Analysis of the Environmental Effects of the Clean Heating Policy in Northern China
Abstract
:1. Introduction
2. The Case Study of Northern China
3. Materials and Methods
3.1. Difference-in-Difference Model
3.2. Measures
3.2.1. Treatment and Control Groups
3.2.2. Air Pollutant Concentration
3.2.3. Control Variables
3.2.4. Descriptive Statistics
4. Results
5. Discussion
5.1. Parallel Trend Test
5.2. Robustness Test
6. Conclusions and Implications
6.1. Conclusions
6.2. Implications
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- SDRC. Clean Heating Plan for Winter in the Northern Region (2017–2021). Available online: http://www.gov.cn/xinwen/2017-12/20/content_5248855.htm (accessed on 20 December 2017).
- Mao, X.Q.; Guo, X.R.; Chang, Y.G.; Peng, Y.D. Improving air quality in large cities by substituting natural gas for coal in China: Changing idea and incentive policy implications. Energy Policy 2005, 33, 307–318. [Google Scholar] [CrossRef]
- Deetjen, T.A.; Azevedo, I.L. Climate and Health Benefits of Rapid Coal-to-Gas Fuel Switching in the U.S. Power Sector Offset Methane Leakage and Production Cost Increases. Environ. Sci. Technol. 2020, 54, 11494–11505. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Zhang, X.; Shi, M.; Hewings, G.J. Does China’s air pollution abatement policy matter? An assessment of the Beijing-Tianjin-Hebei region based on a multi-regional CGE model. Energy Policy 2019, 127, 213–227. [Google Scholar] [CrossRef]
- China Association of Building Energy Efficiency. 2019 China Building Energy Consumption Research Report. Available online: https://www.cabee.org/site/content/23565.html (accessed on 10 April 2020).
- Xiao, Q.; Ma, Z.; Li, S.; Liu, Y. The impact of winter heating on air pollution in china. PLoS ONE 2015, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cai, S.; Wang, Y.; Zhao, B.; Wang, S.; Xing, C.; Hao, J. The impact of the “air pollution prevention and control action plan” on pm2.5 concentrations in jing-jin-ji region during 2012–2020. Sci. Total Environ. 2017, 580, 197–209. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Yu, J.; Niu, C. Study on the influence of natural gas substitution of coal in home heating in reducing air pollutant emission in Hebei. J. Saf. Environ. 2018. [Google Scholar] [CrossRef]
- Li, X.; Qiao, Y.; Shi, L. The aggregate effect of air pollution regulation on CO2 mitigation in China’s manufacturing industry: An econometric analysis. J. Clean. Prod. 2017, 142, 976–984. [Google Scholar] [CrossRef]
- Weng, Z.; Han, E.; Wu, Y.; Shi, L.; Ma, Z. Environmental and economic impacts of transitioning to cleaner heating in Northern China. Resour. Conserv. Recycl. 2021, 172. [Google Scholar] [CrossRef]
- Wang, H.; Zhao, L. A joint prevention and control mechanism for air pollution in the beijing-tianjin-hebei region in china based on long-term and massive data mining of pollutant concentration. Atmos. Environ. 2018, 174, 25–42. [Google Scholar] [CrossRef]
- Luo, Z.; Li, H. The impact of “atmosphere ten articles” policy on air quality in china. China Ind. Econ. 2018, 366, 138–156. [Google Scholar] [CrossRef]
