecosystems and their Services. Indicators for ecosystem assessment under Action 5 of the EU Biodiversity Strategy to 2020: 2nd report—Final, February. Tech. Rep. 2014, 78. [Google Scholar] [CrossRef]
- Burkhard, B.; Kroll, F.; Nedkov, S.; Müller, F. Mapping ecosystem service supply, demand and budgets. Ecol. Indic. 2012, 21 (Suppl. C), 17–29. [Google Scholar] [CrossRef]
- Jacobs, S.; Burkhard, B.; Van Daele, T.; Staes, J.; Schneiders, A. ‘The Matrix Reloaded’: A review of expert knowledge use for mapping ecosystem services. Ecol. Model. 2015, 295, 21–30. [Google Scholar] [CrossRef]
- Xu, X.; Jiang, B.; Tan, Y.; Costanza, R.; Yang, G. Lake-wetland ecosystem services modeling and valuation: Progress, gaps and future directions. Ecosyst. Serv. 2018, 33, 19–28. [Google Scholar] [CrossRef]
- Janssen, A.B.G.; Hilt, S.; Kosten, S.; de Klein, J.J.M.; Paerl, H.W.; Van de Waal, D.B. Shifting states, shifting services: Linking regime shifts to changes in ecosystem services of shallow lakes. Freshw. Biol. 2020, 66, 1–12. [Google Scholar] [CrossRef]
- Quintas-Soriano, C.; Brandt, J.S.; Running, K.; Baxter, C.V.; Gibson, D.M.; Narducci, J.; Castro, A.J. Social-ecological systems influence ecosystem service perception: A Programme on Ecosystem Change and Society (PECS) analysis. Ecol. Soc. 2018, 23, 23. [Google Scholar] [CrossRef] [Green Version]
- Lamarque, P.; Tappeiner, U.; Turner, C.; Steinbacher, M.; Bardgett, R.D.; Szukics, U.; Schermer, M.; Lavorel, S. Stakeholder perceptions of grassland ecosystem services in relation to knowledge on soil fertility and biodiversity. Reg. Environ. Chang. 2011, 11, 791–804. [Google Scholar] [CrossRef]
- Huber, L.; Rüdisser, J.; Meisch, C.; Stotten, R.; Leitinger, G.; Tappeiner, U. Agent-based modelling of water balance in a social-ecological system: A multidisciplinary approach for mountain catchments. Sci. Total Environ. 2021, 755, 142962. [Google Scholar] [CrossRef]
- Lázár, A.N.; Hanson, S.E.; Nicholls, R.J.; Allan, A.; Hutton, C.W.; Salehin, M.; Kebede, A.S. Choices: Future Trade-Offs and Plausible Pathways. In Deltas in the Anthropocene; Palgrave Macmillan: Cham, Switzerland, 2020; pp. 223–245. [Google Scholar]
- Leslie, H.M.; Basurto, X.; Nenadovic, M.; Sievanen, L.; Cavanaugh, K.C.; Cota-Nieto, J.J.; Erisman, B.E.; Finkbeiner, E.; Hinojosa-Arango, G.; Moreno-Báez, M.; et al. Operationalizing the social-ecological systems framework to assess sustainability. Proc. Natl. Acad. Sci. USA 2015, 112, 5979–5984. [Google Scholar] [CrossRef] [Green Version]
- Kamenik, C.; Schmidt, R.; Kum, G.; Psenner, R. The Influence of Catchment Characteristics on the Water Chemistry of Mountain Lakes. Arct. Antarct. Alp. Res. 2001, 33, 404–409. [Google Scholar] [CrossRef]
- Vollenweider, R.A.; Kerekes, J. The Loading Concept as Basis for Controlling Eutrophication Philosophy and Preliminary Results of the Oecd Programme on Eutrophication. In Eutrophication of Deep Lakes; Elsevier: Berlin, Germany, 1980; pp. 5–38. [Google Scholar]
- Gobiet, A.; Kotlarski, S.; Beniston, M.; Heinrich, G.; Rajczak, J.; Stoffel, M. 21st century climate change in the European Alps—A review. Sci. Total Environ. 2014, 493, 1138–1151. [Google Scholar] [CrossRef]
- Schirpke, U.; Tscholl, S.; Tasser, E. Spatio-temporal changes in ecosystem service values: Effects of land-use changes from past to future (1860–2100). J. Environ. Manag. 2020, 272, 111068. [Google Scholar] [CrossRef]
- ASTAT South Tyrol in Figures. Available online: https://astat.provinz.bz.it/downloads/Siz_2019-eng.pdf (accessed on 17 March 2020).
