Growing Season Precipitation Rather than Growing Season Length Predominates Maximum Normalized Difference Vegetation Index in Alpine Grasslands on the Tibetan Plateau
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. MOD13A2 and Phenological Metrics
2.3. Climatic Data
2.4. Statistical Analysis
3. Results
3.1. Changes of GSP, Ta, AccT, GSP/AccT, SGS, EGS, GSL and NDVImax
3.2. Relationships between NDVImax and Phenological and Climatic Variables
4. Discussion
4.1. Effect of Climate Change
4.2. Effects of GSL on NDVImax
4.3. Stronger Effect of GSP on NDVImax than that of GSL
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Wan, S.; Hui, D.; Wallace, L.; Luo, Y. Direct and indirect effects of experimental warming on ecosystem carbon processes in a tallgrass prairie. Glob. Biogeochem. Cycles 2005, 19. [Google Scholar] [CrossRef]
- Berdanier, A.B.; Klein, J.A. Growing Season Length and Soil Moisture Interactively Constrain High Elevation Aboveground Net Primary Production. Ecosystems 2011, 14, 963–974. [Google Scholar] [CrossRef]
- Kross, A.S.E.; Roulet, N.T.; Moore, T.R.; LaFleur, P.M.; Humphreys, E.R.; Seaquist, J.W.; Flanagan, L.B.; Aurela, M. Phenology and its role in carbon dioxide exchange processes in northern peatlands. J. Geophys. Res. Biogeosci. 2014, 119, 1370–1384. [Google Scholar] [CrossRef]
- Song, C.-Q.; You, S.-C.; Ke, L.-H.; Liu, G.-H.; Zhong, X.-K. Spatio-temporal variation of vegetation phenology in the Northern Tibetan Plateau as de-tected by MODIS remote sensing. Chin. J. Plant Ecol. 2011, 35, 853–863. [Google Scholar] [CrossRef]
- Chu, D.; Pubu, C.R.; Deji, Y.Z.; Ji, Q.M.; Tang, H. Aboveground biomass estimate methods of grassland in the Central Tibet. J. Mt. Sci. 2013, 31, 664–671. [Google Scholar]
- Wang, S.; Duan, J.; Xu, G.; Wang, Y.; Zhang, Z.; Rui, Y.; Luo, C.; Xu, B.; Zhu, X.; Chang, X.; et al. Effects of warming and grazing on soil N availability, species composition, and ANPP in an alpine meadow. Ecology 2012, 93, 2365–2376. [Google Scholar] [CrossRef]
- Piao, S.; Cui, M.; Chen, A.; Wang, X.; Ciais, P.; Liu, J.; Tang, Y. Altitude and temperature dependence of change in the spring vegetation green-up date from 1982 to 2006 in the Qinghai-Xizang Plateau. Agric. For. Meteorol. 2011, 151, 1599–1608. [Google Scholar] [CrossRef]
- Miller, P.A.; Smith, B. Modelling Tundra Vegetation Response to Recent Arctic Warming. Ambio 2012, 41, 281–291. [Google Scholar] [CrossRef] [Green Version]
- Shen, M.; Tang, Y.; Chen, J.; Zhu, X.; Zheng, Y. Influences of temperature and precipitation before the growing season on spring phenology in grasslands of the central and eastern Qinghai-Tibetan Plateau. Agric. For. Meteorol. 2011, 151, 1711–1722. [Google Scholar] [CrossRef]
- Chen, H.; Zhu, Q.; Wu, N.; Wang, Y.; Peng, C.-H. Delayed spring phenology on the Tibetan Plateau may also be attributable to other factors than winter and spring warming. Proc. Natl. Acad. Sci. USA 2011, 108, E93. [Google Scholar] [CrossRef] [Green Version]
