Predicting the Compressive Strength of Rubberized Concrete Using Artificial Intelligence Methods
Abstract
:1. Introduction
2. Methodology of the Study
Artificial Intelligence Modelling Techniques
3. Results and Discussion
3.1. Comparing GPR and SVM Model Performance
3.2. Influence of w/c Ratio on the Compressive Strength: Calibration Laws
- for soaked rubber particles in the mixture
- for non-soaked rubber particles in the mixture
- for soaked rubber particles in the mixture
- for non-soaked rubber particles in the mixture
3.3. Validation of the Predicted Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Mixtures | Cement kg/m3 | Sand kg/m3 | Gravel kg/m3 | Water kg/m3 | Type of Additions | Pre-Treatments of Rubber | w/c | Total Volume of Aggregates /m3 | % Fine Aggregates (/Total Volume of Aggregates) | % Coarse Aggregates (/Total Volume of Aggregates) | % Substitution of Fine Aggregates (Referred to the Volume of Fine Aggregates) | Compressive Strength MPa | SRF |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Eldin and Senouci [35] | 447 | 629 | 1116 | 214 | Soaked in water | 0.48 | 0.72 | 36.11 | 63.89 | 0 | 35 | 1.00 | |
25 | 23.4 | 0.67 | |||||||||||
50 | 19.2 | 0.55 | |||||||||||
75 | 14.7 | 0.42 | |||||||||||
100 | 12.4 | 0.35 | |||||||||||
Topcu [41] | 357.5 | 609 | 1148.1 | 222.4 | 0.62 | 0.66 | 34.85 | 65.15 | 0 | 23.48 | 1.00 | ||
15 | 23.22 | 0.99 | |||||||||||
30 | 19.7 | 0.84 | |||||||||||
45 | 14.77 | 0.63 | |||||||||||
Khatib and Bayomy [40] | 388 | 786 | 1024 | 186 | 0.48 | 0.68 | 42.65 | 57.35 | 0 | 37.5 | 1.00 | ||
5 | 35 | 0.93 | |||||||||||
10 | 30.5 | 0.81 | |||||||||||
15 | 29 | 0.77 | |||||||||||
20 | 25.7 | 0.69 | |||||||||||
40 | 18 | 0.48 | |||||||||||
60 | 9 | 0.24 | |||||||||||
80 | 4.8 | 0.13 | |||||||||||
100 | 3 | 0.08 | |||||||||||
Batayneh et al. [34] | 446 | 585 | 961 | 0.56 | 0.69 | 37.68 | 62.32 | 0 | 25.33 | 1.00 | |||
20 | 18.96 | 0.75 | |||||||||||
40 | 12.27 | 0.48 | |||||||||||
60 | 8.07 | 0.32 | |||||||||||
80 | 4.47 | 0.18 | |||||||||||
100 | 2.5 | 0.10 | |||||||||||
Aiello and Leuzzi [28] | 335 | 279 + 1116 | 465 | 200 | superplasti cizer | 0.60 | 0.79 | 74.68 | 25.32 | 0 | 27.11 | 1.00 | |
3 | 23.97 | 0.88 | |||||||||||
6 | 20.41 | 0.75 | |||||||||||
10 | 19.45 | 0.72 | |||||||||||
15 | 17.06 | 0.63 | |||||||||||
El-Gammal et al. [36] | 350 | 588 | 980 | 0.35 | 0.77 | 37.66 | 62.34 | 0 | 26.9 | 1.00 | |||
50 | 5.29 | 0.20 | |||||||||||
100 | 4.94 | 0.18 | |||||||||||
Godfrey [38] | 475 | 775 | 950 | Soaked in water | 0.38 | 0.73 | 44.52 | 55.48 | 0 | 58.39 | 1.00 | ||
20 | 27.55 | 0.47 | |||||||||||
40 | 16.13 | 0.28 | |||||||||||
Grinys et al. [39] | 451 | 875 | 949 | superplasti cizer | 0.35 | 0.75 | 48 | 52 | 0 | 64 | 1.00 | ||
10.4 | 48.3 | 0.72 | |||||||||||
20.8 | 40.3 | 0.53 | |||||||||||
41.7 | 19.6 | 0.30 | |||||||||||
62.5 | 10.5 | 0.16 | |||||||||||
Tung-Chai Ling [42] | 328 | 1246.4 | 590.4 | superplasti cizer | 0.45 | 0.82 | 56.7 | 43.3 | 0 | 31.1 | 1.00 | ||
10 | 42.5 | 1.37 | |||||||||||
