Proposal of Ecotechnologies for Tilapia (Oreochromis niloticus) Production in Mexico: Economic, Environmental, and Social Implications
Abstract
:1. Introduction
Sustainable Aquaculture and Ecotechnologies for Production
2. Methodology
2.1. Description of the Study Site
2.2. Description of the Current Facility Analyzed
2.3. Criteria for the Design of Alternative Ecotechnological Systems
2.4. Data Collection from the Rural Aquaculture System, Semi-Intensive (SIS)
2.5. Proposal with Biofloc Technology System (BFT)
2.6. Proposal for a Recirculation System in Aquaculture (RAS)
2.7. Aquaponics System Proposal (AS)
2.8. Proposed Integrated Recirculation System with Constructed Wetland (RAS-CW)
2.9. Economic Environmental and Social Evaluation
3. Results and Discussion
3.1. Economic Dimension
3.1.1. Construction Costs
3.1.2. Income from Tilapia and Agricultural Production
3.1.3. Tilapia in the System and Fish Production
3.1.4. Seeding Density and Productivity
3.1.5. Feed Supplied and Feed Conversion Factor
3.1.6. Net Present Value, Internal Rate of Return, and Benefit-Cost Ratio
3.2. Environmental Dimension
3.2.1. Pond Water Volume
3.2.2. Daily Water Replacement and Discharge
3.2.3. Energy for Aeration, Pumping and Recirculation
3.2.4. CO2 Emissions from the Use of Electricity
3.2.5. Land Area Required
3.2.6. Kilograms Produced Per Area Unit of Land Required
3.3. Social Dimension
3.3.1. Shifts Produced
3.3.2. Education Level
3.3.3. Stability and Reliability
3.3.4. Access to and Management of Technology
3.3.5. Commercialization of Production
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Froehlich, H.E.; Runge, C.A.; Gentry, R.R.; Gaines, S.D.; Halpern, B.S. Comparative terrestrial feed and land use of an aquaculture-dominant world. Proc. Natl. Acad. Sci. USA 2018, 115, 5295–5300. [Google Scholar] [CrossRef] [Green Version]
- FAO. The State of World Fisheries and Aquaculture. Meeting the Sustainable Goals; FAO: Rome, Italy, 2018; p. 227. [Google Scholar]
- Ganguly, S.; Dora, K.C.; Sarkar, S.; Chowdhury, S. Supplementation of prebiotics in fish feed: A review. Rev. Fish Biol. Fish. 2013, 23, 195–199. [Google Scholar] [CrossRef]
- FAO. The State of World Fisheries and Aquaculture; FAO: Rome, Italy, 2014; p. 200. [Google Scholar]
- Wang, M.; Lu, M. Tilapia polyculture: A global review. Aquac. Res. 2016, 47, 2363–2374. [Google Scholar] [CrossRef]
- Moura, R.S.T.; Valenti, W.C.; Henry-Silva, G.G. Sustainability of Nile tilapia net-cage culture in a reservoir in a semi-arid region. Ecol. Indic. 2016, 66, 574–582. [Google Scholar] [CrossRef] [Green Version]
- Santos, J.F.; Assis, C.R.D.; Soares, K.L.S.; Rafael, R.E.Q.; Oliveira, V.M.; de Vasconcelos Filho, J.E.; França, R.C.P.; Lemos, D.; Bezerra, R.S. A comparative study on Nile tilapia under different culture systems: Effect on the growth parameters and proposition of new growth models. Aquaculture 2019, 503, 128–138. [Google Scholar] [CrossRef]
- SAGARPA. Avanza México Como Una Potencia De Producción Acuícola. Mexico. 2017. Available online: https://www.gob.mx/agricultura/prensa/avanza-mexico-como-una-potencia-en-produccion-acuicola (accessed on 13 March 2021).
- CONAPESCA. Situación actual de la acuacultura en México. In Proceedings of the XII Foro Internacional de Acuacultura, Guadalajara Jalisco, Mexico, 27–29 September 2017; Available online: https://fiacui.com/2017/Tilapia/Jueves%2028%20sep/Copia%20de%2005%20Situacio%CC%81n%20actual%20de%20la%20acuicultura%20en%20Me%CC%81xico%20COMISIONADO%20MARIO%20AGUILAR%20SANCHEZ%20CONAPESCA.pdf (accessed on 13 March 2021).