- Parmentier, F.-J.; Van Der Molen, M.K.; Van Huissteden, J.; Karsanaev, S.A.; Kononov, A.; Suzdalov, D.A.; Maximov, T.C.; Dolman, A.J. Longer growing seasons do not increase net carbon uptake in the northeastern Siberian tundra. J. Geophys. Res. Space Phys. 2011, 116, 116. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.; Gonsamo, A.; Chen, J.M.; Kurz, W.A.; Price, D.T.; LaFleur, P.M.; Jassal, R.S.; Dragoni, D.; Bohrer, G.; Gough, C.M.; et al. Interannual and spatial impacts of phenological transitions, growing season length, and spring and autumn temperatures on carbon sequestration: A North America flux data synthesis. Glob. Planet. Chang. 2012, 92, 179–190. [Google Scholar] [CrossRef] [Green Version]
- Hu, J.; Moore, D.J.P.; Burns, S.P.; Monson, R.K. Longer growing seasons lead to less carbon sequestration by a subalpine forest. Glob. Chang. Boil. 2010, 16, 771–783. [Google Scholar] [CrossRef]
- Xia, J.; Wan, S. The Effects of Warming-Shifted Plant Phenology on Ecosystem Carbon Exchange Are Regulated by Precipitation in a Semi-Arid Grassland. PLoS ONE 2012, 7, e32088. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, Z.; Fu, G.; Yu, C.; Sun, W.; Zhang, X. Relationship between the Growing Season Maximum Enhanced Vegetation Index and Climatic Factors on the Tibetan Plateau. Remote Sens. 2014, 6, 6765–6789. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.J.; Liu, L.Y. Effects of phenological change on ecosystem productivity of temperate deciduous broadleaved forests in North America. Chin. J. Plant Ecol. 2012, 36, 363–371. [Google Scholar] [CrossRef]
- Boelman, N.T.; Stieglitz, M.; Rueth, H.M.; Sommerkorn, M.; Griffin, K.L.; Shaver, G.R.; Gamon, J.A. Response of NDVI, biomass, and ecosystem gas exchange to long-term warming and fertilization in wet sedge tundra. Oecologia 2003, 135, 414–421. [Google Scholar] [CrossRef]
- Yang, Y.; Fang, J.; Pan, Y.; Ji, C. Aboveground biomass in Tibetan grasslands. J. Arid. Environ. 2009, 73, 91–95. [Google Scholar] [CrossRef]
- Paruelo, J.M.; Epstein, H.E.; Lauenroth, W.K.; Burke, I.C. ANPP estimates from NDVI for the central grassland region of the United States. Ecology 1997, 78, 953–958. [Google Scholar] [CrossRef]
- Klein, J.A.; Harte, J.; Zhao, X.-Q. Experimental warming, not grazing, decreases rangeland quality on the Tibetan Plateau. Ecol. Appl. 2007, 17, 541–557. [Google Scholar] [CrossRef]
- Wang, S.-H.; Sun, W.; Li, S.-W.; Shen, Z.-X.; Fu, G. Interannual Variation of the Growing Season Maximum Normalized Difference Vegetation Index, MNDVI, and Its Relationship with Climatic Factors on the Tibetan Plateau. Pol. J. Ecol. 2015, 63, 424–439. [Google Scholar] [CrossRef]
- Takagi, K.; Hirata, R.; Ide, R.; Ueyama, M.; Ichii, K.; Saigusa, N.; Hirano, T.; Asanuma, J.; Li, S.-G.; Machimura, T.; et al. Spatial and seasonal variations of CO2flux and photosynthetic and respiratory parameters of larch forests in East Asia. Soil Sci. Plant Nutr. 2015, 61, 61–75. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Zhang, B.; Yang, Q.; Chen, G.; Yang, B.; Lu, L.; Shen, M.; Peng, Y. Responses of net primary productivity to phenological dynamics in the Tibetan Plateau, China. Agric. For. Meteorol. 2017, 232, 235–246. [Google Scholar] [CrossRef]