20 | 15.6 | 0.50 | |||||||||||
30 | 11.7 | 0.38 | |||||||||||
Mohammed and Azmi [32] | 556.1 | 803.58 | 697.32 | 228 | 0.41 | 0.66 | 53.03 | 46.97 | 0 | 35.5 | 1.00 | ||
10 | 25.7 | 0.72 | |||||||||||
15 | 21.2 | 0.60 | |||||||||||
20 | 18.2 | 0.51 | |||||||||||
30 | 14.3 | 0.40 | |||||||||||
Mohammed and Azmi [32] | 400 | 887.16 | 769.84 | 228 | 0.57 | 0.73 | 53.42 | 46.58 | 0 | 29.56 | 1.00 | ||
10 | 20.21 | 0.68 | |||||||||||
15 | 17.5 | 0.59 | |||||||||||
20 | 14.5 | 0.49 | |||||||||||
30 | 11.13 | 0.38 | |||||||||||
Mohammed and Azmi [32] | 335.29 | 921.8 | 799.9 | 228 | 0.68 | 0.75 | 53.33 | 46.67 | 0 | 23.4 | 1.00 | ||
10 | 18.2 | 0.78 | |||||||||||
15 | 15.6 | 0.67 | |||||||||||
20 | 12.43 | 0.53 | |||||||||||
30 | 10.5 | 0.45 | |||||||||||
Mohammed and Azmi [32] | 592.68 | 775.96 | 673.35 | 243 | 0.41 | 0.63 | 53.54 | 46.46 | 0 | 44.3 | 1.00 | ||
10 | 34.21 | 0.77 | |||||||||||
15 | 24.56 | 0.55 | |||||||||||
20 | 22.19 | 0.50 | |||||||||||
30 | 18.56 | 0.42 | |||||||||||
Mohammed and Azmi [32] | 426.32 | 865.03 | 750.65 | 243 | 0.57 | 0.71 | 53.54 | 46.46 | 0 | 36.5 | 1.00 | ||
10 | 26.2 | 0.72 | |||||||||||
15 | 21.74 | 0.60 | |||||||||||
20 | 18.45 | 0.51 | |||||||||||
30 | 12.3 | 0.34 | |||||||||||
Mohammed and Azmi [32] | 357.35 | 901.96 | 782.69 | 243 | 0.68 | 0.74 | 53.54 | 46.46 | 0 | 30.12 | 1.00 | ||
10 | 19.39 | 0.64 | |||||||||||
15 | 17.24 | 0.57 | |||||||||||
20 | 15.5 | 0.51 | |||||||||||
30 | 11.1 | 0.37 | |||||||||||
Mohammed and Azmi [32] | 629.27 | 748.35 | 649.39 | 258 | 0.41 | 0.61 | 53.54 | 46.46 | 0 | 48.1 | 1.00 | ||
10 | 37.2 | 0.77 | |||||||||||
15 | 27.1 | 0.56 | |||||||||||
20 | 24.5 | 0.51 | |||||||||||
30 | 20.1 | 0.42 | |||||||||||
Mohammed and Azmi [32] | 452.63 | 842.92 | 731.45 | 258 | 0.57 | 0.69 | 53.54 | 46.46 | 0 | 40.1 | 1.00 | ||
10 | 28.8 | 0.72 | |||||||||||
15 | 23.2 | 0.58 | |||||||||||
20 | 20.1 | 0.50 | |||||||||||
30 | 14.3 | 0.36 | |||||||||||
Mohammed and Azmi [32] | 379.41 | 882.12 | 765.47 | 258 | 0.68 | 0.72 | 53.54 | 46.46 | 0 | 34.2 | 1.00 | ||
10 | 22.5 | 0.66 | |||||||||||
15 | 19.6 | 0.57 | |||||||||||
20 | 17.1 | 0.50 | |||||||||||
30 | 13.4 | 0.39 |
References
- Thomas, B.S.; Gupta, R.C.; Panicker, V.J. Recycling of waste tire rubber as aggregate in concrete: Durability-related performance. J. Clean. Prod. 2016, 112, 504–513. [Google Scholar] [CrossRef]
- Mohammed, B.S.; Anwar Hossain, K.M.; Eng Swee, J.T.; Wong, G.; Abdullahi, M. Properties of crumb rubber hollow concrete block. J. Clean. Prod. 2012, 23, 57–67. [Google Scholar] [CrossRef]
- Benazzouk, A.; Douzane, O.; Mezreb, K.; Quéneudec, M. Physico-mechanical properties of aerated cement composites containing shredded rubber waste. Cem. Concr. Compos. 2006, 28, 650–657. [Google Scholar] [CrossRef]
- Colom, X.; Cañavate, J.; Carrillo, F.; Velasco, J.I.; Pagès, P.; Mujal, R.; Nogués, F. Structural and mechanical studies on modified reused tyres composites. Eur. Polym. J. 2006, 42, 2369–2378. [Google Scholar] [CrossRef]
