Meta-Analysis on Energy-Use Patterns of Cropping Systems in Iran
Abstract
:1. Introduction
2. Methods
2.1. Review Protocol
2.2. Article Selection
2.3. Data Collection
Energy and GHG Conversion Factors
2.4. Risk of Bias in Individual Studies
2.5. Summary Measures and Synthesis
2.6. Risk of Bias across Studies
Statistical Analysis
3. Results
3.1. Article Selection
3.2. Study Characteristics
3.3. Synthesis of Results
3.3.1. Share of Inputs
3.3.2. Environmental Impact
3.3.3. Data Envelopment Analysis
3.3.4. Economic Indicators
3.3.5. GLM Results
3.3.6. Production Function and Sensitivity Analysis
3.4. Risk of Bias across Studies
Non-Parametric Test Results
4. Discussion
4.1. Summary of Evidence
Energy Indicators Status
4.2. Limitations
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Conflicts of Interest
Abbreviations
IE | Input Energy |
EUE | Energy Use Efficiency |
NE | Net Energy |
FYM | Farm Yard Manure |
IDE | In-Direct Energy |
NRE | Non-Renewable Energy |
ANOVA | Analysis of Variance |
TE | Technical Efficiency |
SE | Scale Efficiency |
GHG | Greenhouse Gas |
DE | Direct Energy |
RE | Renewable Energy |
TEI | Total Energy Input |
PTE | Pure Technical Efficiency |
EP | Energy Productivity |
MPP | Marginal Physical Productivity |
DEA | Data Envelopment Analysis |
GLM | General Linear Model |
CSA | Climate Smart Agriculture |
LCA | Life Cycle Assessment |
TES | Total Energy Savings |
PRISMA | Preferred Reporting Items for Systematic Reviews and Meta-Analyses |
References
- Banaeian, N.; Zangeneh, M.; Clark, S. Trends and Future Directions in Crop Energy Analyses: A Focus on Iran. Sustainability 2020, 12, 10002. [Google Scholar] [CrossRef]
- Mobtaker, H.G.; Keyhani, A.; Mohammadi, A.; Rafiee, S.; Akram, A. Sensitivity analysis of energy inputs for barley production in Hamedan Province of Iran. Agric. Ecosyst. Environ. 2010, 137, 367–372. [Google Scholar] [CrossRef]
- Zahedi, M.; Mondani, F.; Eshghizadeh, H. Analyzing the energy balances of double-cropped cereals in an arid region. Energy Rep. 2015, 1, 43–49. [Google Scholar] [CrossRef] [Green Version]
- Banaeian, N.; Omid, M.; Ahmadi, H. Greenhouse strawberry production in Iran, efficient or inefficient in energy. Energy Effic. 2012, 5, 201–209. [Google Scholar] [CrossRef]
- Banaeian, N.; Namdari, M. Effect of ownership on energy use efficiency in watermelon farms—A data envelopment analysis approach. Int. J. Renew. Energy Res. 2011, 1, 75–82. [Google Scholar]
- Shamshirband, S.; Khoshnevisan, B.; Yousefi, M.; Bolandnazar, E.; Anuar, N.B.; Abdul Wahab, A.W.; Khan, S.U.R. A multi-objective evolutionary algorithm for energy management of agricultural systems—A case study in Iran. Renew. Sustain. Energy Rev. 2015, 44, 457–465. [Google Scholar] [CrossRef]
- Moradi, R.; Moghaddam, P.R.; Mansoori, H. Energy use and economical analysis of seedy watermelon production for different irrigation systems in Iran. Energy Rep. 2015, 1, 36–42. [Google Scholar] [CrossRef] [Green Version]
- Khoshnevisan, B.; Bolandnazar, E.; Shamshirband, S.; Shariati, H.M.; Anuar, N.B.; Mat Kiah, M.L. Decreasing environmental impacts of cropping systems using life cycle assessment (LCA) and multi-objective genetic algorithm. J. Clean. Prod. 2015, 86, 67–77. [Google Scholar] [CrossRef]
- Khoshnevisan, B.; Bolandnazar, E.; Barak, S.; Shamshirband, S.; Maghsoudlou, H.; Altameem, T.A.; Gani, A. A clustering model based on an evolutionary algorithm for better energy use in crop production. Stoch. Environ. Res. Risk Assess. 2015, 29, 1921–1935. [Google Scholar] [CrossRef]
- Nabavi-Pelesaraei, A.; Abdi, R.; Rafiee, S.; Bagheri, I. Determination of efficient and inefficient units for watermelon production-a case study: Guilan province of Iran. J. Saudi Soc. Agric. Sci. 2016, 15, 162–170. [Google Scholar] [CrossRef] [Green Version]
- Nabavi-Pelesaraei, A.; Abdi, R.; Rafiee, S. Neural network modeling of energy use and greenhouse gas emissions of watermelon production systems. J. Saudi Soc. Agric. Sci. 2016, 15, 38–47. [Google Scholar] [CrossRef] [Green Version]
- Mohammadi-Barsari, A.; Firouzi, S.; Aminpanah, H. Energy-use pattern and carbon footprint of rain-fed watermelon production in Iran. Inf. Process. Agric. 2016, 3, 69–75. [Google Scholar] [CrossRef] [Green Version]
- Mohammadi, A.; Tabatabaeefar, A.; Shahin, S.; Rafiee, S.; Keyhani, A. Energy use and economical analysis of potato production in Iran a case study: Ardabil province. Energy Convers. Manag. 2008, 49, 3566–3570. [Google Scholar] [CrossRef]
- Delshiri, A.; AghaAlikhani, M. Input-output and economic analysis of soybean production in the main cultivation areas in Iran. Afr. J. Agric. Res. 2012, 7, 4894–4899. [Google Scholar]
- Houshyar, E.; Kiani, S.; Davoodi, M.J.S. Energy consumption efficiency for corn production utilizing data envelopment analysis (DEA) and analytical hierarchy process (AHP) techniques. Res. Crop. 2012, 13, 754–759. [Google Scholar]