- Reyes-Vera, A.M.; Román-Gutiérrez, A.D.; Guzmán-Ortiz, F.A.; Pulido-Flores, G.; Velasco-Amaro, P.I. An Overview of Aquaculture Activity in Hidalgo State. In Water Availability and Management in Mexico; Otazo-Sánchez, E., Navarro-Frómeta, A., Singh, V., Eds.; Springer: Cham, Switzerland, 2020; Volume 88, pp. 267–286. [Google Scholar]
- Fitzsimmons, K.M. Tilapia: The most important aquaculture species of the 21st century. In Proceedings of the 5th International Symposium on Tilapia Aquaculture, Rio de Janeiro, Brazil, 3–7 September 2000; pp. 3–8. [Google Scholar]
- Guzmán Amaya, P.; Fuentes Castellanos, D.F. Pesca, Acuacultura e Investigación en México, 1st ed.; Centro de Estudios para el Desarrollo Rural Sustentable y la Soberanía Alimentaria: Mexico City, Mexico, 2006; p. 384. [Google Scholar]
- Magallon-Barajas, F.J.; Villarreal-Colmenares, H.; Arcos-Ortega, F.; Civera-Ceracedo, R.; Cruz-Hernández, P. Desarrollo Sustentable de la Acuacultura en México; Publicaciones Especiales del Centro de Investigaciones Bilógicas de Noroeste S.C., Cámara de Diputados, LX Legislatura: Mexico City, Mexico, 2007; p. 264. [Google Scholar]
- CONAPESCA. Anuario Estadístico de Acuacultura y Pesca Edición 2013, 1st ed.; CONAPESCA: Mexico City, Mexico, 2013; p. 299. [Google Scholar]
- SAGARPA. Situación Actual de la Acuacultura en Tabasco, Problemática y Perspectivas de Desarrollo a Través de la Innovación Tecnológica; SAGARPA: Mexico City, Mexico, 2015; p. 128. [Google Scholar]
- Velasco Amaro, P.I.; Calvario Martínez, O.; Pulido Flores, G.; Acevedo Sandoval, O.; Castro Rosas, J.; Román-Gutiérrez, A.D. Problemática Ambiental de la Actividad Piscícola en el Estado de Hidalgo, México. Ingeniería 2012, 16, 165–174. [Google Scholar]
- Ferreira, J.G.; Falconer, L.; Kittiwanich, J.; Ross, L.; Saurel, C.; Wellman, K.; Suvanachai, P. Analysis of production and environmental effects of Nile tilapia and white shrimp culture in Thailand. Aquaculture 2015, 447, 23–36. [Google Scholar] [CrossRef]
- FAO. The State of World Fisheries and Aquaculture; FAO: Rome, Italy, 2016; p. 200. [Google Scholar]
- Godfray, H.C.; Charles, J.; Crute, I.R.; Haddad, L.; Lawrence, D.; Muir, J.F.; Nisbett, N.; Pretty, J.; Robinson, S.; Toulmin, C.; et al. Introduction: The future of the global food system. Philos. Trans. R. Soc. B. 2010, 365, 2769–2777. [Google Scholar] [CrossRef] [Green Version]
- Barrington, K.; Ridler, N.; Chopin, T.; Robinson, S.; Robinson, B. Social aspects of the sustainability of integrated multi-trophic aquaculture. Aquac. Int. 2010, 18, 201–211. [Google Scholar] [CrossRef]
- Béné, C.; Arthur, R.; Norbury, H.; Allison, E.H.; Beveridge, M.; Bush, S.; Campling, L.; Leschen, W.; Little, D.; Squires, D.; et al. Contribution of fisheries and aquaculture to food security and poverty reduction: Assessing the current evidence. World Dev. 2016, 79, 177–196. [Google Scholar] [CrossRef]
- Avnimelech, Y. Control of microbial activity in aquaculture systems: Active suspension ponds. J. World Aquac. Soc. 2003, 34, 19–21. [Google Scholar]
- Celdran-Sabater, D. Curso de Tecnología Biofloc. Veracruz, Mexico. 2018. Available online: Bioacuafloc.com (accessed on 13 March 2021).
