Improving Energy Efficiency of Barley Production Using Joint Data Envelopment Analysis (DEA) and Life Cycle Assessment (LCA): Evaluation of Greenhouse Gas Emissions and Optimization Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling and Data Collection
2.2. Energy of the Inputs and Energy Indicators
2.3. Data Envelopment Analysis (DEA)
2.4. Life Cycle Assessment (LCA)
2.5. Combining LCA and DEA
3. Results and Discussion
3.1. Evaluation of Input and Output Energies and Energy Indicators
3.2. Determining Farm Efficiency through DEA
3.3. Results of Combining DEA and LCA
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ilahi, S.; Wu, Y.; Raza, M.A.A.; Wei, W.; Imran, M.; Bayasgalankhuu, L. Optimization approach for improving energy efficiency and evaluation of greenhouse gas emission of wheat crop using data envelopment analysis. Sustainability 2019, 11, 3409. [Google Scholar] [CrossRef] [Green Version]
- Mohammadi, A.; Omid, M. Economical analysis and relation between energy inputs and yield of greenhouse cucumber production in Iran. Appl. Energy 2010, 87, 191–196. [Google Scholar] [CrossRef]
- Payandeh, Z.; Kheiralipour, K.; Karimi, M.; Khoshnevisan, B. Joint data envelopment analysis and life cycle assessment for environmental impact reduction in broiler production systems. Energy 2017, 127, 768–774. [Google Scholar] [CrossRef]
- Yuan, S.; Peng, S. Trends in the economic return on energy use and energy use efficiency in China′s crop production. Renew. Sustain. Energy Rev. 2017, 70, 836–844. [Google Scholar] [CrossRef]
- Pishgar-Komleh, S.H.; Zylowski, T.; Rozakis, S.; Kozyra, J. Efficiency under different methods for incorporating undesirable outputs in an LCA+ DEA framework: A case study of winter wheat production in Poland. J. Environ. Manag. 2020, 260, 110138. [Google Scholar] [CrossRef] [PubMed]
- Heidari-Maleni, A.; Gundoshmian, T.M.; Jahanbakhshi, A.; Ghobadian, B. Performance improvement and exhaust emissions reduction in diesel engine through the use of graphene quantum dot (GQD) nanoparticles and ethanol-biodiesel blends. Fuel 2020, 267, 117116. [Google Scholar] [CrossRef]
- Hesampour, R.; Bastani, A.; Heidarbeigi, K. Environmental assessment of date (Phoenix dactylifera) production in Iran by life cycle assessment. Inf. Process. Agric. 2018, 5, 388–393. [Google Scholar]
- Khoshnevisan, B.; Bolandnazar, E.; Shamshirband, S.; Shariati, H.M.; Anuar, N.B.; Kiah, M.L.M. Decreasing environmental impacts of cropping systems using life cycle assessment (LCA) and multi-objective genetic algorithm. J. Clean. Prod. 2015, 86, 67–77. [Google Scholar] [CrossRef]
- Houshyar, E. Environmental impacts of irrigated and rain-fed barley production in Iran using life cycle assessment (LCA). Span. J. Agric. Res. 2017, 15, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Kaveh, M.; Karami, H.; Jahanbakhshi, A. Investigation of mass transfer, thermodynamics, and greenhouse gases properties in pennyroyal drying. J. Food Process Eng. 2020, e13446. [Google Scholar] [CrossRef]
- Ghorbani, R.; Mondani, F.; Amirmoradi, S.; Feizi, H.; Khorramdel, S.; Teimouri, M.; Aghel, H. A case study of energy use and economical analysis of irrigated and dryland wheat production systems. Appl. Energy 2011, 88, 283–288. [Google Scholar] [CrossRef]
- Mobtaker, H.G.; Keyhani, A.; Mohammadi, A.; Rafiee, S.; Akram, A. Sensitivity analysis of energy inputs for barley production in Hamedan Province of Iran. Agric. Ecosyst. Environ. 2010, 137, 367–372. [Google Scholar] [CrossRef]
