Towards Understanding Variability in Droughts in Response to Extreme Climate Conditions over the Different Agro-Ecological Zones of Pakistan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection and Processing
2.3. Quantification of Droughts
2.3.1. Metrological Drought Conditions
2.3.2. Drought Characteristic Analysis
Drought Duration
Drought Frequency
Drought Intensity
2.4. Quantification of Climate Extreme Indices
2.5. Drought Trend Analysis
Sen’s Slope Estimation
2.6. Principal Component Analysis (PCA)
3. Results
3.1. Drought Characteristics Analysis
3.1.1. Drought Duration
3.1.2. Drought Frequency Analysis
3.1.3. Drought Intensity Analysis
3.2. Long-Term Annual Drought Variations
Long-Term Seasonal Drought Variations
3.3. Long-Term Trends in Temperature Indices
3.4. Long-Term Trend in Precipitation Indices
3.5. Principal Component Analysis
3.6. Influence of Temperature Extremes on Drought
3.7. Influence of Precipitation Indices on Drought
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dai, A. Increasing drought under global warming in observations and models. Nat. Clim. Chang. 2013, 3, 52–58. [Google Scholar] [CrossRef]
- Yu, M.; Li, Q.; Hayes, M.J.; Svoboda, M.D.; Heim, R.R. Are droughts becoming more frequent or severe in China based on the standardized precipitation evapotranspiration index: 1951–2010? Int. J. Climatol. 2014, 34, 545–558. [Google Scholar] [CrossRef]
- Joshi, N.; Gupta, D.; Suryavanshi, S.; Adamowski, J.; Madramootoo, C.A. Analysis of trends and dominant periodicities in drought variables in India: A wavelet transform based approach. Atmos. Res. 2016, 182, 200–220. [Google Scholar] [CrossRef]
- Escalante-Sandoval, C.; Nunez-Garcia, P. Meteorological drought features in northern and northwestern parts of Mexico under different climate change scenarios. J. Arid Land 2017, 9, 65–75. [Google Scholar] [CrossRef] [Green Version]
- Miyan, M.A. Droughts in Asian least developed countries: Vulnerability and sustainability. Weather Clim. Extrem. 2015, 7, 8–23. [Google Scholar] [CrossRef] [Green Version]
- Sheikh, M.M. Drought management and prevention in Pakistan. In Proceedings of the COMSATS 1st Meeting on Water Resources in the South: Present Scenario and Future Prospects, Islamabad, Pakistan, 1–2 November 2001. [Google Scholar]
- Pachauri, R.K.; Allen, M.R.; Barros, V.R.; Broome, J.; Cramer, W.; Christ, R.; Church, J.A.; Clarke, L.; Dahe, Q.; Dasgupta, P. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2014. [Google Scholar]
- Heim, R.R.J. A review of twentieth-century drought indices used in the United States. Bull. Am. Meteorol. Soc. 2002, 83, 1149–1166. [Google Scholar] [CrossRef] [Green Version]
- Hannaford, J.; Lloyd-Hughes, B.; Keef, C.; Parry, S.; Prudhomme, C. Examining the large-scale spatial coherence of European drought using regional indicators of precipitation and streamflow deficit. Hydrol. Process. 2011, 25, 1146–1162. [Google Scholar] [CrossRef]
- Hayes, M.; Wilhite, D.; Svoboda, M.; Trnka, M. Investigating the connections between climate change, drought and agricultural production. Handb. Clim. Chang. Agric. 2013, 73–86. [Google Scholar] [CrossRef]
- Dai, A. Drought under global warming: A review. Wiley Interdiscip. Rev. Clim. Chang. 2011, 2, 45–65. [Google Scholar] [CrossRef] [Green Version]
- Palmer, W.C. Keeping track of crop moisture conditions, nationwide: The new crop moisture index. Weatherwise 1968, 21, 156–161. [Google Scholar] [CrossRef]
- McKee, T.B.; Doesken, N.J.; Kleist, J. The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January 1993. [Google Scholar]
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef] [Green Version]
- Gocic, M.; Trajkovic, S. Water surplus variability index as an indicator of drought. J. Hydrol. Eng. 2015, 20, 04014038. [Google Scholar] [CrossRef]
- Cook, E.R.; Seager, R.; Cane, M.A.; Stahle, D.W. North American drought: Reconstructions, causes, and consequences. Earth Sci. Rev. 2007, 81, 93–134. [Google Scholar] [CrossRef]
- Grafton, R.Q.; Pittock, J.; Williams, J.; Jiang, Q.; Possingham, H.; Quiggin, J. Water planning and hydro-climatic change in the Murray-darling Basin, Australia. Ambio 2014, 43, 1082–1092. [Google Scholar] [CrossRef] [Green Version]
- Shukla, S.; Roberts, J.; Hoell, A.; Funk, C.C.; Robertson, F.; Kirtman, B. Assessing North American multimodel ensemble (NMME) seasonal forecast skill to assist in the early warning of anomalous hydrometeorological events over East Africa. Clim. Dyn. 2019, 53, 7411–7427. [Google Scholar] [CrossRef]
- Guo, H.; Bao, A.; Ndayisaba, F.; Liu, T.; Jiapaer, G.; El-Tantawi, A.M.; De Maeyer, P. Space-time characterization of drought events and their impacts on vegetation in Central Asia. J. Hydrol. 2018, 564, 1165–1178. [Google Scholar] [CrossRef]
- Nairizi, S. Drought and Water Scarcity; International Commission on Irrigation and Drainage: New Delhi, India, 2017. [Google Scholar]
- Sheffield, J.; Wood, E.F. Projected changes in drought occurrence under future global warming from multi-model, multi-scenario, IPCC AR4 simulations. Clim. Dyn. 2008, 31, 79–105. [Google Scholar] [CrossRef]
- Sivakumar, M.V.; Stefanski, R.; Bazza, M.; Zelaya, S.; Wilhite, D.; Magalhaes, A.R. High level meeting on national drought policy: Summary and major outcomes. Weather Clim. Extrem. 2014, 3, 126–132. [Google Scholar] [CrossRef] [Green Version]