- Timmons, M.B.; Ebeling, J.M.; Piedrahita, R.H. Acuacultura en Sistemas de Recirculación, 1st ed.; Cayuga Aqua Ventures: Freeville, NY, USA, 2009. [Google Scholar]
- Lin, Y.F.; Jing, S.R.; Lee, D.Y.; Wang, T.W. Nutrient removal from aquaculture wastewater using a constructed wetlands system. Aquaculture 2002, 209, 169–184. [Google Scholar] [CrossRef]
- Lin, Y.F.; Jing, S.R.; Lee, D.Y. The potential use of constructed wetlands in a recirculating aquaculture system for shrimp culture. Environ. Pollut. 2003, 123, 107–113. [Google Scholar] [CrossRef]
- Goddek, S.; Joyce, A.; Kotzen, B.; Burnell, G.M. Aquaponics Food Production Systems. Combined Aquaculture and Hydroponic Production Technologies for the Future; Springer: New York, NY, USA, 2019; p. 630. [Google Scholar]
- Romano, N. Aquamimicry: A Revolutionary Concept for Shrimp Farming. Glob. Aquac. Advocate 2017. Available online: https://www.aquaculturealliance.org/advocate/aquamimicry-a-revolutionary-concept-for-shrimp-farming/ (accessed on 13 March 2021).
- Celdran Sabater, D. Bioaquafloc Qué es Aquamimicry? 2018. Available online: https://www.bioaquafloc.com/aquamimicry/que-es-aquamimicry/ (accessed on 13 March 2021).
- Subasinghe, R.; Soto, D.; Jia, J. Global aquaculture and its role in sustainable development. Rev. Aquacult. 2009, 1, 2–9. [Google Scholar] [CrossRef]
- Hunter, M.C.; Smith, R.G.; Schipanski, M.E.; Atwood, L.W.; Mortensen, D.A. Agriculture in 2050: Recalibrating targets for sustainable intensification. Bioscience 2017, 67, 386–391. [Google Scholar] [CrossRef] [Green Version]
- Diana, J.S.; Egna, H.S.; Chopin, T.; Peterson, M.S.; Cao, L.; Pomeroy, R.; Verdegem, M.; Slack, W.T.; Bondad-Reantaso, M.G.; Cabello, F. Responsible aquaculture in 2050: Valuing local conditions and human innovations will be key to success. Bioscience 2013, 63, 255–262. [Google Scholar] [CrossRef] [Green Version]
- Campbell, B.M.; Thornton, P.; Zougmoré, R.; van Asten, P.; Lipper, L. Sustainable intensification: What is its role in climate smart agriculture? Curr. Opin. Environ. Sustain. 2014, 8, 39–43. [Google Scholar] [CrossRef] [Green Version]
- Edwards, P. Aquaculture environment interactions: Past, present and likely future trends. Aquac. Eng. 2015, 447, 2–14. [Google Scholar] [CrossRef]
- Avnimelech, Y. Bio-filters: The need for a new comprehensive approach. Aquac. Eng. 2006, 34, 172–178. [Google Scholar] [CrossRef]
- Avnimelech, Y. Feeding with microbial flocs by tilapia in minimal discharge bio-flocs technology ponds. Aquaculture 2007, 264, 140–147. [Google Scholar] [CrossRef]
- Avnimelech, Y. Tilapia Production Using Biofloc Technology Saving Water, Waste recycling Improves economics. Glob. Aquac. Adv. 2011. Available online: https://www.bioaquafloc.com/aquamimicry/que-es-aquamimicry/ (accessed on 13 March 2021).