- Office of the Styrian Provincial Government Styria in Numbers. 2018. Available online: https://www.landesentwicklung.steiermark.at/cms/dokumente/12630226_141976103/db86d09e/Styria%20in%20Numbers%202018.pdf (accessed on 26 May 2021).
- Palinkas, L.A.; Horwitz, S.M.; Green, C.A.; Wisdom, J.P.; Duan, N.; Hoagwood, K. Purposeful Sampling for Qualitative Data Collection and Analysis in Mixed Method Implementation Research. Adm. Policy Ment. Health Ment. Health Serv. Res. 2015, 42, 533–544. [Google Scholar] [CrossRef] [Green Version]
- Hattam, C.; Böhnke-Henrichs, A.; Börger, T.; Burdon, D.; Hadjimichael, M.; Delaney, A.; Atkins, J.P.; Garrard, S.; Austen, M.C. Integrating methods for ecosystem service assessment and valuation: Mixed methods or mixed messages? Ecol. Econ. 2015, 120, 126–138. [Google Scholar] [CrossRef]
- Chen, X.; Chen, Y.; Shimizu, T.; Niu, J.; Nakagami, K.; Qian, X.; Jia, B.; Nakajima, J.; Han, J.; Li, J. Water resources management in the urban agglomeration of the Lake Biwa region, Japan: An ecosystem services-based sustainability assessment. Sci. Total Environ. 2017, 586, 174–187. [Google Scholar] [CrossRef] [PubMed]
- Thompson, R.; Kamenik, C.; Schmidt, R. Ultra-sensitive Alpine lakes and climate change. J. Limnol. 2005, 64, 139–152. [Google Scholar] [CrossRef] [Green Version]
- Schirpke, U.; Bottarin, R.; Tappeiner, U. Nachhaltiges Wassermanagement in Südtirol—Wo wird mehr Effizienz nötig? In Angewandte Geoinformatik; Strobl, J., Blaschke, T., Griesebner, G., Eds.; Herbert Wichmann Verlag: Berlin/Offenbach, Germany, 2012; pp. 524–532. ISBN 978-3-87907-520-1. [Google Scholar]
- Fürst, J.; Nachtnebel, H.P.; Nobilis, F. Der Hydrologische Atlas Österreichs: Von der Idee zum Produkt. Osterr. Wasser Abfallwirtsch. 2005, 57, 79–87. [Google Scholar] [CrossRef]
- Wilhalm, T.; Kranebitter, P.; Hilpold, A. FloraFaunaSüdtirol (www. florafauna. it). Das Portal zur Verbreitung von Pflanzen-und Tierarten in Südtirol. Gredleriana 2014, 14, 99–110. [Google Scholar]
- Schirpke, U.; Scolozzi, R.; Tappeiner, U. “A Gem among the Rocks”—Identifying and Measuring Visual Preferences for Mountain Lakes. Water 2021, 13, 1151. [Google Scholar] [CrossRef]
- Nemec, J.; Gruber, C.; Chimani, B.; Auer, I. Trends in extreme temperature indices in Austria based on a new homogenised dataset. Int. J. Clim. 2012, 33, 1538–1550. [Google Scholar] [CrossRef]
- Strayer, D.L.; Findlay, S.E.G. Ecology of freshwater shore zones. Aquat. Sci. 2010, 72, 127–163. [Google Scholar] [CrossRef] [Green Version]
- Porst, G.; Brauns, M.; Irvine, K.; Solimini, A.; Sandin, L.; Pusch, M.; Miler, O. Effects of shoreline alteration and habitat heterogeneity on macroinvertebrate community composition across European lakes. Ecol. Indic. 2019, 98, 285–296. [Google Scholar] [CrossRef]
- Kovalenko, K.E.; Thomaz, S.M.; Warfe, D.M. Habitat complexity: Approaches and future directions. Hydrobiologia 2012, 685, 1–17. [Google Scholar] [CrossRef]
