Sustainable Use of Waste Polypropylene Fibres to Enhance the Abrasion and Skid Resistance of Two-Stage Concrete
Abstract
:1. Introduction
2. Experimental Setup
2.1. Materials and Mix Proportions
2.2. Sample Preparation and Test Methods
3. Results and Discussion
3.1. Fresh Properties of Grout
3.2. Compressive Strength
3.3. Tensile Strength
3.4. Ultrasonic Pulse Velocity
3.5. Abrasion Resistance
3.6. Skid Resistance
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Najjar, M.; Soliman, A.; Nehdi, M. Critical overview of two-stage concrete: Properties and applications. Constr. Build. Mater. 2014, 62, 47–58. [Google Scholar] [CrossRef]
- Mohammadhosseini, H.; Alrshoudi, F.; Tahir, M.M.; Alyousef, R.; Alghamdi, H.; Alharbi, Y.R.; Alsaif, A. Durability and thermal properties of prepacked aggregate concrete reinforced with waste polypropylene fibers. J. Build. Eng. 2020, 32, 101723. [Google Scholar] [CrossRef]
- Najjar, M.; Nehdi, M.; Soliman, A.; Azabi, T. Damage mechanisms of two-stage concrete exposed to chemical and physical sulfate attack. Constr. Build. Mater. 2017, 137, 141–152. [Google Scholar] [CrossRef]
- Awal, A.S.M.A. Creep Recovery of Prepacked Aggregate Concrete. J. Mater. Civ. Eng. 1992, 4, 320–325. [Google Scholar] [CrossRef]
- Mohammadhosseini, H.; Alrshoudi, F.; Tahir, M.M.; Alyousef, R.; Alghamdi, H.; Alharbi, Y.R.; Alsaif, A. Performance evaluation of novel prepacked aggregate concrete reinforced with waste polypropylene fibers at elevated temperatures. Constr. Build. Mater. 2020, 259, 120418. [Google Scholar] [CrossRef]
- Abirami, T.; Murali, G.; Mohan, K.S.R.; Salaimanimagudam, M.; Nagaveni, P.; Bhargavi, P. Multi-layered two stage fibrous composites against low-velocity falling mass and projectile impact. Constr. Build. Mater. 2020, 248, 118631. [Google Scholar] [CrossRef]
- Mohammadhosseini, H.; Alyousef, R.; Lim, N.H.A.S.; Tahir, M.M.; Alabduljabbar, H.; Mohamed, A.M.; Samadi, M. Waste metalised film food packaging as low cost and ecofriendly fibrous materials in the production of sustainable and green concrete composites. J. Clean. Prod. 2020, 258, 120726. [Google Scholar] [CrossRef]
- Abdelgader, H.S.; Elgalhud, A.A. Effect of grout proportions on strength of two-stage concrete. Struct. Concr. 2008, 9, 163–170. [Google Scholar] [CrossRef]
- Murali, G.; Ramprasad, K. A feasibility of enhancing the impact strength of novel layered two stage fibrous concrete slabs. Eng. Struct. 2018, 175, 41–49. [Google Scholar] [CrossRef]
- Wu, H.; Lin, X.; Zhou, A. A review of mechanical properties of fibre reinforced concrete at elevated temperatures. Cem. Concr. Res. 2020, 135, 106117. [Google Scholar] [CrossRef]
- Baumann, P. November. Use of prepacked aggregate concrete in major dam construction. J. Proc. 1948, 45, 229–235. [Google Scholar]
- Prasad, N.; Murali, G. Exploring the impact performance of functionally-graded preplaced aggregate concrete incorporating steel and polypropylene fibres. J. Build. Eng. 2021, 35, 102077. [Google Scholar] [CrossRef]
- Mohammadhosseini, H.; Tahir, M.M.; Alaskar, A.; Alabduljabbar, H.; Alyousef, R. Enhancement of strength and transport properties of a novel preplaced aggregate fiber reinforced concrete by adding waste polypropylene carpet fibers. J. Build. Eng. 2020, 27, 101003. [Google Scholar] [CrossRef]
- Tuyan, M.; Zhang, L.V.; Nehdi, M.L. Development of sustainable alkali-activated slag grout for preplaced aggregate concrete. J. Clean. Prod. 2020, 277, 123488. [Google Scholar] [CrossRef]
- Rithanyaa, R.; Murali, G.; Salaimanimagudam, M.; Fediuk, R.; Abdelgader, H.S.; Siva, A. Impact response of novel layered two stage fibrous composite slabs with different support type. Structures 2021, 29, 1–13. [Google Scholar] [CrossRef]
- Mohammadhosseini, H.; Yatim, J.M. Microstructure and residual properties of green concrete composites incorporating waste carpet fibers and palm oil fuel ash at elevated temperatures. J. Clean. Prod. 2017, 144, 8–21. [Google Scholar] [CrossRef]