- Lorzadeh, S.H.; Mahdavidamghani, A.; Enayatgholizadeh, M.R.; Yousefi, M. Energy Input-Output Analysis for Maize Production Systems in Shooshtar, Iran. Adv. Environ. Biol. 2011, 5, 3641–3644. [Google Scholar]
- Samavatean, N.; Rafiee, S.; Mobli, H.; Mohammadi, A. An analysis of energy use and relation between energy inputs and yield, costs and income of garlic production in Iran. Renew. Energy 2011, 36, 1808–1813. [Google Scholar] [CrossRef]
- Sahabi, H.; Feizi, H.; Amirmoradi, S. Which crop production system is more efficient in energy use: Wheat or barley? Environ. Dev. Sustain. 2013, 15, 711–721. [Google Scholar] [CrossRef]
- Kazemi, H.; Shahbyki, M.; Baghbani, S. Energy analysis for faba bean production: A case study in Golestan province, Iran. Sustain. Prod. Consum. 2015, 3, 15–20. [Google Scholar] [CrossRef]
- Sahabi, H.; Feizi, H.; Karbasi, A. Is saffron more energy and economic efficient than wheat in crop rotation systems in northeast Iran? Sustain. Prod. Consum. 2016, 5, 29–35. [Google Scholar] [CrossRef]
- Avval, S.H.M.; Rafiee, S.; Jafari, A.; Mohammadi, A. Improving energy productivity of sunflower production using data envelopment analysis (DEA) approach. J. Sci. Food Agric. 2011, 91, 1885–1892. [Google Scholar] [CrossRef] [PubMed]
- Pishgar-Komleh, S.H.; Omid, M.; Heidari, M.D. On the study of energy use and GHG (greenhouse gas) emissions in greenhouse cucumber production in Yazd province. Energy 2013, 59, 63–71. [Google Scholar] [CrossRef]
- Shah Syed Hamad, H.; Lei, S.; Ali, M.; Doronin, D.; Hussain Syed, T. Prosumption: Bibliometric analysis using HistCite and VOSviewer. Kybernetes 2019, 49, 1020–1045. [Google Scholar] [CrossRef]
- Montazeri, M. Application of Multivariate Statistical Methods in Climatic Regionalization Case Study: Isfahan Province. Geogr. Res. 2013, 28, 1–16. [Google Scholar]
- Hosseinzadeh-Bandbafha, H.; Nabavi-Pelesaraei, A.; Khanali, M.; Ghahderijani, M.; Chau, K.-W. Application of data envelopment analysis approach for optimization of energy use and reduction of greenhouse gas emission in peanut production of Iran. J. Clean. Prod. 2018, 172, 1327–1335. [Google Scholar] [CrossRef]
- Pishgar-Komleh, S.H.; Ghahderijani, M.; Sefeedpari, P. Energy consumption and CO2 emissions analysis of potato production based on different farm size levels in Iran. J. Clean. Prod. 2012, 33, 183–191. [Google Scholar] [CrossRef]
- Khoshnevisan, B.; Rajaeifar, M.A.; Clark, S.; Shamahirband, S.; Anuar, N.B.; Mohd Shuib, N.L.; Gani, A. Evaluation of traditional and consolidated rice farms in Guilan Province, Iran, using life cycle assessment and fuzzy modeling. Sci. Total Environ. 2014, 481, 242–251. [Google Scholar] [CrossRef]
- Mousavi-Avval, S.H.; Rafiee, S.; Sharifi, M.; Hosseinpour, S.; Notarnicola, B.; Tassielli, G.; Renzulli, P.A.; Khanali, M. Use of LCA indicators to assess Iranian rapeseed production systems with different residue management practices. Ecol. Indic. 2017, 80, 31–39. [Google Scholar] [CrossRef]
- Pishgar-Komleh, S.H.; Akram, A.; Keyhani, A.; Raei, M.; Elshout, P.M.F.; Huijbregts, M.A.J.; van Zelm, R. Variability in the carbon footprint of open-field tomato production in Iran—A case study of Alborz and East-Azerbaijan provinces. J. Clean. Prod. 2017, 142, 1510–1517. [Google Scholar] [CrossRef]
- Houshyar, E.; Grundmann, P. Environmental impacts of energy use in wheat tillage systems: A comparative life cycle assessment (LCA) study in Iran. Energy 2017, 122, 11–24. [Google Scholar] [CrossRef]
- Mondani, F.; Aleagha, S.; Khoramivafa, M.; Ghobadi, R. Evaluation of greenhouse gases emission based on energy consumption in wheat Agroecosystem. Energy Rep. 2017, 3, 37–45. [Google Scholar] [CrossRef]
- Pishgar-Komleh, S.H.; Sefeedpari, P.; Ghahderijani, M. Exploring energy consumption and CO2 emission of cotton production in Iran. J. Renew. Sustain. Energy 2012, 4, 33115. [Google Scholar] [CrossRef]
- Khoshnevisan, B.; Rafiee, S.; Omid, M.; Mousazadeh, H. Applying data envelopment analysis approach to improve energy efficiency and reduce GHG (greenhouse gas) emission of wheat production. Energy 2013, 58, 588–593. [Google Scholar] [CrossRef]
- Mobtaker, H.G.; Taki, M.; Salehi, M.; Shahamat, E.Z. Application of nonparametric method to improve energy productivity and CO2 emission for barley production in Iran. Agric. Eng. Int. Cigr. J. 2013, 15, 84–93. [Google Scholar]
- Asgharipour, M.R.; Mousavinik, S.M.; Enayat, F.F. Evaluation of energy input and greenhouse gases emissions from alfalfa production in the Sistan region, Iran. Energy Rep. 2016, 2, 135–140. [Google Scholar] [CrossRef] [Green Version]
- Khoshnevisan, B.; Rafiee, S.; Omid, M.; Mousazadeh, H.; Rajaeifar, M.A. Application of artificial neural networks for prediction of output energy and GHG emissions in potato production in Iran. Agric. Syst. 2014, 123, 120–127. [Google Scholar] [CrossRef]
- Yousefi, M.; Damghani, A.M.; Khoramivafa, M. Energy consumption, greenhouse gas emissions and assessment of sustainability index in corn agroecosystems of Iran. Sci. Total Environ. 2014, 493, 330–335. [Google Scholar] [CrossRef]