- Measho, S.; Chen, B.; Trisurat, Y.; Pellikka, P.; Guo, L.; Arunyawat, S.; Tuankrua, V.; Ogbazghi, W.; Yemane, T. Spatio-temporal analysis of vegetation dynamics as a response to climate variability and drought patterns in the semiarid region, Eritrea. Remote Sens. 2019, 11, 724. [Google Scholar] [CrossRef] [Green Version]
- Ayana, E.K.; Ceccato, P.; Fisher, J.R.; DeFries, R. Examining the relationship between environmental factors and conflict in pastoralist areas of East Africa. Sci. Total Environ. 2016, 557, 601–611. [Google Scholar] [CrossRef] [PubMed]
- Nicholson, S.E. Climate and climatic variability of rainfall over eastern Africa. Rev. Geophys. 2017, 55, 590–635. [Google Scholar] [CrossRef] [Green Version]
- Zou, X.; Zhai, P.; Zhang, Q. Variations in droughts over China: 1951–2003. Geophys. Res. Lett. 2005, 32, 32. [Google Scholar] [CrossRef]
- Zhang, L.; Zhou, T. Drought over East Asia: A review. J. Clim. 2015, 28, 3375–3399. [Google Scholar] [CrossRef]
- Son, K.-H.; Bae, D.-H. Drought analysis according to shifting of climate zones to arid climate zone over Asia monsoon region. J. Hydrol. 2015, 529, 1021–1029. [Google Scholar] [CrossRef]
- Barlow, M.; Zaitchik, B.; Paz, S.; Black, E.; Evans, J.; Hoell, A. A review of drought in the Middle East and southwest Asia. J. Clim. 2016, 29, 8547–8574. [Google Scholar] [CrossRef]
- Chen, T.-C.; Wang, S.-Y.; Huang, W.-R.; Yen, M.-C. Variation of the East Asian summer monsoon rainfall. J. Clim. 2004, 17, 744–762. [Google Scholar] [CrossRef]
- Haider, S.; Adnan, S. Classification and assessment of aridity over Pakistan provinces (1960–2009). Int. J. Environ. 2014, 3, 24–35. [Google Scholar] [CrossRef] [Green Version]
- Kazmi, D.H.; Li, J.; Rasul, G.; Tong, J.; Ali, G.; Cheema, S.B.; Liu, L.; Gemmer, M.; Fischer, T. Statistical downscaling and future scenario generation of temperatures for Pakistan Region. Theor. Appl. Climatol. 2015, 120, 341–350. [Google Scholar] [CrossRef]
- Spinoni, J.; Naumann, G.; Carrao, H.; Barbosa, P.; Vogt, J. World drought frequency, duration, and severity for 1951–2010. Int. J. Climatol. 2014, 34, 2792–2804. [Google Scholar] [CrossRef] [Green Version]
- Ashraf, M.; Routray, J.K. Spatio-temporal characteristics of precipitation and drought in Balochistan Province, Pakistan. Nat. Hazards 2015, 77, 229–254. [Google Scholar] [CrossRef]
- Jamro, S.; Channa, F.N.; Dars, G.H.; Ansari, K.; Krakauer, N.Y. Exploring the evolution of drought characteristics in Balochistan, Pakistan. Appl. Sci. 2020, 10, 913. [Google Scholar] [CrossRef] [Green Version]
- Rahman, G.; Dawood, M. Spatial and temporal variation of rainfall and drought in Khyber Pakhtunkhwa Province of Pakistan during 1971–2015. Arab. J. Geosci. 2018, 11, 1–13. [Google Scholar] [CrossRef]
- Ahmed, K.; Shahid, S.; Nawaz, N. Impacts of climate variability and change on seasonal drought characteristics of Pakistan. Atmos. Res. 2018, 214, 364–374. [Google Scholar] [CrossRef]
- Adnan, S.; Ullah, K.; Gao, S.; Khosa, A.H.; Wang, Z. Shifting of agro-climatic zones, their drought vulnerability, and precipitation and temperature trends in Pakistan. Int. J. Climatol. 2017, 37, 529–543. [Google Scholar] [CrossRef]
- Zahid, M.; Rasul, G. Changing trends of thermal extremes in Pakistan. Clim. Chang. 2012, 113, 883–896. [Google Scholar] [CrossRef]
- Dogar, M.M.; Stenchikov, G.; Osipov, S.; Wyman, B.; Zhao, M. Sensitivity of the regional climate in the Middle East and North Africa to volcanic perturbations. J. Geophys. Res. Atmos. 2017, 122, 7922–7948. [Google Scholar] [CrossRef] [Green Version]
- Iqbal, M.F.; Athar, H. Variability, trends, and teleconnections of observed precipitation over Pakistan. Theor. Appl. Climatol. 2018, 134, 613–632. [Google Scholar] [CrossRef]
- Dogar, M.M.; Sato, T. Regional climate response of Middle Eastern, African, and South Asian monsoon regions to explosive volcanism and ENSO forcing. J. Geophys. Res. Atmos. 2019, 124, 7580–7598. [Google Scholar] [CrossRef]
- Asong, Z.E.; Wheater, H.S.; Bonsal, B.; Razavi, S.; Kurkute, S. Historical drought patterns over Canada and their relation to teleconnections. Hydrol. Earth Syst. Sci. Discuss 2018, 122. [Google Scholar] [CrossRef]
- Saleem, F.; Zeng, X.; Hina, S.; Omer, A. Regional changes in extreme temperature records over Pakistan and their relation to Pacific variability. Atmos. Res. 2021, 250, 105407. [Google Scholar] [CrossRef]
- Adhyani, N.; June, T.; Sopaheluwakan, A. Exposure to drought: Duration, severity and intensity (Java, Bali and Nusa Tenggara). In Proceedings of IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2018. [Google Scholar]
- Salehnia, N.; Salehnia, N.; Torshizi, A.S.; Kolsoumi, S. Rainfed wheat (Triticum aestivum L.) yield prediction using economical, meteorological, and drought indicators through pooled panel data and statistical downscaling. Ecol. Indic. 2020, 111, 105991. [Google Scholar] [CrossRef]
- Jiang, R.; Xie, J.; He, H.; Luo, J.; Zhu, J. Use of four drought indices for evaluating drought characteristics under climate change in Shaanxi, China: 1951–2012. Nat. Hazards 2015, 75, 2885–2903. [Google Scholar] [CrossRef]
- Satgé, F.; Hussain, Y.; Bonnet, M.-P.; Hussain, B.M.; Martinez-Carvajal, H.; Akhter, G.; Uagoda, R. Benefits of the successive GPM based satellite precipitation estimates IMERG–V03, –V04, –V05 and GSMaP–V06, –V07 over diverse geomorphic and meteorological regions of Pakistan. Remote Sens. 2018, 10, 1373. [Google Scholar] [CrossRef] [Green Version]
- PARC. Agro-Ecological Regions of Pakistan (Pakistan Agriculture Research Council Islamabad). 1980. Available online: http://www.parc.gov.pk/index.php/en/20210405 (accessed on 30 May 2021).