- Crab, R.; Defoirdt, T.; Bossier, P.; Verstraete, W. Biofloc technology in aquaculture: Beneficial effects and future challenges. Aquaculture 2012, 356, 351–356. [Google Scholar] [CrossRef]
- Emerenciano, M.; Gaxiola, G.; Cuzon, G. Biofloc Technology (BFT): A review for aquaculture application and animal food industry. Biomass Now Cultiv. Util. 2013, 301–328. [Google Scholar]
- Gallardo-Collí, A.; Pérez-Rostro, C.I.; Hernández-Vergara, M.P. Reuse of water from biofloc technology for intensive culture of Nile tilapia (Oreochromis niloticus): Effects on productive performance, organosomatic indices and body composition. Int. Aquat. Res. 2019, 11, 43–55. [Google Scholar] [CrossRef] [Green Version]
- Rakocy, J.E. Ten guidelines for aquaponic systems. Aquaponics J. 2007, 46, 14–17. [Google Scholar]
- Rakocy, J.E. Aquaponics: Integrating fish and plant culture. Aquac. Prod. Syst. 2012, 1, 343–386. [Google Scholar]
- Yogev, U.; Barnes, A.; Gross, A. Nutrients and energy balance analysis for a conceptual model of a three loops off grid, aquaponics. Water 2016, 8, 589. [Google Scholar] [CrossRef] [Green Version]
- Bosma, R.H.; Lacambra, L.; Landstra, Y.; Perini, C.; Poulie, J.; Schwaner, M.J.; Yin, Y. The financial feasibility of producing fish and vegetables through aquaponics. Aquac. Eng. 2017, 78, 146–154. [Google Scholar] [CrossRef]
- Romero-Aguilar, M.; Colín-Cruz, A.; Sánchez-Salinas, E.; Ortiz-Hernández, M.L. Wastewater treatment by an artificial wetlands pilot system: Evaluation of the organic charge removal. Rev. Int. Contam. Ambient. 2009, 25, 157–167. [Google Scholar]
- Chen, Y.; Bracy, R.; Owings, A. Nitrogen and phosphorous removal by ornamental and wetland plants in a greenhouse recirculation research system. HortScience 2009, 44, 1704–1711. [Google Scholar] [CrossRef] [Green Version]
- Carbo-Bacaicoa, R. Integration of wastewater treatment technique through wetlands with recirculation systems for aquaculture. Revista Aqua TIC 2012, 37, 25–31. [Google Scholar]
- Vymazal, J. Emergent plants used in free water surface constructed wetlands: A review. Ecol. Eng. 2013, 61, 582–592. [Google Scholar] [CrossRef]
- Alarcón Herrera, M.T.; Zurita Martínez, F.; Lara-Borrero, J.A.; Vidal Sáez, G.C. Humedales de Tratamiento: Alternativa de Saneamiento de Aguas Residuales Aplicable en América Latina; Pontificia Universidad Javeriana: Bogotá, Colombia, 2018. [Google Scholar]
- Zhang, S.; Zhou, Q.; Xu, D.; He, F.; Cheng, S.; Liang, W.; Du, C.; Wu, Z. Vertical-flow constructed wetlands applied in a recirculating aquaculture system for channel catfish culture: Effects on water quality and zooplankton. Pol. J. Environ. Stud. 2010, 19, 1063–1070. [Google Scholar]
- Marín-Muñiz, J.L. Humedales construidos en México para el tratamiento de aguas residuales, producción de plantas ornamentales y reúso del agua. Agroproductividad 2017, 10, 90–95. [Google Scholar]
- Zhang, S.Y.; Li, G.; Wu, H.B.; Liu, X.G.; Yao, Y.H.; Tao, L.H.; Liu, L. An integrated recirculating aquaculture system (RAS) for land-based fish farming: The effects on water quality and fish production. Aquac. Eng. 2011, 45, 93–102. [Google Scholar] [CrossRef]
- Liu, X.; Xu, H.; Wang, X.; Wu, Z.; Bao, X. An ecological engineering pond aquaculture recirculating system for effluent purification and water quality control. Clean Soil Air Water 2014, 42, 221–228. [Google Scholar] [CrossRef]
- Fleckenstein, L.J.; Tierney, T.W.; Ray, A.J. Comparing biofloc, clear-water, and hybrid recirculating nursery systems (Part II): Tilapia (Oreochromis niloticus) production and water quality dynamics. Aquac. Eng. 2018, 82, 80–85. [Google Scholar] [CrossRef]
- Moreno, J.A.O.; Cerutti, O.R.M.; Gutiérrez, A.F.F. La Ecotecnología en México; IMAGIA: Mexico City, México, 2014; p. 125. [Google Scholar]
- SMN. Servicio Meteorológico Nacional, Normales Climatológicas. 2016. Available online: http://smn.cna.gob.mx/es/informacion-climatologica-ver-estado?estado=ver (accessed on 3 January 2021).