- Camargo, G.G.T.; Ryan, M.R.; Richard, T.L. Energy Use and Greenhouse Gas Emissions from Crop Production Using the Farm Energy Analysis Tool. BioScience 2013, 63, 263–273. [Google Scholar] [CrossRef] [Green Version]
- Amanloo, A.; Mobtaker, H.G. Energy efficiency improvement in forage maize production using data envelopment analysis approach. Afr. J. Agric. Res. 2012, 7, 5571–5577. [Google Scholar]
- Pishgar Komleh, S.H.; Keyhani, A.; Rafiee, S.; Sefeedpary, P. Energy use and economic analysis of corn silage production under three cultivated area levels in Tehran province of Iran. Energy 2011, 36, 3335–3341. [Google Scholar] [CrossRef]
- Ghaderpour, O.; Rafiee, S.; Sharifi, M.; Mousavi-Avval, S.H. Quantifying the environmental impacts of alfalfa production in different farming systems. Sustain. Energy Technol. Assess. 2018, 27, 109–118. [Google Scholar] [CrossRef]
- Mohammadi, A.; Rafiee, S.; Jafari, A.; Keyhani, A.; Mousavi-Avval, S.H.; Nonhebel, S. Energy use efficiency and greenhouse gas emissions of farming systems in north Iran. Renew. Sustain. Energy Rev. 2014, 30, 724–733. [Google Scholar] [CrossRef]
- Kazemi, H.; Bourkheili, S.H.; Kamkar, B.; Soltani, A.; Gharanjic, K.; Nazari, N.M. Estimation of greenhouse gas (GHG) emission and energy use efficiency (EUE) analysis in rainfed canola production (case study: Golestan province, Iran). Energy 2016, 116, 694–700. [Google Scholar] [CrossRef]
- Elhami, B.; Akram, A.; Khanali, M. Optimization of energy consumption and environmental impacts of chickpea production using data envelopment analysis (DEA) and multi objective genetic algorithm (MOGA) approaches. Inf. Process. Agric. 2016, 3, 190–205. [Google Scholar] [CrossRef] [Green Version]
- Elhami, B.; Khanali, M.; Akram, A. Combined application of Artificial Neural Networks and life cycle assessment in lentil farming in Iran. Inf. Process. Agric. 2017, 4, 18–32. [Google Scholar] [CrossRef] [Green Version]
- Nikkhah, A.; Emadi, B.; Firouzi, S. Greenhouse gas emissions footprint of agricultural production in Guilan province of Iran. Sustain. Energy Technol. Assess. 2015, 12, 10–14. [Google Scholar] [CrossRef]
- Nikkhah, A.; Khojastehpour, M.; Emadi, B.; Taheri-Rad, A.; Khorramdel, S. Environmental impacts of peanut production system using life cycle assessment methodology. J. Clean. Prod. 2015, 92, 84–90. [Google Scholar] [CrossRef]
- Khoshnevisan, B.; Rafiee, S.; Omid, M.; Mousazadeh, H.; Sefeedpari, P. Prognostication of environmental indices in potato production using artificial neural networks. J. Clean. Prod. 2013, 52, 402–409. [Google Scholar] [CrossRef]
- Nabavi-Pelesaraei, A.; Abdi, R.; Rafiee, S.; Taromi, K. Applying data envelopment analysis approach to improve energy efficiency and reduce greenhouse gas emission of rice production. Eng. Agric. Environ. Food 2014, 7, 155–162. [Google Scholar] [CrossRef]
- Mohammadi, A.; Rafiee, S.; Jafari, A.; Keyhani, A.; Dalgaard, T.; Knudsen, M.T.; Nguyen, T.L.T.; Borek, R.; Hermansen, J.E. Joint Life Cycle Assessment and Data Envelopment Analysis for the benchmarking of environmental impacts in rice paddy production. J. Clean. Prod. 2015, 106, 521–532. [Google Scholar] [CrossRef]
- Nabavi-Pelesaraei, A.; Rafiee, S.; Mohtasebi, S.S.; Hosseinzadeh-Bandbafha, H.; Chau, K.-W. Energy consumption enhancement and environmental life cycle assessment in paddy production using optimization techniques. J. Clean. Prod. 2017, 162, 571–586. [Google Scholar] [CrossRef]
- Khanali, M.; Movahedi, M.; Yousefi, M.; Jahangiri, S.; Khoshnevisan, B. Investigating energy balance and carbon footprint in saffron cultivation—A case study in Iran. J. Clean. Prod. 2016, 115, 162–171. [Google Scholar] [CrossRef]
- Mohammadi, A.; Rafiee, S.; Jafari, A.; Dalgaard, T.; Knudsen, M.T.; Keyhani, A.; Mousavi-Avval, S.H.; Hermansen, J.E. Potential greenhouse gas emission reductions in soybean farming: A combined use of Life Cycle Assessment and Data Envelopment Analysis. J. Clean. Prod. 2013, 54, 89–100. [Google Scholar] [CrossRef]
- Alimagham, S.M.; Soltani, A.; Zeinali, E.; Kazemi, H. Energy flow analysis and estimation of greenhouse gases (GHG) emissions in different scenarios of soybean production (Case study: Gorgan region, Iran). J. Clean. Prod. 2017, 149, 621–628. [Google Scholar] [CrossRef]
- Yousefi, M.; Khoramivafa, M.; Mondani, F. Integrated evaluation of energy use, greenhouse gas emissions and global warming potential for sugar beet (Beta vulgaris) agroecosystems in Iran. Atmos. Environ. 2014, 92, 501–505. [Google Scholar] [CrossRef]
- Sefeedpari, P.; Shokoohi, Z.; Behzadifar, Y. Energy use and carbon dioxide emission analysis in sugarcane farms: A survey on Haft-Tappeh Sugarcane Agro-Industrial Company in Iran. J. Clean. Prod. 2014, 83, 212–219. [Google Scholar] [CrossRef]
- Khoshnevisan, B.; Rafiee, S.; Omid, M.; Yousefi, M.; Movahedi, M. Modeling of energy consumption and GHG (greenhouse gas) emissions in wheat production in Esfahan province of Iran using artificial neural networks. Energy 2013, 52, 333–338. [Google Scholar] [CrossRef]