- Tan, C.; Yang, J.; Li, M. Temporal-spatial variation of drought indicated by SPI and SPEI in Ningxia Hui Autonomous Region, China. Atmosphere 2015, 6, 1399–1421. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.-H.; Yoo, S.-H.; Choi, J.-Y.; Bae, S. Assessment of the impact of climate change on drought characteristics in the Hwanghae Plain, North Korea using time series SPI and SPEI: 1981–2100. Water 2017, 9, 579. [Google Scholar] [CrossRef] [Green Version]
- Yevjevich, V.M. An Objective Approach to Definitions and Investigations of Continental hydrologic Droughts. Ph.D. Thesis, Colorado State University, Fort Collins, CO, USA, 1967. [Google Scholar]
- Xu, L.; Chen, N.; Zhang, X. Global drought trends under 1.5 and 2 C warming. Int. J. Climatol. 2019, 39, 2375–2385. [Google Scholar] [CrossRef]
- Schwalm, C.R.; Anderegg, W.R.; Michalak, A.M.; Fisher, J.B.; Biondi, F.; Koch, G.; Litvak, M.; Ogle, K.; Shaw, J.D.; Wolf, A. Global patterns of drought recovery. Nature 2017, 548, 202–205. [Google Scholar] [CrossRef]
- Mao, Y.; Wu, Z.; He, H.; Lu, G.; Xu, H.; Lin, Q. Spatio-temporal analysis of drought in a typical plain region based on the soil moisture anomaly percentage index. Sci. Total Environ. 2017, 576, 752–765. [Google Scholar] [CrossRef]
- Wang, F.; Wang, Z.; Yang, H.; Zhao, Y. Study of the temporal and spatial patterns of drought in the Yellow River basin based on SPEI. Sci. China Earth Sci. 2018, 61, 1098–1111. [Google Scholar] [CrossRef]
- Zhang, Q.; Qi, T.; Singh, V.P.; Chen, Y.D.; Xiao, M. Regional frequency analysis of droughts in China: A multivariate perspective. Water Resour. Manag. 2015, 29, 1767–1787. [Google Scholar] [CrossRef]
- Kendall, M. Rank Correlation Methods; Charles Griffin: London, UK, 1955; p. 160. [Google Scholar]
- Mann, H.B. Nonparametric tests against trend. Econom. J. Econom. Soc. 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Salmi, T. Detecting Trends of Annual Values of Atmospheric Pollutants by the Mann-Kendall Test and Sen’s Slope Estimates–The Excel Template Application MAKESENS; Ilmatieteen Laitos: Helsinki, Finland, 2002. [Google Scholar]
- Jolliffe, I.T.; Cadima, J. Principal component analysis: A review and recent developments. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2016, 374, 20150202. [Google Scholar] [CrossRef] [PubMed]
- Hotelling, H. Analysis of a complex of statistical variables into principal components. J. Educ. Psychol. 1933, 24, 417. [Google Scholar] [CrossRef]
- Pearson, K. LIII. On lines and planes of closest fit to systems of points in space. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1901, 2, 559–572. [Google Scholar] [CrossRef] [Green Version]
- Gao, H. Multivariate Statistical Analysis of Application; Beijing University Press: Beijing, China, 2005. [Google Scholar]
- Ding, Z.; Lu, R.; Wang, Y. Spatiotemporal variations in extreme precipitation and their potential driving factors in non-monsoon regions of China during 1961–2017. Environ. Res. Lett. 2019, 14, 024005. [Google Scholar] [CrossRef] [Green Version]
- Tadić, L.; Bonacci, O.; Brleković, T. An example of principal component analysis application on climate change assessment. Theor. Appl. Climatol. 2019, 138, 1049–1062. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, Y.; Shao, M.; Jia, X.; Li, X. Spatiotemporal analysis of multiscalar drought characteristics across the Loess Plateau of China. J. Hydrol. 2016, 534, 281–299. [Google Scholar] [CrossRef]
- Jamro, S.; Dars, G.H.; Ansari, K.; Krakauer, N.Y. Spatio-temporal variability of drought in Pakistan using standardized precipitation evapotranspiration index. Appl. Sci. 2019, 9, 4588. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, S.; Hussain, Z.; Qureshi, A.S.; Majeed, R.; Saleem, M. Drought Mitigation in Pakistan: Current Status and Options for Future Strategies; IWMI: Colombo, Sri Lanka, 2004; Volume 85. [Google Scholar]