- Yang, Y.H.; Piao, S.L. Variations in grassland vegetation cover in relation to climatic factors on the Tibetan Plateau. Chin. J. Plant Ecol. 2006, 30, 1–8. [Google Scholar]
- Ni, J. Carbon storage in grasslands of China. J. Arid. Environ. 2002, 50, 205–218. [Google Scholar] [CrossRef]
- Chen, B.; Zhang, X.; Tao, J.; Wu, J.; Wang, J.; Shi, P.; Zhang, Y.; Yu, C. The impact of climate change and anthropogenic activities on alpine grassland over the Qinghai-Tibet Plateau. Agric. For. Meteorol. 2014, 189, 11–18. [Google Scholar] [CrossRef]
- Zhu, J.; Zhang, Y.; Jiang, L. Experimental warming drives a seasonal shift of ecosystem carbon exchange in Tibetan alpine meadow. Agric. For. Meteorol. 2017, 233, 242–249. [Google Scholar] [CrossRef] [Green Version]
- Yang, B.J.; Wang, S.Y.; Chang, Q.; Sun, Y.X.; Yin, H.; Wang, X.Y. Response of NPP to phenology changes in the Tibet Plateau. Geogr. Geo-Inf. Sci. 2015, 31, 115–120. [Google Scholar]
- Sun, J.; Cheng, G.; Li, W.; Sha, Y.; Yang, Y. On the Variation of NDVI with the Principal Climatic Elements in the Tibetan Plateau. Remote Sens. 2013, 5, 1894–1911. [Google Scholar] [CrossRef] [Green Version]
- Cong, N.; Piao, S.; Chen, A.; Wang, X.; Lin, X.; Chen, S.; Han, S.; Zhou, G.; Zhang, X. Spring vegetation green-up date in China inferred from SPOT NDVI data: A multiple model analysis. Agric. For. Meteorol. 2012, 165, 104–113. [Google Scholar] [CrossRef]
- Zhang, L.; Guo, H.; Ji, L.; Lei, L.; Wang, C.; Yan, D.; Li, B.; Li, J. Vegetation greenness trend (2000 to 2009) and the climate controls in the Qinghai-Tibetan Plateau. J. Appl. Remote Sens. 2013, 7, 073572. [Google Scholar] [CrossRef]
- Deng, S.-F.; Yang, T.-B.; Zeng, B.; Zhu, X.-F.; Xu, H.-J. Vegetation cover variation in the Qilian Mountains and its response to climate change in 2000–2011. J. Mt. Sci. 2013, 10, 1050–1062. [Google Scholar] [CrossRef]
- Wang, Z.; Luo, T.X.; Li, R.C.; Tang, Y.H.; Du, M.Y. Causes for the unimodal pattern of biomass and productivity in alpine grasslands along a large altitudinal gradient in semi-arid regions. J. Veg. Sci. 2013, 24, 189–201. [Google Scholar] [CrossRef]
- Wu, J.; Shen, Z.; Zhang, X. Precipitation and species composition primarily determine the diversity–productivity relationship of alpine grasslands on the Northern Tibetan Plateau. Alp. Bot. 2014, 124, 13–25. [Google Scholar] [CrossRef]
- Hu, M.Q.; Mao, F.; Sun, H.; Hou, Y.Y. Study of normalized difference vegetation index variation and its correlation with climate factors in the three-river-source region. Int. J. Appl. Earth Obs. Geoinf. 2011, 13, 24–33. [Google Scholar] [CrossRef]
- Chu, D.; Lu, L.; Zhang, T.; Zhang‡§, D.C.L.L.T. Sensitivity of Normalized Difference Vegetation Index (NDVI) to Seasonal and Interannual Climate Conditions in the Lhasa Area, Tibetan Plateau, China. Arct. Antarct. Alp. Res. 2007, 39, 635–641. [Google Scholar] [CrossRef]