- Khoshnevisan, B.; Rafiee, S.; Omid, M.; Yousefi, M. Prediction of environmental indices of Iran wheat production using artificial neural networks. Int. J. Energy Environ. 2013, 4, 339–348. [Google Scholar]
- Sefeedpari, P.; Ghahderijani, M.; Pishgar-Komleh, S.H. Assessment the effect of wheat farm sizes on energy consumption and CO2 emission. J. Renew. Sustain. Energy 2013, 5, 23131. [Google Scholar] [CrossRef]
- Sheikhdavoodi, M.J.; Taki, M.; Monjezi, N. Application of artificial neural networks ANNs to predict energy output for wheat production in Iran. Afr. J. Agric. Res. 2013, 8, 2099–2105. [Google Scholar]
- Soltani, A.; Rajabi, M.H.; Zeinali, E.; Soltani, E. Energy inputs and greenhouse gases emissions in wheat production in Gorgan, Iran. Energy 2013, 50, 54–61. [Google Scholar] [CrossRef]
- Nabavi-Pelesaraei, A.; Hosseinzadeh-Bandbafha, H.; Qasemi-Kordkheili, P.; Kouchaki-Penchah, H.; Riahi-Dorcheh, F. Applying optimization techniques to improve of energy efficiency and GHG (greenhouse gas) emissions of wheat production. Energy 2016, 103, 672–678. [Google Scholar] [CrossRef]
- Heidari, M.D.; Mobli, H.; Omid, M.; Rafiee, S.; Jamali Marbini, V.; Elshout, P.M.F.; van Zelm, R.; Huijbregts, M.A.J. Spatial and technological variability in the carbon footprint of durum wheat production in Iran. Int. J. Life Cycle Assess. 2017, 22, 1893–1900. [Google Scholar] [CrossRef]
- Tahmasebi, M.; Feike, T.; Soltani, A.; Ramroudi, M.; Ha, N. Trade-off between productivity and environmental sustainability in irrigated vs. rainfed wheat production in Iran. J. Clean. Prod. 2018, 174, 367–379. [Google Scholar] [CrossRef]
- Mohseni, P.; Borghei, A.M.; Khanali, M. Coupled life cycle assessment and data envelopment analysis for mitigation of environmental impacts and enhancement of energy efficiency in grape production. J. Clean. Prod. 2018, 197, 937–947. [Google Scholar] [CrossRef]
- Nikkhah, A.; Firouzi, S.; El Haj Assad, M.; Ghnimi, S. Application of analytic hierarchy process to develop a weighting scheme for life cycle assessment of agricultural production. Sci. Total Environ. 2019, 665, 538–545. [Google Scholar] [CrossRef]
- Raheli, H.; Rezaei, R.M.; Jadidi, M.R.; Mobtaker, H.G. A two-stage DEA model to evaluate sustainability and energy efficiency of tomato production. Inf. Process. Agric. 2017, 4, 342–350. [Google Scholar] [CrossRef]
- Nabavi-Pelesaraei, A.; Rafiee, S.; Mohtasebi, S.S.; Hosseinzadeh-Bandbafha, H.; Chau, K.-W. Assessment of optimized pattern in milling factories of rice production based on energy, environmental and economic objectives. Energy 2019, 169, 1259–1273. [Google Scholar] [CrossRef]
- Taheri Garavand, A.; Asakereh, A.; Haghani, K. Energy Consumption Flow and Econometric Models of Sugarcane Production in Khouzestan Province of Iran. Am. Eurasian J. Agric. Environ. Sci. 2010, 7, 648–651. [Google Scholar]
- Ghorbani, R.; Mondani, F.; Amirmoradi, S.; Feizi, H.; Khorramdel, S.; Teimouri, M.; Sanjani, S.; Anvarkhah, S.; Aghel, H. A case study of energy use and economical analysis of irrigated and dryland wheat production systems. Appl. Energy 2011, 88, 283–288. [Google Scholar] [CrossRef]
- Shahamat, E.z.; Asoodar, M.A.; Marzban, A.; Abdeshahi, A. Energy use and economical analysis of Sugarcane production in Iran a case study: Debel Khazaeei agro-industry. Int. J. Agric. Crop Sci. 2013, 5, 249–252. [Google Scholar]
- Taghinezhad, J.; Alimardani, R.; Jafari, A. Energy Consumption Flow and Econometric Models of Sugarcane Production in Khouzestan Province of Iran. Atmos. Environ. 2014, 16, 277–285. [Google Scholar] [CrossRef]
- Mousavi-Avval, S.H.; Rafiee, S.; Sharifi, M.; Hosseinpour, S.; Notarnicola, B.; Tassielli, G.; Renzulli, P.A. Application of multi-objective genetic algorithms for optimization of energy, economics and environmental life cycle assessment in oilseed production. J. Clean. Prod. 2017, 140, 804–815. [Google Scholar] [CrossRef]
- Arora, N.K. Impact of climate change on agriculture production and its sustainable solutions. Environ. Sustain. 2019, 2, 95–96. [Google Scholar] [CrossRef] [Green Version]
- Alboghdady, M.; El-Hendawy Salah, E. Economic impacts of climate change and variability on agricultural production in the Middle East and North Africa region. Int. J. Clim. Chang. Strateg. Manag. 2016, 8, 463–472. [Google Scholar] [CrossRef]
- Khoshnevisan, B.; Rafiee, S.; Omid, M.; Mousazadeh, H. Development of an intelligent system based on ANFIS for predicting wheat grain yield on the basis of energy inputs. Inf. Process. Agric. 2014, 1, 14–22. [Google Scholar] [CrossRef] [Green Version]
- Khoshnevisan, B.; Rafiee, S.; Omid, M.; Mousazadeh, H.; Shamshirband, S.; Hamid, S.H.A. Developing a fuzzy clustering model for better energy use in farm management systems. Renew. Sustain. Energy Rev. 2015, 48, 27–34. [Google Scholar] [CrossRef]
- Mobtaker, H.G.; Akram, A.; Keyhani, A. Investigation of energy consumption of perennial alfalfa production: Case study of Hamedan province. J. Food Agric. Environ. 2010, 8, 379–381. [Google Scholar]