- Sajjad, H.; Ghaffar, A. Observed, simulated and projected extreme climate indices over Pakistan in changing climate. Theor. Appl. Climatol. 2019, 137, 255–281. [Google Scholar] [CrossRef]
- Ahmed, K.; Shahid, S.; bin Harun, S.; Wang, X.-J. Characterization of seasonal droughts in Balochistan Province, Pakistan. Stoch. Environ. Res. Risk Assess. 2016, 30, 747–762. [Google Scholar] [CrossRef]
- Khan, N.; Shahid, S.; bin Ismail, T.; Wang, X.-J. Spatial distribution of unidirectional trends in temperature and temperature extremes in Pakistan. Theor. Appl. Climatol. 2019, 136, 899–913. [Google Scholar] [CrossRef]
- Shah, S.; Ahmad, M. Minimum temperature analysis and trends in Pakistan. Pak. J. Meteorol. 2017, 13, 25–36. [Google Scholar]
- Adnan, S.; Ullah, K. Development of drought hazard index for vulnerability assessment in Pakistan. Nat. Hazards 2020, 103, 2989–3010. [Google Scholar] [CrossRef]
- Naz, F.; Dars, G.H.; Ansari, K.; Jamro, S.; Krakauer, N.Y. Drought trends in Balochistan. Water 2020, 12, 470. [Google Scholar] [CrossRef] [Green Version]
- Abbas, F.; Sarwar, N.; Ibrahim, M.; Adrees, M.; Ali, S.; Saleem, F.; Hammad, H.M. Patterns of climate extremes in the coastal and highland regions of Balochistan, Pakistan. Earth Interact. 2018, 22, 1–23. [Google Scholar] [CrossRef]
- Hina, S.; Saleem, F. Historical analysis (1981–2017) of drought severity and magnitude over a predominantly arid region of Pakistan. Clim. Res. 2019, 78, 189–204. [Google Scholar] [CrossRef]
- Steinemann, A.; Iacobellis, S.F.; Cayan, D.R. Developing and evaluating drought indicators for decision-making. J. Hydrometeorol. 2015, 16, 1793–1803. [Google Scholar] [CrossRef]
- Rhee, J.; Cho, J. Future changes in drought characteristics: Regional analysis for South Korea under CMIP5 projections. J. Hydrometeorol. 2016, 17, 437–451. [Google Scholar] [CrossRef]
- Qaisrani, Z.N.; Nuthammachot, N.; Techato, K. Drought monitoring based on standardized precipitation index and standardized precipitation evapotranspiration index in the arid zone of Balochistan province, Pakistan. Arab. J. Geosci. 2021, 14, 1–13. [Google Scholar] [CrossRef]
- Basit, A.; Raza, S.S.; Irfan, N.; Avila, R. Simulation of monsoon precipitation over South-Asia using RegCM3. Int. Sch. Res. Not. 2012, 2012, 75490. [Google Scholar] [CrossRef] [Green Version]
- Priya, P.; Krishnan, R.; Mujumdar, M.; Houze, R.A. Changing monsoon and midlatitude circulation interactions over the Western Himalayas and possible links to occurrences of extreme precipitation. Clim. Dyn. 2017, 49, 2351–2364. [Google Scholar] [CrossRef]
- Dimri, A.; Niyogi, D.; Barros, A.; Ridley, J.; Mohanty, U.; Yasunari, T.; Sikka, D. Western disturbances: A review. Rev. Geophys. 2015, 53, 225–246. [Google Scholar] [CrossRef]
- Adnan, S.; Ullah, K.; Gao, S. Characterization of drought and its assessment over Sindh, Pakistan during 1951–2010. J. Meteorol. Res. 2015, 29, 837–857. [Google Scholar] [CrossRef]
- Yeh, S.W.; Cai, W.; Min, S.K.; McPhaden, M.J.; Dommenget, D.; Dewitte, B.; Collins, M.; Ashok, K.; An, S.I.; Yim, B.Y. ENSO atmospheric teleconnections and their response to greenhouse gas forcing. Rev. Geophys. 2018, 56, 185–206. [Google Scholar] [CrossRef]
Zones | Rainfall (mm/day) | Tmax (°C/day) | Tmin (°C/day) | Climate | Crops |
---|---|---|---|---|---|
Dry Western Plateau1 | 1.3 mm | 32 °C | 18 °C | Arid tropical marine | Wild olives, small trees, grasses |
Indus delta2 | 1.4 mm | 33 °C | 21 °C | Arid tropical marine | Sugarcane, cotton, wheat |