- Yu, S.-M.; Liu, J.-S.; Yuan, J.-G. Vegetation change of Yamzho Yumco Basin in southern Tibet based on SPOT-VGT NDVI. Guang pu xue yu guang pu fen xi 2010, 30, 1570–1574. [Google Scholar]
- Ji, Z.; Kang, S. Double-Nested Dynamical Downscaling Experiments over the Tibetan Plateau and Their Projection of Climate Change under Two RCP Scenarios. J. Atmos. Sci. 2013, 70, 1278–1290. [Google Scholar] [CrossRef]
- Shen, Z.-X.; Li, Y.-L.; Fu, G. Response of soil respiration to short-term experimental warming and precipitation pulses over the growing season in an alpine meadow on the Northern Tibet. Appl. Soil Ecol. 2015, 90, 35–40. [Google Scholar] [CrossRef]
- Fu, G.; Shen, Z.; Zhang, X.; Shi, P.; He, Y.; Zhang, Y.; Sun, W.; Wu, J.; Zhou, Y.; Pan, X.; et al. Calibration of MODIS-based gross primary production over an alpine meadow on the Tibetan Plateau. Can. J. Remote Sens. 2012, 38, 157–168. [Google Scholar] [CrossRef] [Green Version]
- Piao, S.; Friedlingstein, P.; Ciais, P.; Viovy, N.; Demarty, J. Growing season extension and its impact on terrestrial carbon cycle in the Northern Hemisphere over the past 2 decades. Glob. Biogeochem. Cycles 2007, 21, 1148–1154. [Google Scholar] [CrossRef]
- Baptist, F.; Flahaut, C.; Streb, P.; Choler, P. No increase in alpine snowbed productivity in response to experimental lengthening of the growing season. Plant Boil. 2010, 12, 755–764. [Google Scholar] [CrossRef] [PubMed]
- Niu, B.; He, Y.; Zhang, X.; Du, M.; Shi, P.; Sun, W. CO2 Exchange in an Alpine Swamp Meadow on the Central Tibetan Plateau. Wetlands 2017, 37, 525–543. [Google Scholar] [CrossRef]
- Fu, G.; Shen, Z.X. Environmental Humidity Regulates Effects of Experimental Warming on Vegetation Index and Biomass Production in an Alpine Meadow of the Northern Tibet. PLoS ONE 2016, 11, e0165643. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niemand, C.; Köstner, B.; Prasse, H.; Grunwald, T.; Bernhofer, C. Relating tree phenology with annual carbon fluxes at Tharandt forest. Meteorol. Z. 2005, 14, 197–202. [Google Scholar] [CrossRef] [Green Version]
No | slope AccT (°C a−1) | slope GSP (mm a−1) | slope Ta (°C a−1 ) | slope GSP/AccT (mm °C −1 a−1) | slope SGS (d a−1) | slope EGS (d a−1) | slope GSL (d a−1) | slope NDVImax (a−1) |
---|---|---|---|---|---|---|---|---|
52633 | 3.66 | 3.12 | 0.02 | 0.00 | 0.13 | 0.24 | 0.11 | 0.007 |
52645 | 6.94 | 7.91 | 0.03 | 0.01 | −0.91 | −0.34 | 0.57 | −0.002 |
52657 | 21.23 | 5.55 | −0.03 | 0.00 | −1.36 | 0.64 | 2.00 | 0.005 |
52707 | 38.18 | 1.72 | −0.07 | 0.00 | −2.53 | 0.57 | 3.10 | 0.007 |
52754 | 15.82 | 3.24 | −0.02 | 0.00 | −1.27 | 0.98 | 2.25 | −0.005 |
52818 | 2.99 | 0.90 | 0.03 | 0.00 | −0.14 | −0.34 | −0.20 | 0.002 |
52908 | 5.90 | 7.46 | −0.06 | 0.02 | −1.07 | 1.55 | 2.61 | 0.001 |
52943 | −5.28 | 4.20 | 0.06 | 0.00 | 0.37 | −0.79 | −1.16 | −0.002 |
52974 | 15.66 | 6.94 | 0.02 | 0.00 | −0.50 | 0.35 | 0.85 | −0.001 |
55248 | 3.78 | 1.65 | 0.05 | 0.00 | 0.15 | 0.03 | −0.12 | −0.002 |