- Mohammadi, A.; Rafiee, S.; Mohtasebi, S.S.; Rafiee, H. Energy inputs—Yield relationship and cost analysis of kiwifruit production in Iran. Renew. Energy 2010, 35, 1071–1075. [Google Scholar] [CrossRef]
- Rafiee, S.; Mousavi Avval, S.H.; Mohammadi, A. Modeling and sensitivity analysis of energy inputs for apple production in Iran. Energy 2010, 35, 3301–3306. [Google Scholar] [CrossRef]
- Mousavi-Avval, S.H.; Rafiee, S.; Jafari, A.; Mohammadi, A. Energy flow modeling and sensitivity analysis of inputs for canola production in Iran. J. Clean. Prod. 2011, 19, 1464–1470. [Google Scholar] [CrossRef]
- Yousefi, M.; Mohammadi, A. Economical analysis and energy use efficiency in alfalfa production systems in Iran. Afr. J. Agric. Res. 2011, 6, 2332–2336. [Google Scholar]
- Ghasemi Mobtaker, H.; Akram, A.; Keyhani, A. Energy use and sensitivity analysis of energy inputs for alfalfa production in Iran. Energy Sustain. Dev. 2012, 16, 84–89. [Google Scholar] [CrossRef]
- Salami, P.; Keyhani, A.; Rafiee, S. The impact of farm size on energy use and profitability of red bean production in Iran: A case study in Kurdistan province. Nat. Sci. 2009, 7, 95–104. [Google Scholar]
- Mohammadi, A.; Omid, M. Economical analysis and relation between energy inputs and yield of greenhouse cucumber production in Iran. Appl. Energy 2010, 87, 191–196. [Google Scholar] [CrossRef]
- Taki, M.; Ajabshirchi, Y.; Mahmoudi, A. Application of parametric and non-parametric method to analyzing of energy consumption for cucumber production in Iran. Mod. Appl. Sci. 2012, 6, 75–87. [Google Scholar] [CrossRef]
- Zangeneh, M.; Omid, M.; Akram, A. A comparative study on energy use and cost analysis of potato production under different farming technologies in Hamadan province of Iran. Energy 2010, 35, 2927–2933. [Google Scholar] [CrossRef]
- Pahlavan, R.; Rafiee, S.; Omid, M. Assessing the technical efficiency in potato production in iran. Int. J. Green Energy 2012, 9, 229–242. [Google Scholar] [CrossRef]
- Moradi, M.; Azarpour, E.; Ziaeidoustan, H. Study on Energy Indices for Native and Breed Rice Varieties Production in Iran. World Appl. Sci. J. 2011, 13, 137–141. [Google Scholar]
- Pishgar Komleh, S.H.; Rafiee, S.; Sefeedpari, P. Energy use pattern and sensitivity analysis of rice production: A case study of Guilan province of Iran. Afr. Crop Sci. J. 2011, 19, 117–124. [Google Scholar] [CrossRef] [Green Version]
- Taheri-Rad, A.; Khojastehpour, M.; Rohani, A.; Khoramdel, S.; Nikkhah, A. Energy flow modeling and predicting the yield of Iranian paddy cultivars using artificial neural networks. Energy 2017, 135, 405–412. [Google Scholar] [CrossRef]
- Mousavi-Avval, S.H.; Rafiee, S.; Jafari, A.; Mohammadi, A. Optimization of energy consumption for soybean production using Data Envelopment Analysis (DEA) approach. Appl. Energy 2011, 88, 3765–3772. [Google Scholar] [CrossRef]
- Mousavi-Avval, S.H.; Rafiee, S.; Jafari, A.; Mohammadi, A. The Functional Relationship Between Energy Inputs and Yield Value of Soybean Production in Iran. Int. J. Green Energy 2011, 8, 398–410. [Google Scholar] [CrossRef]
- Yousefi, M.; Damghani, A.M.; Khoshbakht, K.; Veisi, H. Renewable and Nonrenewable Energy Use Pattern of Rainfed Wheat Agroecosystems in Iran. World Appl. Sci. J. 2011, 13, 1398–1403. [Google Scholar]
- Han, H.; Wu, S. Structural Change and Its Impact on the Energy Intensity of Agricultural Sector in China. Sustainability 2018, 10, 4591. [Google Scholar] [CrossRef] [Green Version]
- Antle, J.M.; Ray, S. Sustainability of Agricultural Systems. In Sustainable Agricultural Development: An Economic Perspective; Antle, J.M., Ray, S., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 43–94. [Google Scholar]
- Azarpour, E.; Moraditochaee, M.; Bozorgi, H.R. Evaluation energy balance and energy indices of peanut production in north of Iran. Afr. J. Agric. Res. 2012, 7, 2569–2574. [Google Scholar]
- Bahrami, H.; Taki, M.; monjezi, N. Optimization of energy consumption for wheat production in iran using data envelopment analysis (DEA) technique. Afr. J. Agric. Res. 2011, 6, 5978–5986. [Google Scholar] [CrossRef] [Green Version]
- Tabatabaeefar, A.; Emamzadeh, H.; Varnamkhasti, M.G.; Rahimizadeh, R.; Karimi, M. Comparison of energy of tillage systems in wheat production. Energy 2009, 34, 41–45. [Google Scholar] [CrossRef]
- Asakereh, A.; Shiekhdavoodi, M.J.; Safaieenejad, M. Energy Consumption Pattern of Organic and Conventional Lentil in Iran A Case Study: Kuhdasht County. Asian J. Agric. Sci. 2010, 2, 111–116. [Google Scholar]
- SH, S.H.M.; Rafiee, S.; Jafari, A. A comparative study on energy and water use indicators for soybean production under different irrigation systems in Iran. Int. J. Environ. Sci. 2010, 2, 1–10. [Google Scholar]
- Eskandari Cherati, F.; Bahrami, H.; Asakereh, A. Energy survey of mechanized and traditional rice production system in Mazandaran Province of Iran. Afr. J. Agric. Res. 2011, 6, 2565–2570. [Google Scholar]