Northern dry mountains3 | 4.0 mm | 24 °C | 10 °C | Sub humid | Grazing pattern |
Northern irrigated4 | 4.6 mm | 32 °C | 17 °C | Semi arid | Wheat, cotton, millet, rice, mangoes, citrus |
Rainfall5 | 9.8 mm | 30 °C | 16 °C | Sub humid | Rice, wheat, maize, mustard, and barley |
Sandy desert6 | 2.4 mm | 33 °C | 18 °C | Arid | Shrubs, grasses |
Southern irrigated7 | 1.4 mm | 35 °C | 19 °C | Arid subtropical | Cotton, wheat, berseem, and sorghum |
Suleiman Piedmont8 | 2.4 mm | 33 °C | 18 °C | Arid subtropical | Millet, wheat |
Western Dry Mountains9 | 5.4 mm | 25 °C | 10 °C | Semi arid | Apple, peach, apricot, grapes, plum |
Wetmountain10 | 16.7 mm | 26 °C | 13 °C | Humid | Wheat, maize |
Station Name | Latitude | Longitude | Elevation (m) | Station Name | Latitude | Longitude | Elevation (m) |
---|---|---|---|---|---|---|---|
Dalbandin | 28°53′ N | 64°24′ E | 848 m | Bahawal Pur | 29°20′N | 71°47′ E | 110.00 m |
Nokkundi | 28°49′ N | 62°45′ E | 682 m | Rahim Yar Khan | 28°26′ N | 70°19′ E | 82.93 m |
Panjgur | 26°58′ N | 64°06′ E | 968 m | Chhor | 29°53′ N | 69°43′ E | 5 m |
Pasni | 25°16′ N | 63°29′ E | 9 m | Jacobabad | 28°18′ N | 68°28′ E | 55 m |
Karachi | 24°54′ N | 66°56′ E | 22 m | Nawabshah | 26°15′ N | 68°22′ E | 37 m |
Peshawar | 34°02′ N | 71°.56′ E | 327 m | Rohri | 27°40′ N | 68°54′ E | 66 m |
Gilgit | 35°55′ N | 74°20′ E | 1460 m | Badin | 24°38′ N | 68°54′ E | 9 m |
Skardu | 35°18′ N | 75°41′ E | 2317 m | Barkhan | 29°53′ N | 69°43′ E | 1097 m |
Bahawal Pur | 29°20′ N | 71°47′ E | 110.00 m | Sibbi | 29°33′ N | 67°53′ E | 133 m |
Sargodha | 32°3′ N | 72°40′ E | 187 m | D.I. Khan | 31°49′ N | 70°56′ E | 171.20 m |
Faisalabad | 31°26′ N | 73°08′ E | 185.6 m | Kalat | 29°2′ N | 66°35′ E | 2015 m |
Multan | 30°12′ N | 71°26′ E | 121.95 m | Khuzdar | 27°50′ N | 66°38′ E | 1231 m |
Lahore PBO | 31°33′ N | 74°20′ E | 214.00 m | Kotli | 33°31′ N | 73°54′ E | 614.0 m |
Jhelum | 32°56′ N | 73°44′ E | 287.19 m | Rawalakot | 33°52′ N | 73°41′ E | 1677.0 m |
Mianwali | 32°71′ N | 71°55′ E | -------- | Muzaffarabad | 34°22′ N | 73°29′ E | 702.0 m |
Sialkot | 32°31′ N | 74°32′ E | 255.1 m | Zhob | 31°21′ N | 69°28′ E | 1405 m |
Indices | Name | Description | Unit |
---|---|---|---|
Mean Tmax | Annual mean maximum temperature | Annual mean maximum temperature | °C |
Mean Tmin | Annual mean minimum temperature | Annual mean minimum temperature | °C |
TXx | Annual daily maximum temperature | Annual maxima value of daily maximum temperature | °C |
WSDI | Warm spell duration | Annual number of days with at least 6 consecutive days when Tmax > 90th percentile | day |
DTR | Diurnal temperature | Annual mean difference between daily max and min temperature | °C |
PRCPTOT | Total precipitation | Annual precipitation from day ≥ 1 mm | mm |
R10 | Heavy precipitation | Annual count when precipitation ≥ 10 mm | day |
R20 | Very heavy precipitation | Annual count when precipitation ≥ 20 mm | day |
Rnn | Extremely heavy precipitation | Annual count when precipitation ≥ 25 mm | day |
R95p | Very wet days | Annual total precipitation from days >95th percentile | mm |
R99p | Extremely wet days | Annual total precipitation from days >99th percentile | mm |
RX1 | 1-day precipitation | Annual maximum 1-day precipitation | mm |
RX5 | Consecutive 5-day precipitation | Annual maximum consecutive 5-day precipitation | mm |
Index | Season/Annual | Zone_1 | Zone_2 | Zone_3 | Zone_4 | Zone_5 | Zone_6 | Zone_7 | Zone_8 | Zone_9 | Zone_10 |
---|---|---|---|---|---|---|---|---|---|---|---|
SPEI | Winter | −2.00 M* | −1.99 M* | 0.66 M | −0.31 M | −1.08 M | 0.47 M | −0.43 M | −0.33 M | −1.98 M* | 0.05 M |