- Shi, D.; Li, S. The Effect of Green Cooperative Development in Beijing-Tianjin-Hebei Region _ A Quasi-Natural Experiment Based on the Policy of “Coal-to-Gas /Electricity”. Res. Econ. Manag. 2018, 39, 64. [Google Scholar] [CrossRef]
- Yu, C.; Kang, J.; Teng, J.; Long, H.; Fu, Y. Does coal-to-gas policy reduce air pollution? Evidence from a quasi-natural experiment in China. Sci. Total Environ. 2021, 773, 144645. [Google Scholar] [CrossRef]
- Liu, Z.; Chen, X.; Cai, J.; Baležentis, T.; Li, Y. The Impact of “Coal to Gas” Policy on Air Quality: Evidence from Beijing, China. Energies 2020, 13, 3876. [Google Scholar] [CrossRef]
- Khan, M.R.; Sarkar, B. Change Point Detection for Diversely Distributed Stochastic Processes Using a Probabilistic Method. Inventions 2019, 4, 42. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.R.; Sarkar, B. Change Point Detection for Airborne Particulate Matter (PM2.5, PM10) by Using the Bayesian Approach. Mathematics 2019, 7, 474. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Yuan, X.; Tang, Y.; Wang, Q.; Ma, Q.; Mu, R.; Fu, J.; Hong, J.; Kellett, J.; Zuo, J. Integrated assessment of the environmental and economic effects of “coal-to-gas conversion” project in rural areas of northern China. Environ. Sci. Pollut. Res. 2020, 27, 14503–14514. [Google Scholar] [CrossRef]
- Chen, J.; Shan, M.; Xia, J.; Jiang, Y. Effects of space heating on the pollutant emission intensities in “2+26” cities. Build. Environ. 2020, 175, 106817. [Google Scholar] [CrossRef]
- Färe, R.; Grosskopf, S.; Pasurka, C.A., Jr. Accounting for air pollution emissions in measures of state manufacturing productivity growth. J. Reg. Sci. 2001, 41, 381–409. [Google Scholar] [CrossRef]
- Lin, B.; Jia, Z. Economic, energy and environmental impact of coal-to-electricity policy in China: A dynamic recursive CGE study. Sci. Total Environ. 2019, 698, 134241. [Google Scholar] [CrossRef] [PubMed]
- Ou, C.; Li, S.; Zhang, J.; Zhang, J.; Sun, J.; Song, F. Boiler Transforming from Using Coal into Using Natural Gas in Chongqing and Analysis of Its Environmental Benefits. J. Chongqing Univ. Nat. Sci. Ed. 2004, 027, 100–104. [Google Scholar]
- Liu, S.; Hua, S.; Wang, K.; Qiu, P.; Tian, H. Spatial-temporal variation characteristics of air pollution in Henan of china: Localized emission inventory, WRF/Chem simulations and potential source contribution analysis. Sci. Total Environ. 2017, 624, 396. [Google Scholar] [CrossRef]
- Wang, Q.; Zheng, S. Impact of joint prevention and control action on atmospheric pollutant concentration in ‘2 + 26’cities. China Popul. Resour. Environ. 2019, 29, 51–62. [Google Scholar]
- Liang, J.; He, P.; Qiu, Y.L. Energy transition, public expressions, and local officials’ incentives: Social media evidence from the coal-to-gas transition in China. J. Clean. Prod. 2021, 298, 126771. [Google Scholar] [CrossRef]
- Xie, W.; Chen, C.; Li, F.; Cai, B.; Yang, R.; Cao, L.; Wu, P.; Pang, L. Key Factors of Rural Households’ Willingness to Pay for Cleaner Heating in Hebi: A Case Study in Northern China. Sustainability 2021, 13, 633. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, W.; Wu, F. Does energy transition improve air quality? Evidence derived from China’s Winter Clean Heating Pilot (WCHP) project. Energy 2020, 206. [Google Scholar] [CrossRef]