- Patil, S.L.; Ramesha, M.N. Impact of improved production technologies on chickpea yields, economics and energy use in rainfed Vertisols. Legume Res. Int. J. 2018, 41, 79–86. [Google Scholar] [CrossRef] [Green Version]
- Dimitrijević, A.; Gavrilović, M.; Ivanović, S.; Mileusnić, Z.; Miodragović, R.; Todorović, S. Energy use and economic analysis of fertilizer use in wheat and sugar beet production in Serbia. Energies 2020, 13, 2361. [Google Scholar] [CrossRef]
- Gökdoğan, O.; Erdoğan, O.; Ertan, E.; Çobanoğlu, F. Evaluation of energy and economic analysis of chestnut (Castanea sativa Mill.) fruit production in Turkey. Erwerbs-Obstbau 2019, 61, 211–216. [Google Scholar] [CrossRef]
- Fallahpour, F.; Aminghafouri, A.; Behbahani, A.G.; Bannayan, M. The environmental impact assessment of wheat and barley production by using life cycle assessment (LCA) methodology. Environ. Dev. Sustain. 2012, 14, 979–992. [Google Scholar] [CrossRef]
- Schmidt Rivera, X.; Bacenetti, J.; Fusi, A.; Niero, M. The influence of fertiliser and pesticide emissions model on life cycle assessment of agricultural products: The case of Danish and Italian barley. Sci. Total Environ. 2017, 592, 745–757. [Google Scholar] [CrossRef] [Green Version]
- Tricase, C.; Lamonaca, E.; Ingrao, C.; Bacenetti, J.; Giudice, A.L. A comparative Life Cycle Assessment between organic and conventional barley cultivation for sustainable agriculture pathways. J. Clean. Prod. 2018, 172, 3747–3759. [Google Scholar] [CrossRef]
- Niero, M.; Ingvordsen, C.H.; Peltonen-Sainio, P.; Jalli, M.; Lyngkjær, M.F.; Hauschild, M.Z.; Jørgensen, R.B. Eco-efficient production of spring barley in a changed climate: A Life Cycle Assessment including primary data from future climate scenarios. Agric. Syst. 2015, 136, 46–60. [Google Scholar] [CrossRef] [Green Version]
- Bartzas, G.; Zaharaki, D.; Komnitsas, K. Life cycle assessment of open field and greenhouse cultivation of lettuce and barley. Inf. Process. Agric. 2015, 2, 191–207. [Google Scholar] [CrossRef] [Green Version]
- Nandy, A.; Singh, P.K. Farm efficiency estimation using a hybrid approach of machine-learning and data envelopment analysis: Evidence from rural eastern India. J. Clean. Prod. 2020, 267, 122106. [Google Scholar] [CrossRef]
- Vásquez-Ibarra, L.; Rebolledo-Leiva, R.; Angulo-Meza, L.; González-Araya, M.C.; Irarte, A. The joint use of life cycle assessment and data envelopment analysis methodologies for eco-efficiency assessment: A critical review, taxonomy and future research. Sci. Total Environ. 2020, 738, 139538. [Google Scholar] [CrossRef] [PubMed]
- Singh, P.; Singh, G.; Sodhi, G.P.S. Energy auditing and optimization approach for improving energy efficiency of rice cultivation in south-western Punjab, India. Energy 2019, 174, 269–279. [Google Scholar] [CrossRef]
- Laso, J.; Vázquez-Rowe, I.; Margallo, M.; Irabien, Á.; Aldaco, R. Revisiting the LCA+ DEA method in fishing fleets. How should we be measuring efficiency. Mar. Policy 2018, 91, 34–40. [Google Scholar] [CrossRef]
- Nabavi-Pelesaraei, A.; Abdi, R.; Rafiee, S.; Mobtaker, H.G. Optimization of energy required and greenhouse gas emissions analysis for orange producers using data envelopment analysis approach. J. Clean. Prod. 2014, 65, 311–317. [Google Scholar] [CrossRef]
- Unakıtan, G.; Aydın, B. A comparison of energy use efficiency and economic analysis of wheat and sunflower production in Turkey: A case study in Thrace Region. Energy 2018, 149, 279–285. [Google Scholar] [CrossRef]