- Xu, O.; Han, S.; Liu, Y.; Li, C. Experimental investigation surface abrasion resistance and surface frost resistance of concrete pavement incorporating fly ash and slag. Int. J. Pavement Eng. 2020, 1–9. [Google Scholar] [CrossRef]
- Gjørv, O.E.; Baerland, T.; Ronning, H.R. Abrasion resistance of high-strength concrete pavements. Concr. Int. 1990, 12, 45–48. [Google Scholar]
- Mohammadhosseini, H.; Yatim, J.M.; Sam, A.R.M.; Awal, A.A. Durability performance of green concrete composites containing waste carpet fibers and palm oil fuel ash. J. Clean. Prod. 2017, 144, 448–458. [Google Scholar] [CrossRef]
- Febrillet, N.; Kido, A.; Ito, Y.; Ishibashi, K. Strength and abrasion resistance of ultra-high strength steel fiber reinforced concrete. Trans. Japan Concr. Inst. 2001, 22, 243–252. [Google Scholar]
- Mastali, M.A.; Dalvand, A.R.; Sattarifard, A. The impact resistance and mechanical properties of reinforced self-compacting concrete with recycled glass fibre reinforced polymers. J. Clean. Prod. 2016, 124, 312–324. [Google Scholar] [CrossRef]
- Yen, T.; Hsu, T.H.; Liu, Y.W.; Chen, S.H. Influence of class F fly ash on the abrasion–erosion resistance of high-strength concrete. Constr. Build. Mater. 2007, 21, 458–463. [Google Scholar] [CrossRef]
- Yu, M.; You, Z.; Wu, G.; Kong, L.; Liu, C.; Gao, J. Measurement and modeling of skid resistance of asphalt pavement: A review. Constr. Build. Mater. 2020, 260, 119878. [Google Scholar] [CrossRef]
- Cui, P.; Wu, S.; Xiao, Y.; Yang, C.; Wang, F. Enhancement mechanism of skid resistance in preventive maintenance of asphalt pavement by steel slag based on micro-surfacing. Constr. Build. Mater. 2020, 239, 117870. [Google Scholar] [CrossRef]
- Kane, M.; Edmondson, V. Long-term skid resistance of asphalt surfacings and aggregates’ mineralogical composition: Generalisation to pavements made of different aggregate types. Wear 2020, 454, 203339. [Google Scholar] [CrossRef]
- Wang, H.; Wang, C.; Bu, Y.; You, Z.; Yang, X.; Oeser, M. Correlate aggregate angularity characteristics to the skid resistance of asphalt pavement based on image analysis technology. Constr. Build. Mater. 2020, 242, 118150. [Google Scholar] [CrossRef]
- Adamu, M.; Mohammed, B.S.; Shafiq, N.; Liew, M.S. Skid Resistance of nano silica modified roller compacted rubbercrete for pavement applications: Experimental methods and response surface methodology. Cogent Eng. 2018, 5, 1452664. [Google Scholar] [CrossRef]
- Yoshitake, I.; Ueno, S.; Ushio, Y.; Arano, H.; Fukumoto, S. Abrasion and skid resistance of recyclable fly ash concrete pavement made with limestone aggregate. Constr. Build. Mater. 2016, 112, 440–446. [Google Scholar] [CrossRef]
- ACI 304.1R. Guide for the Use of Preplaced Aggregate Concrete for Structural and Mass Concrete Applications; American Concrete Institute (ACI): Farmington Hills, MI, USA, 1997. [Google Scholar]
- Alrshoudi, F.; Mohammadhosseini, H.; Tahir, M.M.; Alyousef, R.; Alghamdi, H.; Alharbi, Y.; Alsaif, A. Drying shrinkage and creep properties of prepacked aggregate concrete reinforced with waste polypropylene fibers. J. Build. Eng. 2020, 32, 101522. [Google Scholar] [CrossRef]
- Mujedu, K.A.; Ab-Kadir, M.A.; Ismail, M. A review on self-compacting concrete incorporating palm oil fuel ash as a cement replacement. Constr. Build. Mater. 2020, 258, 119541. [Google Scholar] [CrossRef]
- Hamada, H.; Tayeh, B.; Yahaya, F.; Muthusamy, K.; Al-Attar, A. Effects of nano-palm oil fuel ash and nano-eggshell powder on concrete. Constr. Build. Mater. 2020, 261, 119790. [Google Scholar] [CrossRef]
- Liu, F.; Ding, W.; Qiao, Y. Experimental investigation on the tensile behavior of hybrid steel-PVA fiber reinforced concrete containing fly ash and slag powder. Constr. Build. Mater. 2020, 241, 118000. [Google Scholar] [CrossRef]