- Hernández-Olivares, F.; Barluenga, G.; Bollati, M.; Witoszek, B. Static and dynamic behaviour of recycled tyre rubber-filled concrete. Cem. Concr. Res. 2002, 32, 1587–1596. [Google Scholar] [CrossRef]
- Lee, B.I.; Burnett, L.; Miller, T.; Postage, B.; Cuneo, J. Tyre rubber/cement matrix composites. J. Mater. Sci. Lett. 1993, 12, 967–968. [Google Scholar] [CrossRef]
- Rostami, H.; Lepore, J.; Silverstraim, T.; Zundi, I. Use of recycled rubber tires in concrete. In Proceedings of the International Conference: Concrete 2000: Economic and Durable Construction through Excellence, Dundee, UK, 7–9 September 1993; pp. 391–399. [Google Scholar]
- Segre, N.; Joekes, I. Use of tire rubber particles as addition to cement paste. Cem. Concr. Res. 2000, 30, 1421–1425. [Google Scholar] [CrossRef]
- Skripkiunas, G.; Grinys, A.; Černius, B. Deformation properties of concrete with rubber waste additives. Mater. Sci. 2007, 13, 219–223. [Google Scholar]
- Skripkiunas, G.; Grinys, A.; Daukšys, M. Using tires rubber waste for modification of concrete properties. In Proceedings of the Sustainable Construction Materials and Technologies International Conference, Coventry, UK, 11 June 2007; pp. 85–90. [Google Scholar]
- De Brito, J.; Saikia, N. Recycled Aggregate in Concrete: Use of Industrial, Construction and Demolition Waste; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Demir, F.; Yesilata, B.; Turgut, P.; Bulut, H.; Isiker, Y. Investigation of the effects of pH, aging and scrap tire content on the dissolution behaviors of new scrap tire-concrete mixture structures. J. Clean. Prod. 2015, 93, 38–46. [Google Scholar] [CrossRef]
- Shu, X.; Huang, B. Recycling of waste tire rubber in asphalt and portland cement concrete: An overview. Constr. Build. Mater. 2014, 67, 217–224. [Google Scholar] [CrossRef]
- Mohammed, B.S.; Azmi, N.J.; Abdullahi, M. Evaluation of rubbercrete based on ultrasonic pulse velocity and rebound hammer tests. Constr. Build. Mater. 2011, 25, 1388–1397. [Google Scholar] [CrossRef]
- Mohammed, B.S. Structural behavior and m-k value of composite slab utilizing concrete containing crumb rubber. Constr. Build. Mater. 2010, 24, 1214–1221. [Google Scholar] [CrossRef]
- Ganjian, E.; Khorami, M.; Maghsoudi, A.A. Scrap-tyre-rubber replacement for aggregate and filler in concrete. Constr. Build. Mater. 2009, 23, 1828–1836. [Google Scholar] [CrossRef]
- Bravo, M.; De Brito, J. Concrete made with used tyre aggregate: Durability-related performance. J. Clean. Prod. 2012, 25, 42–50. [Google Scholar] [CrossRef]
- Li, G.; Stubblefield, M.A.; Garrick, G.; Eggers, J.; Abadie, C.; Huang, B. Development of waste tire modified concrete. Cem. Concr. Res. 2004, 34, 2283–2289. [Google Scholar] [CrossRef]
- Onuaguluchi, O.; Panesar, D.K. Hardened properties of concrete mixtures containing pre-coated crumb rubber and silica fume. J. Clean. Prod. 2014, 82, 125–131. [Google Scholar] [CrossRef]
- Youssf, O.; ElGawady, M.A.; Mills, J.E. Static cyclic behaviour of FRP-confined crumb rubber concrete columns. Eng. Struct. 2016, 113, 371–387. [Google Scholar] [CrossRef]