- Kostylev, V.E.; Erlandsson, J.; Ming, M.Y.; Williams, G.A. The relative importance of habitat complexity and surface area in assessing biodiversity: Fractal application on rocky shores. Ecol. Complex. 2005, 2, 272–286. [Google Scholar] [CrossRef]
- Hutchinson, G.E. Treatise on Limnology. 3V. V1-Geography Physics and Chemistry. V2-Introduction to Lake Biology and Limnoplankton. V3-Limnological Botany; John Wiley & Sons: Hoboken, NJ, USA, 1957. [Google Scholar]
- Kaufmann, P.R.; Hughes, R.M.; Van Sickle, J.; Whittier, T.R.; Seeliger, C.W.; Paulsen, S.G. Lakeshore and littoral physical habitat structure: A field survey method and its precision. Lake Reserv. Manag. 2014, 30, 157–176. [Google Scholar] [CrossRef]
- Vollenweider, R.A. Scientific Fundamentals of the Eutrophication of Lakes and Flowing Waters, with Particular Reference to Nitrogen and Phosphorus as Factors in Eutrophication; Organisation for Economic Cooperation and Development: Paris, France, 1968. [Google Scholar]
- Grizzetti, B.; Liquete, C.; Pistocchi, A.; Vigiak, O.; Zulian, G.; Bouraoui, F.; De Roo, A.; Cardoso, A.C. Relationship between ecological condition and ecosystem services in European rivers, lakes and coastal waters. Sci. Total Environ. 2019, 671, 452–465. [Google Scholar] [CrossRef] [PubMed]
- Doherty, E.; Murphy, G.; Hynes, S.; Buckley, C. Valuing ecosystem services across water bodies: Results from a discrete choice experiment. Ecosyst. Serv. 2014, 7, 89–97. [Google Scholar] [CrossRef]
- Vesterinen, J.; Pouta, E.; Huhtala, A.; Neuvonen, M. Impacts of changes in water quality on recreation behavior and benefits in Finland. J. Environ. Manag. 2010, 91, 984–994. [Google Scholar] [CrossRef] [PubMed]
- Pröbstl-Haider, U.; Haider, W.; Wirth, V.; Beardmore, B. Will climate change increase the attractiveness of summer destinations in the European Alps? A survey of German tourists. J. Outdoor Recreat. Tour. 2015, 11, 44–57. [Google Scholar] [CrossRef]
- Ghermandi, A.; Fichtman, E. Cultural ecosystem services of multifunctional constructed treatment wetlands and waste stabilization ponds: Time to enter the mainstream? Ecol. Eng. 2015, 84, 615–623. [Google Scholar] [CrossRef]
- Lee, L.-H. Appearance’s Aesthetic Appreciation to Inform Water Quality Management of Waterscapes. J. Water Resour. Prot. 2017, 09, 1645–1659. [Google Scholar] [CrossRef] [Green Version]
- Tallar, R.Y.; Suen, J.-P. Measuring the Aesthetic Value of Multifunctional Lakes Using an Enhanced Visual Quality Method. Water 2017, 9, 233. [Google Scholar] [CrossRef]
- Angradi, T.R.; Ringold, P.L.; Hall, K. Water clarity measures as indicators of recreational benefits provided by U.S. lakes: Swimming and aesthetics. Ecol. Indic. 2018, 93, 1005–1019. [Google Scholar] [CrossRef]
- Schirpke, U.; Zoderer, B.M.; Tappeiner, U.; Tasser, E. Effects of past landscape changes on aesthetic landscape values in the European Alps. Landsc. Urban Plan. 2021, 212, 104109. [Google Scholar] [CrossRef]
- Nghiem, L.T.P.; Papworth, S.K.; Lim, F.K.S.; Carrasco, L.R. Analysis of the Capacity of Google Trends to Measure Interest in Conservation Topics and the Role of Online News. PLoS ONE 2016, 11, e0152802. [Google Scholar] [CrossRef] [Green Version]