- Rajabi Hamedani, S.; Shabani, Z.; Rafiee, S. Energy inputs and crop yield relationship in potato production in Hamadan province of Iran. Energy 2011, 36, 2367–2371. [Google Scholar] [CrossRef]
- Raheli, H.; Rezaei, R.M.; Jadidi, M.R.; Mobtaker, H.G. A two-stage DEA model to evaluate sustainability and energy efficiency of tomato production. Inf. Process. Agric. 2017, 4, 342–350. [Google Scholar] [CrossRef]
- Gündoğmuş, E. Energy use on organic farming: A comparative analysis on organic versus conventional apricot production on small holdings in Turkey. Energy Convers. Manag. 2006, 47, 3351–3359. [Google Scholar] [CrossRef]
- Ziaei, S.M.; Mazloumzadeh, S.M.; Jabbary, M. A comparison of energy use and productivity of wheat and barley (case study). J. Saudi Soc. Agric. Sci. 2015, 14, 19–25. [Google Scholar] [CrossRef] [Green Version]
- Charnes, A.; Cooper, W.W.; Rhodes, E. Measuring the efficiency of decision making units. Eur. J. Oper. Res. 1978, 2, 429–444. [Google Scholar] [CrossRef]
- Banker, R.D.; Charnes, A.; Cooper, W.W. Some models for estimating technical and scale inefficiencies in data envelopment analysis. Manag. Sci. 1984, 30, 1078–1092. [Google Scholar] [CrossRef] [Green Version]
- Scheel, H. Operations Research and Wirtschaftsinformatik. In EMS: Efficiency Measurement System Users Manual; Ver. 1.3; University of Dortmund: Dortmund, Germany, 2000. [Google Scholar]
- Nemece, T.; Huguenin-Elie, O.; Dubois, D.; Gaillard, G.; Schaller, B.; Chervet, A. Life cycle assessment of Swiss farming systems: II. Extensive and intensive production. Agric. Syst. 2011, 104, 233–245. [Google Scholar] [CrossRef]
- Nemecek, T.; Kägi, T.; Blaser, S. Life Cycle Inventories of Agricultural Production Systems; Final Report Ecoinvent v2.0 No. 15; Agroscope Reckenholz-Taenikon Research Station ART, Swiss Centre for Life Cycle Inventories: Zurich, Switzerland; Dübendorf, Switzerland, 2007. [Google Scholar]
- Ghasemi-Mobtaker, H.; Kaab, A.; Rafiee, S. Application of life cycle analysis to assess environmental sustainability of wheat cultivation in the west of Iran. Energy 2020, 193, 116768. [Google Scholar] [CrossRef]
- Naderi, S.; Raini, M.G.N.; Taki, M. Measuring the energy and environmental indices for apple (production and storage) by life cycle assessment (case study: Semirom county, Isfahan, Iran). Environ. Sustain. Indic. 2020, 6, 100034. [Google Scholar] [CrossRef]
- Weiler, V. Carbon Footprint (LCA) of Milk Producfion Considering Multifunctionality in Dairy Systems: A study on SmallHolder Dairy Production in Kaptumo, Kenya. MSc. Thesis, Wageningen University, Wageningen, Netherlands, 2013. [Google Scholar]
- Jahanbakhshi, A.; Kheiralipour, K. Influence of vermicompost and sheep manure on mechanical properties of tomato fruit. Food Sci. Nutr. 2019, 7, 1172–1178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Esengun, K.; Gündüz, O.; Erdal, G. Input–output energy analysis in dry apricot production of Turkey. Energy Convers. Manag. 2007, 48, 592–598. [Google Scholar] [CrossRef]
- Taki, M.; Soheili-Fard, F.; Rohani, A.; Chen, G.; Yildizhan, H. Life cycle assessment to compare the environmental impacts of different wheat production systems. J. Clean. Prod. 2018, 197, 195–207. [Google Scholar] [CrossRef] [Green Version]
- Neira, D.P.; Montiel, M.S.; Cabeza, M.D.; Reigada, A. Energy use and carbon footprint of the tomato production in heated multi-tunnel greenhouses in Almeria within an exporting agri-food system context. Sci. Total Environ. 2018, 628, 1627–1636. [Google Scholar] [CrossRef] [PubMed]