- Xu, S.; Ge, J. Sustainable shifting from coal to gas in North China: An analysis of resident satisfaction. Energy Policy 2020, 138, 111296. [Google Scholar] [CrossRef]
- Liu, G.; Kong, Z.; Dong, J.; Dong, X.; Jiang, Q.; Wang, K.; Li, J.; Li, C.; Wan, X. Influencing Factors, Energy Consumption, and Carbon Emission of Central Heating in China: A Supply Chain Perspective. Front. Energy Res. 2021, 9. [Google Scholar] [CrossRef]
- Nichols, A. Causal inference with observational data. Stata J. 2007, 7, 507–541. Available online: https://econpapers.repec.org/article/tsjstataj/v_3a7_3ay_3a2007_3ai_3a4_3ap_3a507-541.htm (accessed on 20 December 2017). [CrossRef] [Green Version]
- Urpelainen, J.; Yang, J.; Di, L. Power Sector Reforms and Technical Performance: Good News from an Instrumental Variable Analysis. Rev. Policy Res. 2018, 35. [Google Scholar] [CrossRef]
- Lange, I.; Moro, M.; Rahman, M.M. Cleaner Nudges? Policy Labels and Investment Decision-making. Energy J. 2018, 39, 27–51. [Google Scholar] [CrossRef]
- Omay, R.E. The relationship between environment and income: Regression spline approach. Int. J. Energy Econ. Policy 2013, 3, 52–61. [Google Scholar]
- Chang, H.H.; Mishra, A.K.; Livingston, M. Agricultural policy and its impact on fuel usage: Empirical evidence from farm household analysis. Appl. Energy 2011, 88, 348–353. [Google Scholar] [CrossRef]
Variable Name | Unit | Average Value | Standard Deviation | Minimum | Max |
---|---|---|---|---|---|
AQI index | μg/m3 | 79.747 | 45.115 | 10.000 | 500.000 |
Daily average concentration of PM2.5 | μg/m3 | 44.942 | 36.109 | 1.000 | 704.000 |
Daily average concentration of PM10 | μg/m3 | 79.469 | 60.901 | 4.000 | 2920.000 |
Daily average concentration of SO2 | μg/m3 | 18.995 | 20.466 | 1.000 | 858.000 |
Daily average concentration of NO2 | μg/m3 | 31.296 | 17.074 | 2.000 | 183.000 |
Daily average concentration of CO | mg/m3 | 0.986 | 0.527 | 0.100 | 18.400 |
Daily average concentration of O3 | μg/m3 | 91.505 | 43.654 | 1.000 | 586.000 |
Highest daily temperature | °C | 20.515 | 10.802 | −32.000 | 41.000 |
Lowest daily temperature | °C | 11.371 | 11.236 | −42.000 | 32.000 |
The proportion of the secondary industry in the year | 0.446 | 0.091 | 0.177 | 0.729 | |
The coverage rate of green space in the built-up area | 0.403 | 0.055 | 0.031 | 0.938 | |
Log value of per capita GDP | 10.838 | 0.513 | 9.422 | 12.281 | |
Log value of electricity consumption in the whole society | 13.899 | 1.018 | 10.079 | 16.567 | |
Log value of total gas supply | 9.355 | 1.572 | 1.946 | 14.466 |
(1) | (2) | (3) | (4) | (5) | (6) | (7) | |
---|---|---|---|---|---|---|---|
AQI | PM2.5 | PM10 | SO2 | NO2 | CO | O3 | |
ddd | −7.029 *** | −3.213 ** | −8.275 *** | 3.817 *** | −1.539 ** | 0.028 | −13.476 *** |
(1.563) | (1.314) | (1.972) | (0.863) | (0.689) | (0.029) | (1.425) | |
Highest temperature | 2.8060 *** | 1.5133 *** | 3.5437 *** | 0.5644 *** | 0.8977 *** | 0.0119 *** | 3.4225 *** |
(0.071) | (0.056) | (0.092) | (0.039) | (0.024) | (0.001) | (0.077) | |
Lowest temperature | −1.294 *** | −0.791 *** | −2.276 *** | −1.005 *** | −0.730 *** | −0.008 *** | −1.172 *** |
(0.086) | (0.066) | (0.102) | (0.056) | (0.029) | (0.001) | (0.096) | |