- Iglesias-Sánchez, P.P.; Correia, M.B.; Jambrino-Maldonado, C.; de las Heras-Pedrosa, C. Instagram as a Co-Creation Space for Tourist Destination Image-Building: Algarve and Costa del Sol Case Studies. Sustainability 2020, 12, 2793. [Google Scholar] [CrossRef] [Green Version]
- Dynowski, P.; Senetra, A.; Źróbek-Sokolnik, A.; Kozłowski, J. The Impact of Recreational Activities on Aquatic Vegetation in Alpine Lakes. Water 2019, 11, 173. [Google Scholar] [CrossRef] [Green Version]
- Bottarin, R.; Schirpke, U.; Tappeiner, U. Vulnerability Zones to Nitrate Pollution in an Alpine Region (South Tyrol, Italy); IAHS-AISH Publication: Wallingford, UK, 2011; Volume 342. [Google Scholar]
- Van Colen, W.; Mosquera, P.V.; Hampel, H.; Muylaert, K. Link between cattle and the trophic status of tropical high mountain lakes in páramo grasslands in Ecuador. Lakes Reserv. Res. Manag. 2018, 23, 303–311. [Google Scholar] [CrossRef]
- Mocior, E.; Kruse, M. Educational values and services of ecosystems and landscapes—An overview. Ecol. Indic. 2016, 60, 137–151. [Google Scholar] [CrossRef]
- Roca, Z. Second Home Tourism in Europe: Lifestyle Issues and Policy Responses; Routledge: London, UK, 2016; ISBN 9781317058519. [Google Scholar]
- Asaad, I.; Lundquist, C.J.; Erdmann, M.V.; Costello, M.J. Ecological criteria to identify areas for biodiversity conservation. Biol. Conserv. 2017, 213, 309–316. [Google Scholar] [CrossRef]
- Roche, P.K.; Campagne, C.S. From ecosystem integrity to ecosystem condition: A continuity of concepts supporting different aspects of ecosystem sustainability. Curr. Opin. Environ. Sustain. 2017, 29, 63–68. [Google Scholar] [CrossRef]
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Hogeboom, R.J.; Knook, L.; Hoekstra, A.Y. The blue water footprint of the world’s artificial reservoirs for hydroelectricity, irrigation, residential and industrial water supply, flood protection, fishing and recreation. Adv. Water Resour. 2018, 113, 285–294. [Google Scholar] [CrossRef]
- Rüdisser, J.; Schirpke, U.; Tappeiner, U. Symbolic entities in the European Alps: Perception and use of a cultural ecosystem service. Ecosyst. Serv. 2019, 39. [Google Scholar] [CrossRef]
- Tenerelli, P.; Demšar, U.; Luque, S. Crowdsourcing indicators for cultural ecosystem services: A geographically weighted approach for mountain landscapes. Ecol. Indic. 2016, 64, 237–248. [Google Scholar] [CrossRef] [Green Version]
- Tasser, E.; Schirpke, U.; Zoderer, B.M.; Tappeiner, U. Towards an integrative assessment of land-use type values from the perspective of ecosystem services. Ecosyst. Serv. 2020, 42, 101082. [Google Scholar] [CrossRef]
- Autonomous Province of South Tyrol, Liste der Geschützten Naturdenkmäler. Available online: https://www.provinz.bz.it/natur-umwelt/natur-raum/naturschutz/naturdenkmaeler.asp (accessed on 21 May 2021).
- Autonomous Province of South Tyrol, Natura-2000-Managementpläne. Available online: https://www.provinz.bz.it/natur-umwelt/natur-raum/natura2000/natura-2000-managementplaene.asp (accessed on 22 May 2021).