- Nabavi-Pelesaraei, A.; Rafiee, S.; Mohtasebi, S.S.; Hosseinzadeh-Bandbafha, H.; Chau, K.W. Energy consumption enhancement and environmental life cycle assessment in paddy production using optimization techniques. J. Clean. Prod. 2017, 162, 571–586. [Google Scholar] [CrossRef]
- Cerutti, A.K.; Bruun, S.; Beccaro, G.L.; Bounous, G. A review of studies applying environmental impact assessment methods on fruit production systems. J. Environ. Manag. 2011, 92, 2277–2286. [Google Scholar] [CrossRef] [PubMed]
- Singh, G.; Singh, S.; Singh, J. Optimization of energy inputs for wheat crop in Punjab. Energy Convers. Manag. 2004, 45, 453–465. [Google Scholar] [CrossRef]
- Abdollahpour, S.H.; Zaree, S. Evaluation of wheat energy balance under rain fed farming in Kermanshah. J. Agric. Sci. Sustain. Prod. 2009, 2, 97–106. (In Persian) [Google Scholar]
- Fatolahi, H.; Rafiee, S.; Mousavi-Avval, S.H. Assessment of the energy, economic and environmental indices of rainfed and irrigated wheat production (case study: Lorestan province). Iran. J. Biosyst. Eng. 2017, 48, 527–537. (In Persian) [Google Scholar]
- Mondani, F.; Aleagha, S.; Khoramivafa, M.; Ghobadi, R. Evaluation of greenhouse gases emission based on energy consumption in wheat Agroecosystems. Energy Rep. 2017, 3, 37–45. [Google Scholar] [CrossRef]
- Jahanshahloo, G.R.; Alirezaee, M.R. Measuring the efficiency of academic units at the teacher training university. J. Econ. Manag. Q. J. Islamic Azad. Univ. 1994, 20, 1–13. [Google Scholar]
- Chauhan, N.S.; Mohapatra, P.K.; Pandey, K.P. Improving energy productivity in paddy production through benchmarking—An application of data envelopment analysis. Energy Convers. Manag. 2006, 47, 1063–1085. [Google Scholar] [CrossRef]
- Soltani, A.; Rajabi, M.H.; Zeinali, E.; Soltani, E. Energy inputs and greenhouse gases emissions in wheat production in Gorgan, Iran. Energy 2013, 50, 54–61. [Google Scholar] [CrossRef]
- Del Grosso, S.J.; Ojima, D.S.; Parton, W.J.; Mosier, A.R. Simulated effects of tillage and timing of N fertilizer application on net greenhouse gas fluxes and N losses from agricultural soils in the Midwestern USA. In Proceedings of the Third International Symposium: Non-CO2 Greenhouse Gases: Scientific Understanding, Control Options and Policy Aspects, Maastricht, The Netherlands, 21–23 January 2002; pp. 23–28. [Google Scholar]
- Mohammadi, A.; Rafiee, S.; Jafari, A.; Dalgaard, T.; Knudsen, M.T.; Keyhani, A.; Hermansen, J.E. Potential greenhouse gas emission reductions in soybean farming: A combined use of life cycle assessment and data envelopment analysis. J. Clean. Prod. 2013, 54, 89–100. [Google Scholar] [CrossRef]
- Houshyar, E.; Grundmann, P. Environmental impacts of energy use in wheat tillage systems: A comparative life cycle assessment (LCA) study in Iran. Energy 2017, 122, 11–24. [Google Scholar] [CrossRef]
- Shekofteh, M.; Gundoshmian, T.M.; Jahanbakhshi, A.; Heidari-Maleni, A. Performance and emission characteristics of a diesel engine fueled with functionalized multi-wall carbon nanotubes (MWCNTs-OH) and diesel–biodiesel–bioethanol blends. Energy Rep. 2020, 6, 1438–1447. [Google Scholar] [CrossRef]
- Jahanbakhshi, A.; Salehi, R. Processing watermelon waste using Saccharomyces cerevisiae yeast and the fermentation method for bioethanol production. J. Food Process Eng. 2019, 42, e13283. [Google Scholar] [CrossRef]