−0.02 s | −0.02 s | 0.08 s | −0.00 s | −0.01 s | 0.06 s | −0.00 s | −0.06 s | −0.02 s | 0.01 s | ||
Spring | −1.17 M | 0.05 M | −0.03 M | −0.75 M | −1.54 M | 0.26 M | −1.15 M | −0.94 M | −1.40 M | −1.13 M | |
−0.05 s | 0.00 s | −0.00 s | −0.01 s | −0.02 s | 0.06 s | −0.01 s | −0.01 s | −0.01 s | −0.01 s | ||
Summer | −0.80 M | 0.33 M | −0.15 M | −1.03 M | −0.52 M | 0.59 M | 0.40 M | −0.15 M | −1.97 M* | 0.22 M | |
−0.01 s | 0.00 s | −0.00 s | −0.01 s | −0.06 s | 0.06 s | 0.05 s | −0.00 s | −0.02 s | 0.00 s | ||
Autumn | 0.08 M | −0.71 M | 0.96 M | 0.54 M | 1.24 M | 0.33 M | −0.45 M | 0.87 M | −1.61 M | 0.57 M | |
0.00 s | −0.01 s | 0.01 s | 0.00 s | 0.01 s | 0.04 s | −0.00 s | 0.01 s | −0.00 s | 0.08 s | ||
Annual | −1.33 M | −0.50 M | −0.26 M | 0.73 M | −0.75 M | 0.80M | −0.24 M | −0.61 M | −1.98 M* | −0.26 M | |
−0.01 s | −0.00 s | 0.00 s | 0.01 s | −0.01 s | 0.01 s | −0.00 s | −0.00 s | −0.02 s | −0.00 s |
Extreme Indices | Indices Details | Zone 1 | Zone 2 | Zone 3 | Zone 4 | Zone 5 | Zone_6 | Zone 7 | Zone 8 | Zone 9 | Zone 10 |
---|---|---|---|---|---|---|---|---|---|---|---|
Temperature indices | Mean Tmax | 4.13 M* | 4.05 M* | 4.38 M* | −0.83 M | −0.83 M | −1.13 M | −1.51 M | 1.97 M* | 3.37 M* | 3.54 M* |
0.04 s | 0.02 s | 0.04 s | −0.00 s | −0.00 s | −0.00 s | −0.01 s | 0.02 s | 0.03 s | 0.03 s | ||
Mean Tmin | 4.33 M* | 4.48 M* | 4.89 M* | 4.21 M* | 4.21 M | 4.26 M* | 3.42 M* | 4.18 M* | 3.78 M* | 5.27 M* | |
0.03 s | 0.02 s | 0.04 s | 0.03 s | 0.03 s | 0.02 s | 0.02 s | 0.03 s | 0.03 s | 0.05 s | ||
TXx | 0.94 M | 0.03 M | 4.32 M* | −0.50 M | 1.98 M* | −0.69 M | −1.24 M | 0.57 M | 0.38 M | 1.59 M | |
0.01 s | 0.00 s | 0.06 s | −0.01 s | 0.03 s | −0.01 s | −0.01 s | 0.01 s | 0.00 s | 0.03 s | ||
WSDI | 4.13 M* | 2.82 M* | 3.65 M* | 1.01 M | 3.75 M* | 0.47 M | 0.11 M | 2.63 M | 3.28 M | 3.14 M* | |
0.6 s | 0.00 s | 0.35 s | 0.00 s | 0.44 s | 0.00 s | 0.00 s | 0.31 s | 0.36 s | 0.34 s | ||
SU | 2.48 M* | 1.63 M | 0.00 M | 0.92 M | −1.32 M | −1.32 M | −1.98 M* | −0.24 M | 2.77 M* | 2.57 M* | |
0.53 s | 0.31 s | 0.00 s | 0.16 s | −0.26 s | −0.26 s | 0.00 s | −0.15 s | 0.53 s | 0.66 s | ||
DTR | 2.69 M* | −1.16 M | −0.38 M | −4.95 M* | −3.15 M* | −4.48 M* | −4.14 M* | −1.76 M | 1.53 M | −2.73 M* | |
0.01 s | −0.00 s | −0.00 s | −0.03 s | −0.02 s | −0.03 s | −0.03 s | −0.01 s | 0.01 s | −0.01 s | ||
Precipitation indices | PRCPTOT | −1.40 M | −1.04 M | −3.13 M* | −1.99 M* | −3.36 M* | 1.03 M | 0.75 M | −0.26 M | −0.33 M | −2.76 M* |
−4.31 s | −1.20 s | −5.77 s | −15.2 s | −24.6 s | 1.02 s | 2.79 s | −0.23 s | −0.47 s | −7.49 s | ||
R10 | −1.40 M | −1.23 M | −2.35 M* | −2.32 M* | −2.95 M* | 0.59 M | 0.68 M | −0.02 M | −1.14 M | −3.02 M* | |
0.09 s | −0.04 s | −0.23 s | −0.39 s | −0.46 s | 0.00 s | 0.070 s | 0.00 s | −0.01 s | −0.37 s | ||
R20 | −1.32 M | −0.28 M | −1.55 M | −2.54 M | −3.40 M* | 0.88 M | 0.52 M | 0.13 M | 1.14 M | −2.93 M* | |
0.06 s | 0.00 s | 0.00 s | −0.31 s | −0.43 s | 0.00 s | 0.02 s | 0.00 s | 0.00 s | −0.22 s | ||
R25 | −1.06 M | −0.43 M | −1.14 M | −2.13 M* | −4.03 M* | 0.26 M | 1.05 M | −0.87 M | 0.92 M | −2.66 M* | |
−0.03 s | 0.00 s | 0.00 s | −0.25 s | −0.45 s | 0.00 s | 0.07 s | 0.00 s | 0.00 s | −0.12 s | ||
r95p | −1.12 M | −1.61 M | −1.51 M | −1.22 M | −1.15 M | 0.60 M | 0.72 M | −0.24 M | −0.29 M | −1.57 M | |
−1.32 s | 0.00 s | −1.84 s | −5.72 s | −7.18 s | 0.00 s | 0.00 s | −0.15 s | −0.10 s | −3.84 s | ||
r99p | −0.70 M | −1.99 M* | −1.53 M | −0.20 M | −2.12 M* | −0.25 M | −0.41 M | −0.38 M | −0.09 M | −1.38 M | |
0.00 s | 0.00 s | 0.78 s | 0.00 s | −6.44 s | 0.80 s | 0.00 s | 0.00 s | 0.00 s | −1.63 s | ||
RX1 | −2.00 M* | −1.45 M | −1.06 M | −0.26 M | −1.66 M | 0.01 M | −0.01 M | −0.24 M | 0.00 M | −0.31 M | |