Proportion of secondary industry | 4.528 | 0.473 | 11.658 | 25.967 *** | 7.373 | 0.631 *** | −0.432 |
(10.084) | (9.675) | (13.672) | (6.557) | (5.754) | (0.209) | (11.663) | |
Per capita GDP logarithm | 3.083 | 4.306 * | 4.413 | −1.525 | −0.824 | −0.094 ** | −1.093 |
(2.102) | (2.293) | (3.089) | (1.037) | (1.055) | (0.044) | (2.405) | |
Logarithmic power consumption | 1.669 *** | 0.853 * | 1.186 | 1.142 ** | 0.234 | 0.039 *** | 2.533 *** |
(0.636) | (0.510) | (0.833) | (0.579) | (0.382) | (0.013) | (0.806) | |
Greenland coverage | 2.808 | 7.961 *** | 7.568 | −8.552 *** | 4.246 * | 0.300 *** | 6.797 |
(3.679) | (2.839) | (5.185) | (3.191) | (2.280) | (0.105) | (7.918) | |
Log value of total gas supply | 0.342 | 0.674 * | 1.159 * | 0.310 | −0.102 | 0.020 ** | 0.562 |
(0.499) | (0.409) | (0.666) | (0.378) | (0.210) | (0.009) | (0.630) | |
Constant term | 92.275 | −8462.632 ** | 7579.075 *** | 8102.746 *** | 3573.643 *** | −46.186 ** | 15,543.189 *** |
(1870.9144) | (3346.3371) | (1668.2010) | (1635.0929) | (1091.9893) | (18.1785) | (1662.7290) | |
Number of observations | 300,304 | 300,304 | 300,304 | 300,304 | 300,304 | 300,304 | 300,304 |
R2 | 0.388 | 0.455 | 0.421 | 0.499 | 0.625 | 0.536 | 0.581 |
Date fixed effect | YES | YES | YES | YES | YES | YES | YES |
Urban fixed effect | YES | YES | YES | YES | YES | YES | YES |
(1) | (2) | (3) | (4) | (5) | (6) | (7) | |
---|---|---|---|---|---|---|---|
AQI | PM2.5 | PM10 | SO2 | NO2 | CO | O3 | |
ddd | −7.235 *** | −3.408 ** | −11.810 *** | 0.902 | −1.000 | −0.033 | −10.808 *** |
(1.582) | (1.413) | (2.145) | (1.011) | (0.778) | (0.032) | (1.785) | |
Number of observations | 123,848 | 123,848 | 123,848 | 123,848 | 123,848 | 123,848 | 123,848 |
R2 | 0.343 | 0.484 | 0.414 | 0.528 | 0.640 | 0.568 | 0.671 |
Date fixed effect | YES | YES | YES | YES | YES | YES | YES |
Urban fixed effect | YES | YES | YES | YES | YES | YES | YES |
(1) | (2) | (3) | (4) | (5) | (6) | (7) | |
---|---|---|---|---|---|---|---|
AQI | PM2.5 | PM10 | SO2 | NO2 | CO | O3 | |
ddd | −2.040 ** | −1.958 ** | −1.200 | 3.068 *** | −1.610 *** | 0.053 *** | −3.831 *** |
(0.984) | (0.847) | (1.271) | (0.595) | (0.427) | (0.018) | (1.328) | |
Number of observations | 300,304 | 300,304 | 300,304 | 300,304 | 300,304 | 300,304 | 300,304 |
R2 | 0.388 | 0.455 | 0.421 | 0.499 | 0.625 | 0.536 | 0.581 |
Date fixed effect | YES | YES | YES | YES | YES | YES | YES |
Urban fixed effect | YES | YES | YES | YES | YES | YES | YES |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, S.; Chi, H. Analysis of the Environmental Effects of the Clean Heating Policy in Northern China. Sustainability 2021, 13, 6695. https://doi.org/10.3390/su13126695
Chen S, Chi H. Analysis of the Environmental Effects of the Clean Heating Policy in Northern China. Sustainability. 2021; 13(12):6695. https://doi.org/10.3390/su13126695
Chicago/Turabian StyleChen, Siyu, and Hong Chi. 2021. "Analysis of the Environmental Effects of the Clean Heating Policy in Northern China" Sustainability 13, no. 12: 6695. https://doi.org/10.3390/su13126695
APA StyleChen, S., & Chi, H. (2021). Analysis of the Environmental Effects of the Clean Heating Policy in Northern China. Sustainability, 13(12), 6695. https://doi.org/10.3390/su13126695