- Ghasemi Mobtaker, H.; Akram, A.; Keyhani, A.; Mohammadi, A. Energy consumption in alfalfa production: A comparison between two irrigation systems in Iran. Afr. J. Agric. Res. 2011, 5, 47–51. [Google Scholar]
- Pishgar-Komleh, S.H.; Keyhani, A.; Mostofi-Sarkari, M.R.; Jafari, A. Energy and economic analysis of different seed corn harvesting systems in Iran. Energy 2012, 43, 469–476. [Google Scholar] [CrossRef]
- Pishgar-Komleh, S.H.; Sefeedpari, P.; Rafiee, S. Energy and economic analysis of rice production under different farm levels in Guilan province of Iran. Energy 2011, 36, 5824–5831. [Google Scholar] [CrossRef]
- Houshyar, E.; Azadi, H.; Almassi, M.; Davoodi, M.J.S.; Witlox, F. Sustainable and efficient energy consumption of corn production in Southwest Iran: Combination of multi-fuzzy and DEA modeling. Energy 2012, 44, 672–681. [Google Scholar] [CrossRef] [Green Version]
- Mansoori, H.; Moghaddam, P.R.; Moradi, R. Energy budget and economic analysis in conventional and organic rice production systems and organic scenarios in the transition period in Iran. Front. Energy 2012, 6, 341–350. [Google Scholar] [CrossRef]
- Monjezi, N.; Zakidizaji, H. Energy and Economic Analysis of Canola Production in Iran a Case Study: Khuzestan Province. Res. J. Appl. Sci. Eng. Technol. 2012, 4, 227–231. [Google Scholar]
- Sefeedpari, P.; Rafiee, S.; Komleh, S.H.P.; Ghahderijani, M. A source-wise and operation-wise energy use analysis for corn silage production, a case study of Tehran province, Iran. Int. J. Sustain. Built Environ. 2012, 1, 158–166. [Google Scholar] [CrossRef] [Green Version]
- AghaAlikhani, M.; Kazemi-Poshtmasari, H.; Habibzadeh, F. Energy use pattern in rice production: A case study from Mazandaran province, Iran. Energy Convers. Manag. 2013, 69, 157–162. [Google Scholar] [CrossRef]
- Eskandari, H.; Attar, S. Energy comparison of two rice cultivation systems. Renew. Sustain. Energy Rev. 2015, 42, 666–671. [Google Scholar] [CrossRef]
- Ito, J. Inter-regional difference of agricultural productivity in China: Distinction between biochemical and machinery technology. China Econ. Rev. 2010, 21, 394–410. [Google Scholar] [CrossRef]
- Qiang, Z.; Lanying, H.; Jingjing, L.; Qingyan, C. North-south differences in Chinese agricultural losses due to climate-change-influenced droughts. Theor. Appl. Climatol. 2018, 131, 719. [Google Scholar] [CrossRef]
- Fei, R.; Lin, B. Energy efficiency and production technology heterogeneity in China’s agricultural sector: A meta-frontier approach. Technol. Forecast. Soc. Chang. 2016, 109, 25–34. [Google Scholar] [CrossRef]
- Diao, P.; Zhang, Z.; Jin, Z. Dynamic and static analysis of agricultural productivity in China. China Agric. Econ. Rev. 2018, 10, 293–312. [Google Scholar] [CrossRef]
- West, P.C.; Gibbs, H.K.; Monfreda, C.; Wagner, J.; Barford, C.C.; Carpenter, S.R.; Foley, J.A. Trading carbon for food: Global comparison of carbon stocks vs. crop yields on agricultural land. Proc. Natl. Acad. Sci. USA 2010, 107, 19645–19648. [Google Scholar] [CrossRef] [Green Version]
- Cassman, K.G. Ecological intensification of cereal production systems: Yield potential, soil quality, and precision agriculture. Proc. Natl. Acad. Sci. USA 1999, 96, 5952–5959. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Triplett, G.B., Jr.; Dick, W.A. No-Tillage Crop Production: A Revolution in Agriculture! Agron. J. 2008, 100, S153–S165. [Google Scholar] [CrossRef]
- Lal, R. Enhancing Eco-efficiency in Agro-ecosystems through Soil Carbon Sequestration. Crop Sci. 2010, 50, S120–S131. [Google Scholar] [CrossRef] [Green Version]
- Martin-Gorriz, B.; Maestre-Valero, J.F.; Almagro, M.; Boix-Fayos, C.; Martínez-Mena, M. Carbon emissions and economic assessment of farm operations under different tillage practices in organic rainfed almond orchards in semiarid Mediterranean conditions. Sci. Hortic. 2020, 261, 108978. [Google Scholar] [CrossRef]
- Tongwane, M.; Mdlambuzi, T.; Moeletsi, M.; Tsubo, M.; Mliswa, V.; Grootboom, L. Greenhouse gas emissions from different crop production and management practices in South Africa. Environ. Dev. 2016, 19, 23–35. [Google Scholar] [CrossRef] [Green Version]
- Jones, J.W.; Antle, J.M.; Basso, B.; Boote, K.J.; Conant, R.T.; Foster, I.; Godfray, H.C.J.; Herrero, M.; Howitt, R.E.; Janssen, S.; et al. Brief history of agricultural systems modeling. Agric. Syst. 2017, 155, 240–254. [Google Scholar] [CrossRef]
- Meynard, J.-M.; Dedieu, B.; Bos, A.P. Re-design and co-design of farming systems. An overview of methods and practices. In Farming Systems Research into the 21st Century: The New Dynamic; Darnhofer, I., Gibbon, D., Dedieu, B., Eds.; Springer: Dordrecht, The Netherlands, 2012; pp. 405–429. [Google Scholar]
- Asgharipour, M.R.; Mondani, F.; Riahinia, S. Energy use efficiency and economic analysis of sugar beet production system in Iran: A case study in Khorasan Razavi province. Energy 2012, 44, 1078–1084. [Google Scholar] [CrossRef]
- FAO. Food Energy—Methods of Analysis and Conversion Factors; Food and Agriculture Organization of the United Nations: Rome, Italy, 2003. [Google Scholar]