−1.05 s | −0.53 s | −0.10 s | −0.09 s | −2.21 s | 0.00 s | −0.03 s | −0.04 s | 0.00 s | −0.13 s | ||
RX5 | −1.68 M | −1.20 M | −1.75 M | −0.59 M | −2.10 M* | 0.40 M | 0.12 M | −0.57 M | −0.61 M | −2.21 M | |
−1.80 s | −0.73 s | −0.57 s | −0.90 s | −3.76 s | 0.22 s | 0.34 s | −0.15 s | −0.17 s | −0.88 s |
Indices | Seasons | Zone 1 | Zone 2 | Zone 3 | Zone 4 | Zone 5 | Zone 6 | Zone 7 | Zone 8 | Zone 9 | Zone1 0 |
---|---|---|---|---|---|---|---|---|---|---|---|
Mean Tmax | WI | 2.64M* | 2.01 M* | 2.07 M* | -1.06M* | −1.06 M* | −0.92 M* | −1.09 M* | 1.74 M* | 2.43 M* | 3.20 M* |
0.04s | 0.01 s | 0.02 s | −0.01 s | −0.01 s | −0.04 s | −0.01 s | 0.02 s | 0.05 s | 0.06 s | ||
SP | 3.01 M* | 2.44 M* | 3.27 M* | 1.17 M | 1.17 M | 1.08 M | 0.33 M | 1.43 M | 2.32 M | 2.71 M* | |
−0.05 s | 0.01 s | 0.01 s | 0.02 s | 0.02 s | 0.02 s | 0.00 s | 0.04 s | 0.01 s | 0.06 s | ||
SU | 3.90 M* | 1.97 M* | 4.18 M* | −1.17 M | −1.71 M | −1.97 M* | −1.68 M | 0.38 M | 1.59 M | 2.17 M* | |
0.02 s | 0.01 s | 0.04 s | −0.01s s | −0.01 s | −0.02 s | −0.01 s | 0.00 s | 0.01 s | 0.01 s | ||
AU | 4.35 M* | 3.53 M* | 3.83 M* | −2.43 M* | −2.48 M* | −2.36 M* | −2.46 M* | 1.75 M | 2.64 M* | 1.61 M | |
0.04 s | 0.02 s | 0.05 s | −0.01 s | −0.01 s | −0.02 s | −0.02 s | 0.02 s | 0.02 s | 0.01 s | ||
Mean Tmin | WI | 0.27 M | 1.78 M | 1.45 M | 2.01 M* | 2.08 M* | 2.07 M* | 0.94 M | 1.82 M* | 0.73 M | 4.42 M* |
0.00 s | 0.02 s | 0.01 s | 0.02 s | 0.02 s | 0.02 s | 0.01 s | 0.02 s | 0.00 s | 0.07 s | ||
SP | 3.30 M* | 3.26 M* | 2.57 M* | 3.44M* | 3.44 M* | 3.20 M* | 2.02 M* | 2.78 M* | 2.80 M* | 4.18 M* | |
0.04 s | 0.02 s | 0.03 s | 0.05 s | 0.05 s | 0.04 s | 0.02 s | 0.05 s | 0.04 s | 0.06 s | ||
SU | 4.60 M* | 2.43 M* | 3.08 M* | 1.23 M | 1.23 M | 0.92 M | 2.43 M* | 3.08 M* | 3.34 M* | 4.07 M* | |
0.03 s | 0.01 s | 0.04 s | 0.00 s | 0.00 s | 0.00 s | 0.01 s | 0.02 s | 0.23 s | 0.03 s | ||
AU | 4.57 M* | 4.60 M* | 5.57 M* | 4.62 M* | 4.63 M* | 3.14 M* | 3.20 M* | 4.64 M* | 3.54 M* | 5.63 M* | |
0.04 s | 0.03 s | 0.07 s | 0.03 s | 0.03 s | 0.00 s | 0.03 s | 0.05 s | 0.03 s | 0.06 s | ||
TXx | WI | 3.27 M* | 1.66 M | 1.47 M | 0.19 M | 2.63 M* | 0.03 M | −0.75 M | 2.58 M* | 0.82 M | 2.64 M* |
0.05 s | 0.01 s | 0.02 s | 0.00 s | 0.03 s | 0.00 s | −0.00 s | 0.04 s | 0.02 s | 0.04 s | ||
SP | 2.80 M* | 1.54 M | 3.25 M* | 2.59 M* | 3.18 M* | 2.02 M* | 1.36 M | 2.48 M* | 1.52 M | 3.48 M* | |
0.05 s | 0.02 s | 0.06 s | 0.05 s | 0.09 s | 0.03 s | 0.02 s | 0.07 s | 0.05 s | 0.07 s | ||
SU | 1.89 M* | 1.20 M | 4.27 M* | −2.23 M* | 1.66 M | −2.20 M* | −2.94 M* | 0.29 M | 1.64 M | 1.98 M* | |
0.01 s | 0.01 s | 0.05 s | −0.02 s | 0.01 s | −0.02 s | −0.03 s | 0.00 s | 0.03 s | 0.01 s | ||
AU | 3.29 M* | 2.73 M* | 3.97 M* | −2.94 M* | 3.04 M* | −1.13 M | −1.20 M | 1.20 M | 2.17 M* | 0.33 M | |
0.03 s | 0.03 s | 0.06 s | −0.02 s | 0.02 s | −0.01 s | −0.01 s | 0.01 s | 0.04 s | 0.00 s | ||
DTR | WI | 3.89 M* | −0.31 M | −0.18 M | −3.22 M* | −2.43 M* | −3.32 M* | −2.87 M* | 0.29 M | 3.02 M* | −1.38 M |
0.04 s | −0.00 s | 0.00 s | −0.04 s | −0.02 s | −0.04 s | −0.02 s | 0.00 s | 0.04 s | −0.01 s | ||
SP | 1.85 M | 0.88 M | 1.86 M | −1.86 M | −0.36 M | −1.72 M | −1.52 M | −0.60 M | 1.32 M | −0.33 M | |
0.02 s | −0.00 s | 0.01 s | −0.02 s | 0.00 s | −0.01 s | 0.12 s | 0.00 s | 0.01 s | 0.00 s | ||
SU | −1.20 M | −1.29 M | −0.38 M | −3.42 M* | −1.97 M* | −3.46 M* | −2.94 M* | −2.34 M* | −0.95 M | −1.38 M | |
0.00 s | 0.00 s | 0.00 s | −0.02 s | −0.01 s | −0.02 s | −0.02 s | −0.02 s | 0.00 s | −0.00 s | ||
AU | 1.44 M | −2.19 M* | −2.65 M* | −4.83 M* | −4.16 M* | −4.25 M* | −4.52 M* | −2.06 M* | −0.50 M | −3.57 M* | |
0.01 s | −0.01 s | 0.02 s | −0.05 s | −0.04 s | −0.04 s | −0.04 s | −0.02 s | 0.00 s | −0.03 s |