- Valadares, F.; Bravo, M.; De Brito, J. Concrete with used tire rubber aggregates: Mechanical performance. ACI Mater. J. 2012, 109, 283–292. [Google Scholar]
- Topçu, I.B.; Demir, A. Durability of rubberized mortar and concrete. J. Mater. Civ. Eng. 2007, 19, 173–178. [Google Scholar] [CrossRef]
- Turatsinze, A.; Garros, M. On the modulus of elasticity and strain capacity of Self-Compacting Concrete incorporating rubber aggregates. Resour. Conserv. Recycl. 2008, 52, 1209–1215. [Google Scholar] [CrossRef]
- Eldin, N.N.; Senouci, A.B. Measurement and prediction of the strength of rubberized concrete. Cem. Concr. Compos. 1994, 16, 287–298. [Google Scholar] [CrossRef]
- Topçu, I.B.; Avcular, N. Collision behaviours of rubberized concrete. Cem. Concr. Res. 1997, 27, 1893–1898. [Google Scholar] [CrossRef]
- Topçu, İ.B.; Sarıdemir, M. Prediction of rubberized concrete properties using artificial neural network and fuzzy logic. Constr. Build. Mater. 2008, 22, 532–540. [Google Scholar] [CrossRef] [Green Version]
- Gregori, A.; Castoro, C.; Marano, G.C.; Greco, R. Strength reduction factor of concrete with recycled rubber aggregates from tires. J. Mater. Civ. Eng. 2019, 31, 04019146. [Google Scholar] [CrossRef]
- Aiello, M.A.; Leuzzi, F. Waste tyre rubberized concrete: Properties at fresh and hardened state. Waste Manag. 2010, 30, 1696–1704. [Google Scholar] [CrossRef] [PubMed]
- Albano, C.; Camacho, N.; Reyes, J.; Feliu, J.L.; Hernández, M. Influence of scrap rubber addition to Portland I concrete composites: Destructive and non-destructive testing. Compos. Struct. 2005, 71, 439–446. [Google Scholar] [CrossRef]
- Güneyisi, E.; Gesoğlu, M.; Özturan, T. Properties of rubberized concretes containing silica fume. Cem. Concr. Res. 2004, 34, 2309–2317. [Google Scholar] [CrossRef]
- Papakonstantinou, C.G.; Tobolski, M.J. Use of waste tire steel beads in Portland cement concrete. Cem. Concr. Res. 2006, 36, 1686–1691. [Google Scholar] [CrossRef]
- Mohammed, B.S.; Azmi, N.J. Strength reduction factors for structural rubbercrete. Front. Struct. Civ. Eng. 2014, 8, 270–281. [Google Scholar] [CrossRef]
- Reda Taha, M.M.; El-Dieb, A.S.; Abd El-Wahab, M.A.; Abdel-Hameed, M.E. Mechanical, Fracture, and Microstructural Investigations of Rubber Concrete. J. Mater. Civ. Eng. 2008, 20, 640–649. [Google Scholar] [CrossRef]
- Batayneh, M.K.; Marie, I.; Asi, I. Promoting the use of crumb rubber concrete in developing countries. Waste Manag. 2008, 28, 2171–2176. [Google Scholar] [CrossRef]
- Eldin, N.N.; Senouci, A.B. Rubber-Tire Particles as Concrete Aggregate. J. Mater. Civ. Eng. 1993, 5, 478–496. [Google Scholar] [CrossRef]
- El-Gammal, A.; Abdel-Gawad, A.K.; El-Sherbini, Y.; Shalaby, A. Compressive strength of concrete utilizing waste tire rubber. J. Emerg. Trends Eng. Appl. Sci. 2010, 1, 96–99. [Google Scholar]
- De Béjar, L.A.; Rushing, T.S. Relative compression strength evolution of silica-fume ultrahigh-performance concrete under saturated adiabatic hydration using virtual tests. J. Mater. Civ. Eng. 2018, 30, 04017260. [Google Scholar] [CrossRef]