- Mesri-Gundoshmian, T.; Heidari-Maleni, A.; Jahanbakhshi, A. Evaluation of performance and emission characteristics of a CI engine using functional multi-walled carbon nanotubes (MWCNTs-COOH) additives in biodiesel-diesel blends. Fuel 2021, 287, 119525. [Google Scholar] [CrossRef]
- Salehi, R.; Taghizadeh-Alisaraei, A.; Jahanbakhshi, A.; Shahidi, F. Evaluation and measurement of bioethanol extraction from melon waste (Qassari cultivar). Agric. Eng. Int. CIGR J. 2018, 20, 127–131. [Google Scholar]
- Heidari-Maleni, A.; Mesri-Gundoshmian, T.; Jahanbakhshi, A.; Karimi, B.; Ghobadian, B. Novel environmentally friendly fuel: The effect of adding graphene quantum dot (GQD) nanoparticles with ethanol-biodiesel blends on the performance and emission characteristics of a diesel engine. NanoImpact 2021, 21, 100294. [Google Scholar] [CrossRef]
- Bagheri, A.; Sohrabi, N. Predicting yield of rainfed and irrigated barley (Hordeum vulgare L.) in Kermanshah by Artificial Neural Network approach (Case study Kermanshah, Iran). Agroecology 2018, 2, 516–528. [Google Scholar]
- Mohammadi, A.; Rafiee, S.; Jafari, A.; Keyhani, A.; Dalgaard, T.; Knudsen, M.T.; Hermansen, J.E. Joint life cycle assessment and data envelopment analysis for the benchmarking of environmental impacts in rice paddy production. J. Clean. Prod. 2015, 106, 521–532. [Google Scholar] [CrossRef]
- Martín-Gamboa, M.; Iribarren, D.; García-Gusano, D.; Dufour, J. A review of life-cycle approaches coupled with data envelopment analysis within multi-criteria decision analysis for sustainability assessment of energy systems. J. Clean. Prod. 2017, 150, 164–174. [Google Scholar] [CrossRef]
Items | Unit | Energy Equivalent (MJ) | References |
---|---|---|---|
A. Inputs | |||
1. Human labor | h | 1.96 | [26] |
2. Diesel fuel | L | 56.31 | [26] |
3. Oil | L | 47.80 | [27] |
4. Machinery | |||
(a) Combine | h | 87.63 | [28] |
(b) Other agricultural machinery | h | 62.70 | [28] |
5. Chemical fertilizers | |||
(a) Nitrogen (N) | kg | 66.14 | [28] |
(b) Phosphate (P2O5) | kg | 12.44 | [28] |
6. Chemicals | |||
(a) Herbicides | L | 238.00 | [29] |
(b) Insecticides | L | 199.00 | [29] |
7. Seeds | kg | 14.70 | [30] |
B. Outputs | |||
1. Grain yield | kg | 14.47 | [30] |
2. Straw yield | kg | 12.50 | [30] |
Input/Output | Unit | Quantity Per Ha | Energy Equivalent (MJ) | Mean Energy Value (MJ/ha) |
---|---|---|---|---|
Inputs | ||||
1. Seed | kg | 161.30 | 14.70 | 2371.11 |
2. Human labor | H | 12.14 | 1.96 | 23.80 |
3. Diesel fuel | L | 70.01 | 56.31 | 3942.26 |
4. Agriculture machinery | kg | 11.60 | 62.70 | 725.90 |
5. Fertilizers | kg | |||
Nitrogen (N) | 80.50 | 66.14 | 5324.30 | |
Phosphate (P2O5) | 56.70 | 12.44 | 705.35 | |
6. Chemicals | L | |||
Insecticide | 0.52 | 199.00 | 105.10 | |
Herbicide | 1.03 | 238.00 | 245.60 | |
Total energy inputs | 13,443.20 | |||
Outputs | ||||
1. Barley | kg | 2038.00 | 14.70 | 29,958.60 |
2. Straw | kg | 1154.00 | 11.60 | 13,386.40 |
Total energy outputs | 43,345.00 |
Indicators | Unit | Present Study (2020) for Barley | Taki et al. [41] for Wheat | Mondani et al. [48] for Wheat | Ghorbani et al. [11] for Wheat |
---|---|---|---|---|---|
Input energy | GJ | 13.44 | 9.35 | 15.6 | 9.354 |
Output energy | GJ | 43.34 | 35.22 | 60.13 | 31.67 |
Energy ratio | - | 3.22 | 4.11 | 3.85 | 3.38 |
Energy use efficiency | kg/GJ | 151.64 | 149.6 | 98.6 | 111.61 |
Net energy | GJ/ha | 29.9 | 29.14 | 44.52 | 22.32 |