- FAO-SAGARPA. Diagnóstico del Sector Rural y Pesquero de México; Secretaría de Agricultura y Desarrollo Rural, Pesca y Alimentación-Organización de las Naciones Unidas para la Alimentación y la Agricultura: Mexico City, Mexico, 2014; p. 86. [Google Scholar]
- García, A.; Calvario, O. Manual de Buenas Prácticas de PRoducción Acuícola de Tilapia Para la iNocuidad Alimentaria; Centro de Investigación en Alimentos y Desarrollo (CIAD): Mazatlán, Sinaloa, Mexico, 2008. [Google Scholar]
- Avnimelech, Y. Biofloc Technology. A Practical Guide Book, 1st ed.; The World Aquaculture Society: Sorrento, LA, USA, 2009. [Google Scholar]
- Ingle de la Mora, G.; Villareal-Delgado, E.L.; Arredondo-Figueroa, J.L.; Ponce-Palafox, J.T.; Barriga-Sosa, I.D.L.A. Evaluación de algunos parámetros de calidad del agua en un sistema cerrado de recirculación para la acuacultura, sometido a diferentes cargas de biomasa de peces. Hidrobiológica 2003, 13, 247–253. [Google Scholar]
- Piedrahita, R.H.; de Long, D. Workshops of Recirculation Systems in Aquaculture, 1st ed.; Pentair Acuatic eco-systems Inc.: Apopka, FL, USA, 2017; p. 192. [Google Scholar]
- Rakocy, J.; Masser, M.P.; Losordo, T. Recirculating Aquaculture Tank Production Systems: Aquaponics-Integrating Fish and Plant Culture. 2016. Available online: https://shareok.org/bitstream/handle/11244/319795/oksd_srac_454_2016-07.pdf?sequence=1 (accessed on 13 March 2021).
- Noh-Medina, J.; Borges-Gómez, L.; Soria-Fregoso, M. Composición nutrimental de biomasa y tejidos conductores en chile habanero (Capsicum chínense). Trop. Subtrop. Agroecosyst. 2010, 12, 219–228. [Google Scholar]
- Bello, R.R.; Nava-Tablada, M.E.; Landeros-Sánchez, C.; Díaz-Padilla, G. Potencial productivo y limitantes para el cultivo de chile habanero (CapsicumchineseJacq.) en el estado de Veracruz, México. RINDERESU 2016, 1, 1–11. [Google Scholar]
- Lara-Borrero, J.A. Diseño de Humedales de Tratamiento. In Humedales de Tratamiento Alternativas de Saneamiento de Aguas Residuales en América Latina; Herrera, A., Ed.; Pontifica Universidad Javeriana: Bogota, Colombia, 2018. [Google Scholar]
- Rivas-Hernández, A. Construcción de humedales de flujo sub- superficiales vertical/horizontal. In Humedales de Tratamiento Alternativas de Saneamiento de Aguas Residuales en América Latina; Herrera, A., Ed.; Pontifica Universidad Javeriana: Bogota, Colombia, 2018. [Google Scholar]
- Vymazal, J.; Kröpfelová, L. Wastewater Treatment in Constructed Wetlands Horizontal Subsurface Flow; Springer: Dordrecht, The Netherlands, 2008. [Google Scholar]
- Vymazal, J.; Kröpfelová, L. Removal of nitrogen in constructed wetlands with horizontal sub-sureface flow: A review. Wetlands 2009, 29, 1114–1124. [Google Scholar] [CrossRef]
- Blank, L.; Tarquin, A. Ingeniería Económica, 7th ed.; McGraw Hill: Mexico City, Mexico, 2012; p. 611. [Google Scholar]
- Baca, U.G. Evaluación de Proyectos de Inversión; McGraw Hill: Mexico City, Mexico, 2013; p. 363. [Google Scholar]
- Sarandón, S.J.; Zuluaga, M.S.; Cieza, R.; Janjetic, L.; Negrete, E. Evaluación de la sustentabilidad de sistemas agrícolas de fincas en Misiones, Argentina, mediante el uso de indicadores. Agroecología 2006, 1, 19–28. [Google Scholar]
- Cervera-Ferri, J.L.; Luz Ureña, M. Indicadores de Producción Verde: Una Guía para Avanzar Hacia el Desarrollo Sostenible, 1st ed.; Naciones Unidas-Comisión Económica para América Latina y el Caribe (CEPAL) Vitacura: Santiago, Chile, 2017; p. 178. [Google Scholar]