- Beza, E.; Silva, J.V.; Kooistra, L.; Reidsma, P. Review of yield gap explaining factors and opportunities for alternative data collection approaches. Eur. J. Agron. 2017, 82, 206–222. [Google Scholar] [CrossRef]
Inputs (Unit) | Energy Equivalent (MJ per Unit) | References | |
---|---|---|---|
Labor (h) | 1.96 | [13] | |
Machinery (h) | 62.7 | [14] | |
Diesel fuel (L) | 56.3 | [15] | |
Fertilizers (kg) | Nitrogen | 66.14 | [16] |
Phosphate | 12.44 | [16] | |
Potassium | 11.15 | [3] | |
Micro | 120 | [3] | |
Farmyard Manure (kg) | 0.3 | [17] | |
Chemicals (kg) | Herbicide | 356.29 | [18] |
Pesticide | 280.44 | [18] | |
Fungicide | 181.9 | [18] | |
Insecticide | 101.9 | [19] | |
Water (m3) | 1.02 | [20] | |
Electricity (kWh) | 11.93 | [21] |
Inputs (Unit) | GHG Coefficient (kg CO2-eq Unit−1) | |
---|---|---|
Machinery (MJ) | 0.071 | |
Diesel fuel (L) | 2.760 | |
Fertilizers (kg) | Nitrogen (N) | 1.300 |
Phosphorus (P2O5) | 0.200 | |
Potassium (K2O) | 0.200 | |
Farmyard Manure (kg) | 0.126 | |
Biocide (kg) | Herbicide | 6.300 |
Fungicide | 5.100 | |
Insecticide | 3.900 | |
Electricity (kWh) | 0.780 |
Climate | Provinces |
---|---|
Cold Semi Dry | East Azerbaijan, West Azerbaijan, Zanjan, Qazvin, Alborz |
Very Wet and Mild | Ardabil, Guilan |
Wet and Mild | Mazandaran, Golestan |
Semi Dry Hot | North Khorasan, Razavi Khorasan, South Khorasan |
Extreme Desert and Very Hot | Sistan and Baluchistan, Kerman |
Semi Warm Desert | Isfahan, Semnan, Yazd |
Very Hot Coastal Desert | Hormozgan |
Warm Semi Mountains | Fars |
Warm Coastal Desert | Bushehr, Khuzestan |
Cold Mountains | Kohgiluyeh and Buyerahmad, Chaharmahal and Bakhtiati, Markazi, Lorestan, Kurdistan |
Moderately Semi Wet | Kermanshah, Hamedan, Ilam |
Temperate Desert | Qom, Tehran |
Description | Categories of Co-Occurrences | ||
---|---|---|---|
Keywords | Titles and Abstracts | Authors | |
Total items | 142 | 553 | 233 |
Minimum number of occurrences | 4 | 5 | 5 |
Number of items meet the threshold | 15 | 25 | 18 |
Crop | GHG Emission | References | |
---|---|---|---|
kg CO2 t−1 (Mass Base) | kg CO2 ha−1 (Land Base) | ||
Alfalfa | 52.09 | 181,190 | [35,41] |
Barley | - | 628 | [34,42] |
Canola | - | 836.6 | [28,42,43] |
Chickpea | 3032.6 | 6884.14 | [44] |
Corn | - | 2994.66 | [37] |
Cotton | - | 1195.25 | [32] |
Lentil | 3593.2 | 7259.31 | [45] |
Peanut | 311.19 | 697 | [25,46,47] |
Potato | 116.4 | 558 | [26,36,48] |
Rice | 1101 | 3197.00 | [27,42,49,50,51] |
Saffron | - | 6545.8 | [52] |
Soybean | 455,515 | 1197 | [42,53,54] |
Sugar beet | - | 9847.77 | [55] |
Sugarcane | - | 8249.12 | [56] |
Tomato | 200 | - | [29] |
Watermelon | - | 5299 | [6,7,9,11,12] |
Wheat | 1600 | 2155 | [6,31,33,42,57,58,59,60,61,62,63,64] |
Grape | 508.63 | - | [65] |
Tobacco | 1883.90 | 3638.98 | [66] |
Dependent Variables | Source | |||||||
---|---|---|---|---|---|---|---|---|
Corrected Model | Intercept | Year 1 | Region | Crop | Region * Crop | R Squared | ||
GHG | F | 5.668 ** | 2.233 | 2.256 | 9.003 ** | 5.433 ** | 8.257 ** | 0.886 |
Sig. | 0.000 | 0.155 | 0.153 | 0.000 | 0.001 | 0.003 | ||
SE | F | 3.143 | 3.882 | 3.865 | 0.751 | 3.995 | . | 0.962 |
Sig. | 0.268 | 0.188 | 0.188 | 0.571 | 0.216 | . | ||
PTE | F | 5.535 | 0.067 | 0.113 | 12.696 | 4.948 | . | 0.978 |
Sig. | 0.164 | 0.820 | 0.769 | 0.073 | 0.179 | . | ||
TE | F | 3.838 | 0.707 | 0.579 | 1.118 | 4.847 | . | 0.953 |
Sig. | 0.147 | 0.462 | 0.502 | 0.434 | 0.111 | . | ||
NE | F | 23.618 ** | 2.568 | 2.526 | 5.375 ** | 47.819 ** | 7.735 ** | 0.955 |
Sig. | 0.000 | 0.114 | 0.117 | 0.000 | 0.000 | 0.000 | ||
TEI | F | 3.997 ** | 0.064 | 0.073 | 1.56 | 5.355 ** | 1.556 | 0.766 |
Sig. | 0.000 | 0.801 | 0.787 | 0.137 | 0.000 | 0.071 | ||
EP | F | 0.284 | 0.394 | 0.396 | 0.329 | 0.237 | 0.232 | 0.201 |
Sig. | 1.000 | 0.532 | 0.531 | 0.97 | 1.000 | 1.000 | ||
EUE | F | 13.797 ** | 0.917 | 0.872 | 4.099 ** | 31.49 ** | 2.612 ** | 0.923 |
Sig. | 0.000 | 0.342 | 0.354 | 0.000 | 0.000 | 0.001 |
Crop | Highest t-Ratio | Highest MPP | References |
---|---|---|---|
Alfalfa | Diesel fuel | Diesel fuel | [82] |
Alfalfa | Machinery | Machinery | [83] |
Bean (red) | Machinery | Machinery | [84] |
Canola | Nitrogen | - | [43] |
Canola | Seed | - | [73] |
Corn (silage) | Water | Seed | [40] |
Corn (silage) | Biocide | Biocide | [3] |
Cucumber | Chemicals and diesel fuel | Human labor | [85] |
Cucumber | Machinery | - | [86] |
Potato | Seed | - | [87] |
Potato | Water | Seed | [88] |
Potato | - | Fertilizer | [26] |
Rice | Fuel | Fuel | [89] |
Rice | Chemicals | - | [90] |
Rice | Fertilizers | Fertilizers | [51] |
Rice | Manure | - | [91] |
Soybean | Fertilizers | Machinery | [92] |
Soybean | Seed | Seed | [93] |
Soybean | Human labor | - | [54] |
Sunflower | Diesel fuel | Chemicals | [21] |
Watermelon | Human labor | Human labor | [11] |
Watermelon | Chemicals | - | [12] |
Wheat | Machinery | Machinery | [18] |
Wheat | - | Fertilizers | [59] |
Wheat (dryland) | - | Water | [94] |