- Godfrey, T. Mechanical Properties of Rubberised Concrete; University of Loughborough: Loughborough, UK, 2012. [Google Scholar]
- Grinys, A.; Sivilevičius, H.; Daukšys, M. Tyre rubber additive effect on concrete mixture strength. J. Civ. Eng. Manag. 2012, 18, 393–401. [Google Scholar] [CrossRef]
- Khatib, Z.K.; Bayomy, F.M. Rubberized Portland Cement Concrete. J. Mater. Civ. Eng. 1999, 11, 206–213. [Google Scholar] [CrossRef]
- Topçu, I.B. The properties of rubberized concretes. Cem. Concr. Res. 1995, 25, 304–310. [Google Scholar] [CrossRef]
- Ling, T.-C. Effects of compaction method and rubber content on the properties of concrete paving blocks. Constr. Build. Mater. 2012, 28, 164–175. [Google Scholar] [CrossRef]
- Sain, S.R.; Vapnik, V.N. The Nature of Statistical Learning Theory. Technometrics 1996, 38, 409. [Google Scholar] [CrossRef]
- Meyer, D. Support vector machines. R News 2001, 1, 23–26. [Google Scholar]
- Hearst, M.; Dumais, S.; Osuna, E.; Platt, J.; Scholkopf, B. Support vector machines. IEEE Intell. Syst. Their. Appl. 1998, 13, 18–28. [Google Scholar] [CrossRef] [Green Version]
- Gershman, S.J.; Blei, D.M. A tutorial on Bayesian nonparametric models. J. Math. Psychol. 2012, 56, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Williams, C.K.I. Prediction with Gaussian Processes: From Linear Regression to Linear Prediction and Beyond. In Learning in Graphical Models; MIT Press: Cambridge, MA, USA, 1998; pp. 599–621. [Google Scholar]
- Rasmussen, C.E.; Williams, C.K.I. Gaussian Processes for Machine Learning; Dietterich, T., Ed.; MIT Press: Cambridge, MA, USA, 2006; Volume 14, ISBN 978-0-262-18253-9. [Google Scholar]
- Huang, W.; Huang, X.; Xing, Q.; Zhou, Z. Strength reduction factor of crumb rubber as fine aggregate replacement in concrete. J. Build. Eng. 2020, 32, 101346. [Google Scholar] [CrossRef]
- Gregori, A.; Castoro, C.; Mercuri, M.; Angiolilli, M. Modeling the Mechanical Response of Rubberised Concrete. In Developments and Novel Approaches in Biomechanics and Metamaterials. Advanced Structured Materials; Abali, B., Giorgio, I., Eds.; Springer: Cham, Switzerland, 2020; Volume 132, pp. 341–352. [Google Scholar] [CrossRef]
- Gregori, A.; Castoro, C.; Mercuri, M.; Angiolilli, M. Numerical modelling of the mechanical behaviour of rubbercrete. Comput. Struct. 2021, 242, 106393. [Google Scholar] [CrossRef]
- Ahmad, H.S.; Abendeh, R.M.; Hunaiti, Y.M. Evaluation of concrete–steel interfaces in steel tubes filled with chipped rubber–concrete. Proc. Inst. Civ. Eng. Struct. Build. 2020, 1–23. [Google Scholar] [CrossRef]
v1 Cement Content kg/m3 | v2 Fine Aggregate Content kg/m3 | v3 Coarse Aggregate Content kg/m3 | v4 Aggregate Pre-Treatment | v5 Water/Cement Ratio | v6 Replacement of Fine Aggregate % | v7 Replacement of Coarse Aggregate % |
---|---|---|---|---|---|---|
400 | 800 | 1100 | 1 or 0 | 0.25–0.65 | 0–100 | 0 |
Pre-Treatment | w/c | a | b | m | R2 | k | R2 |