- Schirpke, U.; Tasser, E.; Ebner, M.; Tappeiner, U. What can geotagged photographs tell us about cultural ecosystem services of lakes? Ecosyst. Serv. 2021. Under Review. [Google Scholar]
- Scolozzi, R.; Schirpke, U.; Detassis, C.; Abdullah, S.; Gretter, A. Mapping Alpine Landscape Values and Related Threats as Perceived by Tourists. Landsc. Res. 2015, 40, 451–465. [Google Scholar] [CrossRef]
- Gatterer, P.J. Instagram the Chameleon’—The Biggest Influencer of Overtourism in Rural Destinations. Master’s Thesis, Modul University Vienna, Vienna, Austria. Available online: https://www.modul.ac.at/uploads/files/Theses/Master/MBA_2020/1602010_Peter_Gatterer_thesis_no_sig.pdf (accessed on 20 April 2021).
- Barros, A.; Pickering, C.M. How Networks of Informal Trails Cause Landscape Level Damage to Vegetation. Environ. Manag. 2017, 60, 57–68. [Google Scholar] [CrossRef]
- Marion, J.L.; Leung, Y.-F.; Eagleston, H.; Burroughs, K. A Review and Synthesis of Recreation Ecology Research Findings on Visitor Impacts to Wilderness and Protected Natural Areas. J. For. 2016, 114, 352–362. [Google Scholar] [CrossRef]
- Dokulil, M.T. Environmental Impacts of Tourism on Lakes BT—Eutrophication: Causes, Consequences and Control: Volume; Ansari, A.A., Gill, S.S., Eds.; Springer: Dordrecht, The Netherlands, 2014; pp. 81–88. ISBN 978-94-007-7814-6. [Google Scholar]
- Unterkofler, F. Nachhaltige Tourismusmobilität in Südtirol—Implementierung von Mobility as a Service für Touristen. Ph.D. Thesis, TU Wien, Vienna, Austria, 2021. Available online: https://repositum.tuwien.at/handle/20.500.12708/1459 (accessed on 20 April 2021).
- EC Common Implementation Strategy for the Water Framework Directive (2000/60/EC). In Guidance Document No. 2 Identification of Water Bodies; EC: Luxembourg, 2003.
- Russi, D.; ten Brink, P.; Farmer, A.; Badura, T.; Coates, D.; Förster, J.; Kumar, R.; Davidson, N. The Economics of Ecosystems and Biodiversity for Water and Wetlands; IEEP: London, UK; Brussels, Belgium, 2013. [Google Scholar]
- Schirpke, U.; Vigl, L.E.; Tasser, E.; Tappeiner, U. Analyzing Spatial Congruencies and Mismatches between Supply, Demand and Flow of Ecosystem Services and Sustainable Development. Sustainability 2019, 11, 2227. [Google Scholar] [CrossRef] [Green Version]
Study Region | Lake | ID | Area (ha) | Elevation (m a.s.l.) | Volume (106 m3) | Area Watershed (ha) |
---|---|---|---|---|---|---|
South Tyrol | Antholzer See/Lago di Anterselva | 1 | 43.24 | 1642 | 11.04 | 1887.15 |
Pragser Wildsee/Lago di Braies | 2 | 35.82 | 1493 | 5.30 | 2930.55 | |
Langsee/Lago Lungo (Spronser Seen/Laghi di Sopranes) | 3 | 19.59 | 2381 | 2.58 | 199.45 | |
Fischersee (Saldurseen/Laghi di Saldura) | 4 | 0.54 | 2758 | 0.03 | 3.08 | |
Niedere Tauern | Unterer Klaffersee | 5 | 3.84 | 2103 | 0.50 | 80.07 |
Rauhenbergsee | 6 | 2.76 | 2264 | 0.25 | 44.38 | |
Oberer Klaffersee | 7 | 5.32 | 2310 | 0.57 | 60.53 | |
Kapuzinersee | 8 | 2.27 | 2146 | 0.09 | 92.24 | |
Pfannsee | 9 | 1.45 | 1968 | 0.02 | 121.51 | |
Obersee | 10 | 7.25 | 1673 | 0.80 | 302.04 | |
Hüttensee | 11 | 4.67 | 1502 | 0.17 | 567.19 | |
Twenger Almsee | 12 | 2.99 | 2118 | 0.40 | 13.21 | |