- Trejo-lgueravide, R. Evaluación de los cultivos acuícolas en Tamaulipas, México. CienciaUAT 2017, 12, 114–133. [Google Scholar] [CrossRef] [Green Version]
- Suárez-Puerto, B.; Delgadillo-Díaz, M.; Sánchez-Solís, M.J.; Gullian-Klanian, M. Analysis of the cost-effectiveness and growth of Nile tilapia (Oreochromis niloticus) in biofloc and green water technologies during two seasons. Aquaculture 2021, 538, 736534. [Google Scholar] [CrossRef]
- Canales Salinas, R. Criterios para la toma de decisión de Inversiones. REICE Rev. Electrón. Investig. Cienc. Económ. 2015, 3, 101–117. [Google Scholar] [CrossRef] [Green Version]
- Badiola, M.; Mendiola, D.; Bostock, J. Recirculating aquaculture systems (RAS) analysis: Main issues on management and future challenges. Aquac. Eng. 2012, 51, 26–35. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-González, H.; Rubio-Cabrera, S.G.; García-Ulloa, M.; Montoya-Mejía, M.; Magallón-Barajas, F.J. Análisis técnico de la producción de tilapia (Oreochromis niloticus) y lechuga (Lactuca sativa) en dos sistemas de acuaponía. Agroproductividad 2015, 8, 15–19. [Google Scholar]
- Sandoval-Herazo, L.C.; Alvarado-Lassman, A.; Marín-Muñiz, J.L.; Méndez-Contreras, J.M.; Zamora-Castro, S.A. Effects of the Use of Ornamental Plants and Different Substrates in the Removal of Wastewater Pollutants through Microcosms of Constructed Wetlands. Sustainability 2018, 10, 1594. [Google Scholar] [CrossRef] [Green Version]
- Acedo, Y.E.F. Acuacultura de Oreochromis Niloticus en SAR y TBF Integrada con Horticultura Hidropónica en Sistemas Sin Recirculación. Ph.D. Thesis, Centro de Investigaciones Biológicas de Noroeste, Mexico City, Mexico, 2019. [Google Scholar]
- Pálfy, T.G.; Meyer, D.; Troesch, S.; Gourdon, R.; Olivier, L.; Molle, P. A single-output model for the dynamic design of constructed wetlands treating combined sewer overflow. Environ. Model. Softw. 2018, 102, 49–72. [Google Scholar] [CrossRef]
- Avellán, T.; Gremillion, P. Constructed wetlands for resource recovery in developing countries. Renew. Sustain. Energy Rev. 2019, 99, 42–57. [Google Scholar] [CrossRef]
Economic | Environmental | Social |
---|---|---|
Construction cost (USD) | Volume of pond water (m3) | Workdays generated cycle |
Income from tilapia production (USD) | Daily water replacement (%) | Education level |
Income from agricultural production (USD) | Daily water discharge (m3) | Stability and reliability |
Tilapia in the system (organisms) | Aeration energy required (HP) | Access to and use of technology |
Planting density (Organisms/m3) | Aeration energy (kW/hour/day) | Commercialization of production |
System productivity (kg/m3) | Energy required (kW/hour/day) | |
Fish production (kg) | kW/hour/day total | |
Agricultural output (kg) | CO2 emissions per energy (kg) | |
Feed supplied (kg) | Land area required (m2) | |
Feed conversion factor (kg) | Kilos of food produced per area unit (kg/m2) | |
Net present value (USD) | ||
Internal rate of return (%) | ||
Benefit-cost ratio |
Variable | System | ||||
---|---|---|---|---|---|
SIS | BFT | RAS | CW | AS | |
Construction cost (USD) | 44,807.78 | 54,805.96 | 80,382.07 | 109,611.92 | 132,578.22 |
Income from tilapia production (USD) | 16,570.19 | 38,238.90 | 127,463.00 | 16,571.23 | 50,985.20 |
Income from agricultural production (USD) | - | - | - | - | 182,686.53 |