---|---|---|---|---|---|---|---|
Soaked | 0.25 | 0.546 | 0.454 | 1.261 | 0.965 | 0.006 | 0.997 |
0.35 | 0.451 | 0.549 | 1.439 | 0.965 | 0.008 | 0.994 | |
0.45 | 0.418 | 0.582 | 1.435 | 0.969 | 0.009 | 0.995 | |
0.50 | 0.426 | 0.574 | 1.383 | 0.971 | 0.009 | 0.996 | |
0.55 | 0.477 | 0.523 | 1.311 | 0.971 | 0.008 | 0.997 | |
0.60 | 0.448 | 0.552 | 1.334 | 0.972 | 0.008 | 0.997 | |
0.65 | 0.512 | 0.488 | 1.310 | 0.976 | 0.007 | 0.997 | |
Non-soaked | 0.25 | 0.495 | 0.505 | 1.133 | 0.959 | 0.007 | 0.995 |
0.35 | 0.342 | 0.658 | 1.163 | 0.943 | 0.010 | 0.989 | |
0.45 | 0.180 | 0.82 | 1.248 | 0.921 | 0.016 | 0.979 | |
0.50 | 0.139 | 0.861 | 1.304 | 0.923 | 0.018 | 0.978 | |
0.55 | 0.152 | 0.848 | 1.350 | 0.930 | 0.017 | 0.983 | |
0.60 | 0.178 | 0.822 | 1.450 | 0.944 | 0.017 | 0.987 | |
0.65 | 0.224 | 0.776 | 1.555 | 0.956 | 0.015 | 0.990 |
Mixtures | Cement kg/m3 | Sand kg/m3 | Gravel kg/m3 | Water kg/m3 | Pre-Treatments of Rubber | w/c | Total Volume of Aggregates /m3 | % Fine Aggregates /Total Volume of Aggregates | % Substitution of Fine Aggregates (Referred to the Volume of Fine Aggregates) | Compressive Strength MPa | SRF (Experimental) | a | b | m | SRF (Polynomial) | k | SRF (Exponential) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Eldin and Senouci [35] | 447 | 629 | 1116 | 214 | Soaked in water | 0.48 | 0.72 | 36.11 | 0 | 35 | 1.00 | 0.427 | 0.573 | 1.399 | 1.00 | 0.009 | 1.00 |
25 | 23.4 | 0.67 | 0.81 | 0.80 | |||||||||||||
50 | 19.2 | 0.55 | 0.64 | 0.64 | |||||||||||||
75 | 14.7 | 0.42 | 0.51 | 0.51 | |||||||||||||
100 | 12.4 | 0.35 | 0.43 | 0.41 | |||||||||||||
Khatib and Bayomy [40] | 388 | 786 | 1024 | 186 | non-soaked | 0.48 | 0.68 | 42.65 | 0 | 37.5 | 1.00 | 0.168 | 0.832 | 1.273 | 1.00 | 0.017 | 1.00 |
5 | 35 | 0.93 | 0.95 | 0.92 | |||||||||||||
10 | 30.5 | 0.81 | 0.90 | 0.85 | |||||||||||||
15 | 29 | 0.77 | 0.84 | 0.78 | |||||||||||||
20 | 25.7 | 0.69 | 0.79 | 0.72 | |||||||||||||
40 | 18 | 0.48 | 0.60 | 0.51 | |||||||||||||
60 | 9 | 0.24 | 0.43 | 0.37 | |||||||||||||
80 | 4.8 | 0.13 | 0.28 | 0.26 | |||||||||||||
100 | 3 | 0.08 | 0.17 | 0.19 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gregori, A.; Castoro, C.; Venkiteela, G. Predicting the Compressive Strength of Rubberized Concrete Using Artificial Intelligence Methods. Sustainability 2021, 13, 7729. https://doi.org/10.3390/su13147729
Gregori A, Castoro C, Venkiteela G. Predicting the Compressive Strength of Rubberized Concrete Using Artificial Intelligence Methods. Sustainability. 2021; 13(14):7729. https://doi.org/10.3390/su13147729
Chicago/Turabian StyleGregori, Amedeo, Chiara Castoro, and Giri Venkiteela. 2021. "Predicting the Compressive Strength of Rubberized Concrete Using Artificial Intelligence Methods" Sustainability 13, no. 14: 7729. https://doi.org/10.3390/su13147729
APA StyleGregori, A., Castoro, C., & Venkiteela, G. (2021). Predicting the Compressive Strength of Rubberized Concrete Using Artificial Intelligence Methods. Sustainability, 13(14), 7729. https://doi.org/10.3390/su13147729