Efficiency Scale | Minimum | Mean | Maximum | Standard Deviation |
---|---|---|---|---|
Technical efficiency | 0.79 | 0.93 | 1.00 | 0.06 |
Pure technical efficiency | 0.85 | 0.96 | 1.00 | 0.05 |
Scale efficiency | 0.89 | 0.97 | 1.00 | 0.03 |
Inputs | Energy Value (MJ/ha) | Energy Savings (MJ/ha) | Energy Savings (%) | |
---|---|---|---|---|
Current | Target | |||
1. Seed | 2371.11 | 2210.63 | 160.48 | 6.77 |
2. Human labor | 23.79 | 22.14 | 1.65 | 6.94 |
3. Diesel fuel | 3942.04 | 3659.33 | 282.71 | 7.17 |
4. Machinery | 725.94 | 675.35 | 50.59 | 6.97 |
5. Fertilizers | ||||
Nitrogen (N) | 5324.27 | 4960.92 | 363.35 | 6.82 |
Phosphate (P2O5) | 705.35 | 654.35 | 51.00 | 7.23 |
6. Chemicals | ||||
Insecticide | 105.07 | 97.67 | 7.40 | 7.04 |
Herbicide | 245.62 | 228.88 | 16.73 | 6.82 |
Total | 13,443.20 | 12,509.27 | 933.91 | 55.76 |
Items | Unit | Value | |
---|---|---|---|
Current | Target | ||
Inputs | |||
1. Seed | kg | 161.30 | 150.38 |
2. Diesel fuel | L | 70.00 | 65.00 |
3. Machinery | kg | 11.60 | 10.77 |
4. Fertilizers | |||
Nitrogen (N) | kg | 80.50 | 75.01 |
Phosphate (P2O5) | kg | 56.70 | 52.60 |
5. Chemicals | |||
Insecticide | L | 0.53 | 0.49 |
Herbicide | L | 1.03 | 0.96 |
Outputs | |||
1. Barley | kg | 2038 | 2038 |
2. Straw | kg | 1154 | 1154 |
Impact Category | Unit | Current Barley Production | Optimized Barley Production | Differences (%) |
---|---|---|---|---|
Abiotic depletion | kg Sb eq | 0.0006 | 0.0005 | 16.67 |
Abiotic depletion (fossil fuels) | MJ | 3119.58 | 2906.03 | 6.84 |
Global warming (GWP100a) | kg CO2 eq | 193.96 | 183.03 | 5.63 |
Ozone layer depletion (ODP) | kg CFC-11 eq | 2.92 × 10−5 | 2.72 × 10−5 | 6.86 |
Human toxicity | kg 1,4-DB eq | 5665.76 | 5173.48 | 8.69 |
Fresh water aquatic ecotox. | kg 1,4-DB eq | 201.07 | 186.99 | 7.00 |
Marine aquatic ecotoxicity | kg 1,4-DB eq | 4,178,056 | 387,976 | 90.71 |
Terrestrial ecotoxicity | kg 1,4-DB eq | 105.31 | 97.78 | 7.15 |
Photochemical oxidation | kg C2H4 eq | 0.10 | 0.08 | 17.08 |
Acidification | kg SO2 eq | 1.64 | 1.52 | 7.07 |
Eutrophication | kg PO4 eq | 1.66 | 1.54 | 6.81 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Payandeh, Z.; Jahanbakhshi, A.; Mesri-Gundoshmian, T.; Clark, S. Improving Energy Efficiency of Barley Production Using Joint Data Envelopment Analysis (DEA) and Life Cycle Assessment (LCA): Evaluation of Greenhouse Gas Emissions and Optimization Approach. Sustainability 2021, 13, 6082. https://doi.org/10.3390/su13116082
Payandeh Z, Jahanbakhshi A, Mesri-Gundoshmian T, Clark S. Improving Energy Efficiency of Barley Production Using Joint Data Envelopment Analysis (DEA) and Life Cycle Assessment (LCA): Evaluation of Greenhouse Gas Emissions and Optimization Approach. Sustainability. 2021; 13(11):6082. https://doi.org/10.3390/su13116082
Chicago/Turabian StylePayandeh, Zahra, Ahmad Jahanbakhshi, Tarahom Mesri-Gundoshmian, and Sean Clark. 2021. "Improving Energy Efficiency of Barley Production Using Joint Data Envelopment Analysis (DEA) and Life Cycle Assessment (LCA): Evaluation of Greenhouse Gas Emissions and Optimization Approach" Sustainability 13, no. 11: 6082. https://doi.org/10.3390/su13116082
APA StylePayandeh, Z., Jahanbakhshi, A., Mesri-Gundoshmian, T., & Clark, S. (2021). Improving Energy Efficiency of Barley Production Using Joint Data Envelopment Analysis (DEA) and Life Cycle Assessment (LCA): Evaluation of Greenhouse Gas Emissions and Optimization Approach. Sustainability, 13(11), 6082. https://doi.org/10.3390/su13116082