55279 | 4.65 | 4.47 | 0.02 | 0.00 | −0.05 | 0.42 | 0.47 | 0.003 |
55294 | 2.02 | −0.14 | 0.07 | 0.00 | −1.59 | −1.83 | −0.24 | −0.001 |
55299 | 4.31 | −4.74 | −0.01 | −0.01 | 0.61 | 1.38 | 0.77 | −0.004 |
55472 | 2.60 | −1.14 | 0.05 | 0.00 | 0.88 | 0.32 | −0.55 | 0.011 |
55493 | 8.81 | −15.23 | 0.10 | −0.01 | 0.83 | 0.18 | −0.65 | −0.003 |
55664 | 17.48 | 2.85 | −0.04 | 0.00 | 0.29 | 1.41 | 1.11 | 0.002 |
55773 | −5.60 | 1.29 | 0.05 | 0.00 | 1.54 | −0.69 | −2.23 | 0.004 |
56004 | 11.92 | 3.76 | 0.03 | 0.00 | −0.97 | −0.83 | 0.14 | 0.001 |
56018 | 11.96 | 3.59 | 0.02 | 0.00 | −0.12 | 1.15 | 1.26 | 0.000 |
56021 | 16.08 | 12.69 | 0.03 | 0.01 | −1.94 | −0.20 | 1.74 | 0.009 |
56033 | 9.25 | 7.34 | 0.04 | 0.01 | −1.70 | −0.67 | 1.02 | 0.002 |
56034 | 14.25 | 12.91 | 0.06 | 0.01 | −0.97 | −0.20 | 0.77 | 0.000 |
56038 | 12.72 | 5.97 | 0.11 | 0.00 | 0.10 | −0.32 | −0.42 | 0.001 |
56043 | 9.49 | 8.15 | 0.10 | 0.00 | 0.38 | −0.40 | −0.78 | 0.006 |
56046 | 12.92 | 9.03 | 0.04 | 0.00 | −0.85 | 0.22 | 1.07 | 0.005 |
56065 | 14.07 | 13.27 | 0.03 | 0.01 | −0.81 | 0.81 | 1.62 | −0.003 |
56067 | 8.14 | 5.53 | 0.07 | 0.00 | −0.43 | −0.84 | −0.40 | −0.001 |
56074 | 16.64 | 1.56 | 0.03 | 0.00 | −0.63 | 0.70 | 1.32 | 0.004 |
56079 | 21.40 | 11.00 | 0.09 | 0.00 | −1.18 | −0.32 | 0.86 | 0.003 |
56151 | 8.54 | 6.06 | 0.05 | 0.00 | −0.60 | −0.41 | 0.19 | −0.006 |
56152 | 9.34 | 3.72 | 0.05 | 0.00 | −0.12 | 0.19 | 0.31 | 0.002 |
56167 | 45.48 | 4.05 | −0.04 | 0.00 | −2.26 | 1.62 | 3.89 | 0.003 |
56173 | 13.26 | 9.78 | 0.09 | 0.00 | −0.73 | −0.79 | −0.06 | 0.003 |
56257 | 9.43 | −12.75 | 0.05 | −0.01 | 1.34 | 1.11 | −0.23 | −0.007 |
56342 | 5.16 | −8.01 | 0.05 | −0.01 | −0.07 | −0.07 | 0.00 | −0.009 |
56357 | 28.75 | −9.48 | 0.05 | −0.01 | −1.08 | 0.79 | 1.87 | −0.004 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.W.; Li, M.; Zhang, G.Y.; Zhang, H.R.; Yu, C.Q. Growing Season Precipitation Rather than Growing Season Length Predominates Maximum Normalized Difference Vegetation Index in Alpine Grasslands on the Tibetan Plateau. Sustainability 2020, 12, 968. https://doi.org/10.3390/su12030968
Wang JW, Li M, Zhang GY, Zhang HR, Yu CQ. Growing Season Precipitation Rather than Growing Season Length Predominates Maximum Normalized Difference Vegetation Index in Alpine Grasslands on the Tibetan Plateau. Sustainability. 2020; 12(3):968. https://doi.org/10.3390/su12030968
Chicago/Turabian StyleWang, Jiang Wei, Meng Li, Guang Yu Zhang, Hao Rui Zhang, and Cheng Qun Yu. 2020. "Growing Season Precipitation Rather than Growing Season Length Predominates Maximum Normalized Difference Vegetation Index in Alpine Grasslands on the Tibetan Plateau" Sustainability 12, no. 3: 968. https://doi.org/10.3390/su12030968
APA StyleWang, J. W., Li, M., Zhang, G. Y., Zhang, H. R., & Yu, C. Q. (2020). Growing Season Precipitation Rather than Growing Season Length Predominates Maximum Normalized Difference Vegetation Index in Alpine Grasslands on the Tibetan Plateau. Sustainability, 12(3), 968. https://doi.org/10.3390/su12030968