Indices | Seasons | Zone 1 | Zone 2 | Zone 3 | Zone 4 | Zone 5 | Zone 6 | Zone 7 | Zone 8 | Zone 9 | Zone 10 |
---|---|---|---|---|---|---|---|---|---|---|---|
RX1 | WI | −1.24M | −1.98 M* | −0.17 M | 0.68 M | 0.68 M | −0.82 M | 0.50 M | 1.10 M | −0.45 M | −0.26 M |
−0.90 s | −0.23 s | −0.02 s | 0.41 s | 0.41 s | −0.04 s | 0.17 s | 0.17 s | −0.04 s | −0.15 s | ||
SP | −1.50 M | −0.87 M | −1.71 M | −1.38 M | −1.38 M | 0.26 M | 0.50 M | −0.38 M | −0.73 M | −2.68 M* | |
−0.62 s | −0.01 s | −0.36 s | −1.06 s | −1.06 s | 0.01 s | 0.09 s | −0.70 s | −0.09 s | −0.33 s | ||
SU | −0.36 M | −0.24 M | −0.31 M | −1.29 M | −1.29 M | 0.05 M | 0.17 M | −0.47 M | −1.06 M | −0.87 M | |
−0.07 s | −0.08 s | −0.05 s | −1.50 s | −1.50 s | 0.02 s | 0.18 s | −0.09 s | −0.04 s | −0.15 s | ||
AU | 0.38 M | −0.08 M | −1.08 M | −0.15 M | −0.51 M | 0.00 M | 0.36 M | −0.33 M | −0.40 M | −1.85 M | |
0.00 s | −0.00 s | −0.17 s | −0.08 s | −0.08 s | 0.00 s | 0.09 s | −0.05 s | −0.02 s | −0.22 s | ||
RX5 | WI | −0.87 M | −1.64 M | 0.12 M | −0.87 M | −0.22 M | −0.52 M | 0.22 M | 0.89 M | −0.87 M | −0.82 M |
−1.37 s | −0.29 s | 0.02 s | −0.45 s | −0.29 s | −0.06 s | 0.11 s | 0.20 s | −0.25 s | −0.83 s | ||
SP | −1.40 M | −1.50 M | −1.94 M* | −1.61 M | −1.64 M | 0.29 M | 0.50 M | −0.36 M | −0.89 M | −2.41 M* | |
−0.92 s | −0.10 s | −1.07 s | −2.27 s | 2.27 s | 0.03 s | 0.13 s | −0.15 s | −0.29 s | −2.16 s | ||
SU | −0.29 M | −0.38 M | −0.38 M | −1.20 M | −1.20 M | 0.17 M | −0.17 M | −0.80 M | −0.45 M | −1.59 M | |
−0.13 s | −0.34 s | −0.21 s | −3.18 s | −3.18 s | 0.12 s | −0.19 s | −0.41 s | −0.15 s | −1.31 s | ||
AU | 0.47 M | 0.54 M | −0.92 M | 0.17 M | 0.17 M | 0.87 M | 1.15 M | −0.19 M | 0.17 M | −1.31 M | |
0.12 s | 0.04 s | −0.33 s | 0.47 s | 0.47 s | 0.18 s | 0.29 s | −0.04 s | 0.02 s | −0.84 s |
Indices | Factors | |
---|---|---|
1 | 2 | |
Mean Tmax | 0.86 | 0.49 |
Mean Tmin | 0.97 | −0.20 |
TXx | 0.41 | 0.19 |
WSDI | 0.74 | 0.08 |
SU | 0.76 | 0.53 |
DTR | 0.13 | 0.99 |
Variance (%) | 0.50 | 0.26 |
PRCPTOT | 0.89 | 0.42 |
R10 | 0.95 | 0.20 |
R20 | 0.96 | 0.23 |
Rnn | 0.94 | 0.27 |
R95p | 0.61 | 0.66 |
R99p | 0.29 | 0.86 |
RX1 | 0.18 | 0.92 |
RX5 | 0.26 | 0.93 |
Variance (%) | 0.51 | 0.40 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dilawar, A.; Chen, B.; Arshad, A.; Guo, L.; Ehsan, M.I.; Hussain, Y.; Kayiranga, A.; Measho, S.; Zhang, H.; Wang, F.; et al. Towards Understanding Variability in Droughts in Response to Extreme Climate Conditions over the Different Agro-Ecological Zones of Pakistan. Sustainability 2021, 13, 6910. https://doi.org/10.3390/su13126910
Dilawar A, Chen B, Arshad A, Guo L, Ehsan MI, Hussain Y, Kayiranga A, Measho S, Zhang H, Wang F, et al. Towards Understanding Variability in Droughts in Response to Extreme Climate Conditions over the Different Agro-Ecological Zones of Pakistan. Sustainability. 2021; 13(12):6910. https://doi.org/10.3390/su13126910
Chicago/Turabian StyleDilawar, Adil, Baozhang Chen, Arfan Arshad, Lifeng Guo, Muhammad Irfan Ehsan, Yawar Hussain, Alphonse Kayiranga, Simon Measho, Huifang Zhang, Fei Wang, and et al. 2021. "Towards Understanding Variability in Droughts in Response to Extreme Climate Conditions over the Different Agro-Ecological Zones of Pakistan" Sustainability 13, no. 12: 6910. https://doi.org/10.3390/su13126910
APA StyleDilawar, A., Chen, B., Arshad, A., Guo, L., Ehsan, M. I., Hussain, Y., Kayiranga, A., Measho, S., Zhang, H., Wang, F., Sun, X., & Ge, M. (2021). Towards Understanding Variability in Droughts in Response to Extreme Climate Conditions over the Different Agro-Ecological Zones of Pakistan. Sustainability, 13(12), 6910. https://doi.org/10.3390/su13126910