Schönalmsee | 13 | 5.25 | 2112 | 0.19 | 30.62 | |
Unterer Wirpitschsee | 14 | 2.74 | 1701 | 0.12 | 128.14 | |
Tiefenbachsee | 15 | 3.47 | 1844 | 0.13 | 137.82 |
ES | CICES | Indicator | Type | Method | Unit | Data Sources |
---|---|---|---|---|---|---|
Surface water for non-drinking purposes (water) | 4.2.1.2, 4.2.1.3 | Storage capacity (+) | NCS | D | 106 m3 | [54] |
Water availability (+) | NCF | M | 106 m3 y−1 | [55,56] | ||
Maintaining populations and habitats (habitat) | 2.2.2.3 | Littoral substrate complexity (+) | NCS | D | index | Orthophotos 1 |
Shoreline development (+) | NCS | D | index | Orthophotos 1 | ||
Riparian vegetation complexity (+) | NCS | D | index | Orthophotos 1 | ||
Trophic state (+) | NCS | D | index | [45], Autonomous Province of South Tyrol (1990–2019), own measurements (2019/2020) | ||
Nitrate (−) | NCS | D | NO3-N mg L−1 | [45], Autonomous Province of South Tyrol (1990–2019), own measurements (2019–2020) | ||
Plant species (+) | NCS | D | n | [57] | ||
Outdoor recreation (recreation) | 3.1.1.1, 6.1.1.1, 3.1.1.2 | Access difficulty (−) | NCS, HCS | D | index | Hiking websites 8 |
Access level (−) | NCS, HCS | D | index | Own mapping | ||
Warm days (+) | NCF | D | days y−1 | Climate stations 2 | ||
Hiking at lake (+) | HCS | D | m | OSM 3 | ||
Tourist facilities (+) | HCS | D | n km−1 | OSM 3 | ||
Aesthetic value (aesthetic) | 3.1.2.4, 6.1.2.1. | Water clarity (+) | NCS | D, S | m | Own measurements (2019/2020) |
Littoral preference (+) | NCS | D, S | index | Orthophotos 1, [58] | ||
Land cover preference (+) | NCS | D, S | index | Orthophotos 1, [58] | ||
Landscape beauty (+) | NCS, HCS | M, S | index | DEM 1, CLC 4 | ||
Entertainment and representation (representation) | 3.2.1.3, 6.2.1.1 | Videos (+) | NCS, HCF | D | n | Google Videos 5 |
Google Trends (+) | NCS, HCF | D | n | Google Trends 6 | ||
Instagram (+) | NCS, HCF | D | n | Instagram 7 | ||
Scientific research (research) | 3.1.2.1 | Access time (+) | NCS, HCS | D | min | Hiking websites 8 |
Access difficulty (+) | NCS, HCS | D | index | Hiking websites 8 | ||
Livestock farming (−) | NCS, HCS | D | % | CLC 4 | ||
Educational value (education) | 3.1.2.2 | Littoral structure complexity (+) | NCS | D | index | Orthophotos 1 |
Access time (−) | NCS, HCS | D | min | Hiking websites 8 | ||
Beneficiaries (+) | HCS | D | n | OSM 3, residents and overnights 9 | ||
Existence, option or bequest value (existence) | 3.2.2.1, 3.2.2.2, 6.2.2.1 | Protected area (+) | NCS, HCS | D | category | CDDA 10 |
Lake abundance (−) | NCS | D | n | OSM 3 | ||
Agricultural intensity (−) | NCS, HCS | D | % | CLC 4 |
Type | Variable | Unit | Description | Data Sources |
---|---|---|---|---|
Lake | Lake area | m2 | Area of the lake | Orthophotos 1 |
Lake perimeter * | m | Perimeter of the lake | Orthophotos 1 | |
Watershed area * | m2 | Area of the watershed contributing to the lake | DEM 2 | |
Environment | Elevation | m a.s.l. | Elevation of the lake | DEM 2 |
Terrain ruggedness | Index | Mean terrain ruggedness in 500 m buffer around the lake | DEM 2 | |
Precipitation * | mm y−1 | Annual precipitation sum | Bioclim 3 | |