Test Variables | Grouping Variables | |||||
---|---|---|---|---|---|---|
Region | Year | Crop | ||||
Chi-Square | Asymp. Sig. | Chi-Square | Asymp. Sig. | Chi-Square | Asymp. Sig. | |
GHG | 7.254 | 0.403 | 3.595 | 0.731 | 16.340 | 0.231 |
SE | 5.003 | 0.543 | 5.523 | 0.479 | 16.463 | 0.225 |
PTE | 8.849 | 0.182 | 5.995 | 0.420 | 11.937 | 0.533 |
TE | 2.322 | 0.888 | 3.107 | 0.795 | 13.216 | 0.431 |
NE | 27.836 ** | 0.002 | 15.461 | 0.079 | 54.399 ** | 0.000 |
TEI | 29.619 ** | 0.001 | 13.084 | 0.219 | 75.437 ** | 0.000 |
EP | 13.292 | 0.208 | 7.453 | 0.682 | 59.404 ** | 0.000 |
EUE | 30.082 ** | 0.001 | 11.793 | 0.299 | 61.791 ** | 0.000 |
Crop | Region | Classification | IE (MJ ha−1) | EUE | Reference | |
---|---|---|---|---|---|---|
Potato | Ardabil | Farm size | 0.1–2 ha | 39,677.9 | 2.72 | [13] |
2.1–5 ha | 37,908.7 | 3.08 | ||||
5 < ha | 37,482.5 | 3.62 | ||||
Red bean | Kurdistan | Farm size | 0.1 | 105,540.2 | 0.18 | [84] |
0.2 | 47,571 | 0.42 | ||||
0.5 | 43,725.4 | 0.44 | ||||
Lentil | Lorestan | Production method | Organic | 5062 | 2.12 | [100] |
Conventional | 6196.5 | 2.05 | ||||
Soybean | Golestan | Irrigation system | Canal irrigation | 17,255.96 | 4.6 | [101] |
Pump irrigation | 38,266.71 | 2.15 | ||||
Potato | Hamedan | Technology level | High level | 153,071.4 | 1.14 | [87] |
Low level | 157,151.12 | 0.95 | ||||
Rice | Mazandaran | Mechanization status | Traditional | 67,356.28 | 3 | [102] |
Semi-mechanized | 67,217.95 | 3.08 | ||||
Alfalfa | Hamedan | Irrigation system | Traditional | 821,615.19 | 1.82 | [103] |
Modern | 723,254.38 | 2.06 | ||||
Wheat | North Khorasan | Irrigation method | Irrigated | 45,367.63 | 1.44 | [70] |
Dryland | 9354.2 | 3.38 | ||||
Corn silage | Alborz | Farm size | 5 > ha | 86,679 | 1.72 | [40,104] |
5–10 ha | 65,845 | 2.29 | ||||
>10 ha | 54,499 | 2.8 | ||||
Rice | Guilan | Seed type | Hashemi | 37,155.213 | 1.582 | [89] |
Khazar | 41,332.513 | 1.956 | ||||
Hybrid | 44,848.813 | 2.458 | ||||
Rice | Guilan | Farm size | 0.5 > ha | 41,140 | 1.44 | [105] |
0.5–1 ha | 40,433 | 1.47 | ||||
>1 ha | 36,428 | 1.69 | ||||
Corn | Fars | Region | Seyedan | 41,631.97 | 2.6 | [106] |
Houmeh | 44,730.15 | 2.38 | ||||
Pasargad | 38,866.64 | 2.88 | ||||
Rice | Mazandaran and Isfahan | Production method | Organic | 134,851.6 | 2.43 | [107] |
Conventional | 155,762.7 | 1.11 | ||||
Canola | Khuzestan | Irrigation system | Irrigated | 28,944.65 | 1.28 | [108] |
Dryland | 18,557.72 | 0.81 | ||||
Potato | Isfahan | Farm size | <1 ha | 51,460 | 1.3 | [26] |
1–5 ha | 45,710 | 1.75 | ||||
>5 ha | 43,874 | 2.08 | ||||
Corn | Alborz | Harvesting system | Combine harvesting | 49,303 | 5.15 | [104] |
Plot harvester | 49,448 | 4.4 | ||||
Two stage harvesting | 54,471 | 4.78 | ||||
Corn silage | Tehran | Farm size | <10 ha | 38,841.5 | 3.11 | [109] |
10–20 ha | 36,140.3 | 3.47 | ||||
20–30 ha | 35,861.1 | 3.56 | ||||
>30 ha | 35,211.6 | 3.82 | ||||
Rice | Mazandaran | Traditional production method | Average | 71,092.26 | 1.72 | [110] |
Native | 60,187.41 | 1.33 | ||||
High yield | 73,220.42 | 1.74 | ||||
Hybrid | 79,908.94 | 2.01 | ||||
Rice | Mazandaran | Mechanized production method | Average | 79,460.33 | 1.63 | [110] |
Native | 69,181.23 | 1.26 | ||||
High yield | 82,005.42 | 1.63 | ||||
Hybrid | 87,186.06 | 1.94 | ||||
Wheat | Isfahan | Farm size | Small | 80,400 | 0.38 | [57] |
Medium | 79,290 | 0.5 | ||||
Large | 81,110 | 0.56 | ||||
Rice | Guilan | Land management | Traditional | 74,200 | 0.9 | [27] |
Consolidate | 57,000 | 1.6 | ||||
Rice | Khuzestan | Planting method | Transplanting | 50,022 | 2.305 | [111] |
Direct seeding | 34,543 | 2.844 | ||||
Watermelon | Khorasan and Semnan | Irrigation system | Full irrigation | 25,626 | 1.17 | [7] |
Reduced irrigation | 3129.3 | 4.08 | ||||
Soybean | Golestan | Mechanization status | Modern mechanized | 29,532 | 1.53 | [54] |
Mechanized | 29,599 | 1.98 | ||||
Conventional (more tillage) | 15,369 | 3.03 | ||||
Conventional | 14,657 | 3.18 |
Dependent Variables | Corrected Model | Intercept | Crop Type | Farm Size | Crop Type Farm Size | R Squared | |
---|---|---|---|---|---|---|---|
EUE | F | 1.827 | 49.828 | 5.941 ** | 0.417 | 0.052 | 0.81 |
Sig. | 0.236 | 0.000 | 0.028 | 0.677 | 1.000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zangeneh, M.; Banaeian, N.; Clark, S. Meta-Analysis on Energy-Use Patterns of Cropping Systems in Iran. Sustainability 2021, 13, 3868. https://doi.org/10.3390/su13073868
Zangeneh M, Banaeian N, Clark S. Meta-Analysis on Energy-Use Patterns of Cropping Systems in Iran. Sustainability. 2021; 13(7):3868. https://doi.org/10.3390/su13073868
Chicago/Turabian StyleZangeneh, Morteza, Narges Banaeian, and Sean Clark. 2021. "Meta-Analysis on Energy-Use Patterns of Cropping Systems in Iran" Sustainability 13, no. 7: 3868. https://doi.org/10.3390/su13073868
APA StyleZangeneh, M., Banaeian, N., & Clark, S. (2021). Meta-Analysis on Energy-Use Patterns of Cropping Systems in Iran. Sustainability, 13(7), 3868. https://doi.org/10.3390/su13073868