Tilapia in the system (organisms) | 10,582 | 24,420 | 81,400 | 10,582 | 16,280 |
Planting density (Organisms/m3) | 13 | 30 | 100 | 13 | 20 |
System productivity (kg/m3) | 6.5 | 15 | 50 | 6.5 | 10 |
Fish production (kg) | 5291 | 12,210 | 40,700 | 5291 | 8140 |
Agricultural output (kg) | - | - | - | - | 70,000 |
Feed supplied (kg) | 7936 | 13,441 | 61,050 | 7936 | 12,210 |
Feed conversion factor (kg) | 1.5 | 1.1 | 1.5 | 1.5 | 1.5 |
Net present value (USD) | 19,994.51 | 169,109.11 | 479,837.25 | 20,398.51 | 1,098,536.41 |
Internal rate of return (%) | 23.7 | 38.32 | 40.65 | 16.51 | 39.51 |
Benefit-cost ratio | 1.17 | 2.10 | 1.81 | 1.17 | 2.60 |
Variable | System | ||||
---|---|---|---|---|---|
SIS | BFT | RAS | CW | AS | |
Volume of pond water (m3) | 814 | 814 | 814 | 814 | 814 |
Daily water replacement (%) | 30 | 2 | 5 | 5 | 10 |
Daily water discharge (m3) | 244.2 | 8.14 | 40.7 | 40.7 | 81.40 |
Aeration energy required (HP) | 5 | 15 | 45 | 7.5 | 20 |
Aeration energy (kW/hour/day) | 44.47 | 268.2 | 804.6 | 67.05 | 357.6 |
Energy required (kW/hour/day) | 119.3(B) | 4.96(B) | 19.86 (B) 171.35 (R) | 19.86 (B) 44.7 (R) | 39.72 (B) 44.7 (R) |
kW/hour/day total | 354.98 | 273.16 | 995.81 | 131.61 | 442.02 |
CO2 emissions per energy. (kg) | 136.66 | 105.16 | 383.36 | 50.66 | 170.17 |
Land area required (m2) | 600 | 1500 | 900 | 3300 | 5900 |
Kilos of food produced per area unit (kg/m2) | 8.81 | 8.14 | 45.22 | 1.6 | 13.24 |
Variable | System | ||||
---|---|---|---|---|---|
SIS | BFT | RAS | CW | AS | |
Workdays generated cycle | 180 | 540 | 540 | 180 | 900 |
Education level | low | medium | high | low | high |
Stability and reliability | high | medium | medium | high | medium |
Access to and use of technology | easy | difficult | very difficult | easy | very difficult |
Commercialization of production | immediate | immediate | complex | immediate | complex |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Betanzo-Torres, E.A.; Piñar-Álvarez, M.d.l.Á.; Sierra-Carmona, C.G.; Santamaria, L.E.G.; Loeza-Mejía, C.-I.; Marín-Muñiz, J.L.; Sandoval Herazo, L.C. Proposal of Ecotechnologies for Tilapia (Oreochromis niloticus) Production in Mexico: Economic, Environmental, and Social Implications. Sustainability 2021, 13, 6853. https://doi.org/10.3390/su13126853
Betanzo-Torres EA, Piñar-Álvarez MdlÁ, Sierra-Carmona CG, Santamaria LEG, Loeza-Mejía C-I, Marín-Muñiz JL, Sandoval Herazo LC. Proposal of Ecotechnologies for Tilapia (Oreochromis niloticus) Production in Mexico: Economic, Environmental, and Social Implications. Sustainability. 2021; 13(12):6853. https://doi.org/10.3390/su13126853
Chicago/Turabian StyleBetanzo-Torres, Erick Arturo, María de los Ángeles Piñar-Álvarez, Celia Gabriela Sierra-Carmona, Luis Enrique García Santamaria, Cecilia-Irene Loeza-Mejía, José Luis Marín-Muñiz, and Luis Carlos Sandoval Herazo. 2021. "Proposal of Ecotechnologies for Tilapia (Oreochromis niloticus) Production in Mexico: Economic, Environmental, and Social Implications" Sustainability 13, no. 12: 6853. https://doi.org/10.3390/su13126853
APA StyleBetanzo-Torres, E. A., Piñar-Álvarez, M. d. l. Á., Sierra-Carmona, C. G., Santamaria, L. E. G., Loeza-Mejía, C. -I., Marín-Muñiz, J. L., & Sandoval Herazo, L. C. (2021). Proposal of Ecotechnologies for Tilapia (Oreochromis niloticus) Production in Mexico: Economic, Environmental, and Social Implications. Sustainability, 13(12), 6853. https://doi.org/10.3390/su13126853