Land cover | Forest/shrub * | % | Distribution within the lake’s watershed | CLC 4 |
Grasslands/heathland | % | Distribution within the lake’s watershed | CLC 4 | |
Sparsely vegetated areas | % | Distribution within the lake’s watershed | CLC 4 | |
Bare rocks/glaciers/water | % | Distribution within the lake’s watershed | CLC 4 | |
Accessibility | Access time | min | Walking time of ascent to lake from the nearest access point (parking, cable car, etc.) | Hiking websites 8 |
Distance to path | m | Euclidean distance to the nearest hiking trail | OSM 5 | |
Distance to road | m | Euclidean distance to the nearest asphalted road | OSM 5 | |
Beneficiaries | Residents | n | Number of residents in proximity to the lake (within 30 min driving from the nearest access point to the lake) | OSM 5, residents 6 |
Overnights | n y−1 | Number of overnights in summer (May–October) in proximity to the lake (within 30 min driving from the nearest access point to the lake) | OSM 5, overnights 6 | |
Visitation rates | n | Visitation rates derived from social media data (photo-user days) | Flickr 7 |
ES | Group 1 | Group 2 | Group 3 | Group 4 | ANOVA | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | S.D. | Mean | S.D. | Mean | S.D. | Mean | S.D. | SS | df | MS | F | Sig. | |
Water | 0.814 | 0.105 | 0.171 | - | 0.041 | 0.021 | 0.088 | 0.078 | 0.970 | 3 | 0.323 | 82.174 | <0.000 |
Habitat | 0.645 | 0.056 | 0.563 | - | 0.622 | 0.076 | 0.688 | 0.047 | 0.021 | 3 | 0.007 | 1.753 | 0.214 |
Recreation | 0.933 | 0.094 | 0.260 | - | 0.118 | 0.087 | 0.315 | 0.083 | 1.000 | 3 | 0.333 | 45.335 | <0.000 |
Aesthetic | 0.625 | 0.045 | 0.504 | - | 0.591 | 0.114 | 0.556 | 0.046 | 0.014 | 3 | 0.005 | 0.657 | 0.595 |
Representation | 0.521 | 0.677 | 0.025 | - | 0.004 | 0.002 | 0.001 | 0.001 | 0.463 | 3 | 0.154 | 3.701 | 0.046 |
Research | 0.298 | 0.011 | 0.806 | - | 0.891 | 0.112 | 0.405 | 0.050 | 0.960 | 3 | 0.320 | 46.691 | <0.000 |
Education | 0.603 | 0.071 | 0.640 | - | 0.341 | 0.083 | 0.392 | 0.064 | 0.157 | 3 | 0.052 | 9.685 | 0.002 |
Existence | 0.943 | 0.011 | 0.833 | - | 0.735 | 0.074 | 0.452 | 0.229 | 0.483 | 3 | 0.161 | 6.103 | 0.011 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schirpke, U.; Ebner, M.; Pritsch, H.; Fontana, V.; Kurmayer, R. Quantifying Ecosystem Services of High Mountain Lakes across Different Socio-Ecological Contexts. Sustainability 2021, 13, 6051. https://doi.org/10.3390/su13116051
Schirpke U, Ebner M, Pritsch H, Fontana V, Kurmayer R. Quantifying Ecosystem Services of High Mountain Lakes across Different Socio-Ecological Contexts. Sustainability. 2021; 13(11):6051. https://doi.org/10.3390/su13116051
Chicago/Turabian StyleSchirpke, Uta, Manuel Ebner, Hanna Pritsch, Veronika Fontana, and Rainer Kurmayer. 2021. "Quantifying Ecosystem Services of High Mountain Lakes across Different Socio-Ecological Contexts" Sustainability 13, no. 11: 6051. https://doi.org/10.3390/su13116051
APA StyleSchirpke, U., Ebner, M., Pritsch, H., Fontana, V., & Kurmayer, R. (2021). Quantifying Ecosystem Services of High Mountain Lakes across Different Socio-Ecological Contexts. Sustainability, 13(11), 6051. https://doi.org/10.3390/su13116051