- Hedjazi, S.; Castillo, D. Relationships among compressive strength and UPV of concrete reinforced with different types of fibers. Heliyon 2020, 6, e03646. [Google Scholar] [CrossRef] [PubMed]
- Eidan, J.; Rasoolan, I.; Rezaeian, A.; Poorveis, D. Residual mechanical properties of polypropylene fiber-reinforced concrete after heating. Constr. Build. Mater. 2019, 198, 195–206. [Google Scholar] [CrossRef]
- Neville, A.M.; Brooks, J.J. Concrete Technology, 2nd ed.; Longman Scientific and Technical: London, UK, 2010. [Google Scholar]
- Atis, C.D.; Karahan, O.; Ari, K.; Sola, Ö.C.; Bilim, C. Relation between Strength Properties (Flexural and Compressive) and Abrasion Resistance of Fiber (Steel and Polypropylene)-Reinforced Fly Ash Concrete. J. Mater. Civ. Eng. 2009, 21, 402–408. [Google Scholar] [CrossRef]
- Lin, C.; Tongjing, W. Effect of fine aggregate angularity on skid-resistance of asphalt pavement using accelerated pavement testing. Constr. Build. Mater. 2018, 168, 41–46. [Google Scholar] [CrossRef]
- Kogbara, R.B.; Masad, E.A.; Kassem, E.; Scarpas, A.T.; Anupam, K. A state-of-the-art review of parameters influencing measurement and modeling of skid resistance of asphalt pavements. Constr. Build. Mater. 2016, 114, 602–617. [Google Scholar] [CrossRef]
- Mohammadhosseini, H.; Tahir, M.M.; Sam, A.R.M. The feasibility of improving impact resistance and strength properties of sustainable concrete composites by adding waste metalised plastic fibres. Constr. Build. Mater. 2018, 169, 223–236. [Google Scholar] [CrossRef]
- Mohammadhosseini, H.; Alyousef, R.; Tahir, M.M. Towards Sustainable Concrete Composites through Waste Valorisation of Plastic Food Trays as Low-Cost Fibrous Materials. Sustainability 2021, 13, 2073. [Google Scholar] [CrossRef]
- Alyousef, R.; Mohammadhosseini, H.; Alrshoudi, F.; Tahir, M.M.; Alabduljabbar, H.; Mohamed, A.M. Enhanced Performance of Concrete Composites Comprising Waste Metalised Polypropylene Fibres Exposed to Aggressive Environments. Crystals 2020, 10, 696. [Google Scholar] [CrossRef]
- Strzałkowski, P.; Kaźmierczak, U.; Wolny, M. Assessment of the method for abrasion resistance determination of sandstones on Böhme abrasion test apparatus. Bull. Int. Assoc. Eng. Geol. 2020, 79, 4947–4956. [Google Scholar] [CrossRef]
- Alrshoudi, F.; Mohammadhosseini, H.; Alyousef, R.; Tahir, M.M.; Alabduljabbar, H.; Mohamed, A.M. The Impact Resistance and Deformation Performance of Novel Pre-Packed Aggregate Concrete Reinforced with Waste Polypropylene Fibres. Crystals 2020, 10, 788. [Google Scholar] [CrossRef]
- Mohammadhosseini, H.; Alyousef, R.; Lim, N.H.A.S.; Tahir, M.M.; Alabduljabbar, H.; Mohamed, A.M. Creep and drying shrinkage performance of concrete composite comprising waste polypropylene carpet fibres and palm oil fuel ash. J. Build. Eng. 2020, 30, 101250. [Google Scholar] [CrossRef]
Physical Properties | OPC | POFA | Chemical Composition (%) | OPC | POFA |
---|---|---|---|---|---|
Specific gravity | 3150 | 2420 | SiO2 | 20.41 | 62.60 |
Blaine fineness (cm2/g) | 3990 | 4930 | Al2O3 | 5.22 | 4.65 |
Passing sieve 10 µm (%) | 19 | 33 | Fe2O3 | 4.18 | 8.12 |
Soundness (mm) | 1 | 2 | CaO | 62.41 | 5.70 |
MgO | 1.53 | 3.52 | |||
K2O | 0.005 | 9.05 | |||
SO3 | 2.09 | 1.16 | |||
LOI | 2.34 | 6.25 |
Type of Fibre | Length (mm) | Aspect Ratio (l/d) | Diameter (mm) | Density (kg/m3) | Melting Point (°C) | Tensile Strength (MPa) | Reaction with Water |
---|---|---|---|---|---|---|---|
Multi-filament polypropylene | 30 ± 2 | 67 | 0.45 | 910 | 170 | 400 | Hydrophobic |
Mix | Water (kg/m3) | Cement (kg/m3) | POFA (kg/m3) | Fine Aggregate (kg/m3) | Coarse Aggregate (kg/m3) | Vf (%) | |
---|---|---|---|---|---|---|---|
P0 | 186 | 304 | 76 | 545 | 1320 | 0.0 | |
Pump | P1 | 186 | 304 | 76 | 545 | 1320 | 0.2 |
P2 | 186 | 304 | 76 | 545 | 1320 | 0.4 | |
P3 | 186 | 304 | 76 | 545 | 1320 | 0.6 | |
P4 | 186 | 304 | 76 | 545 | 1320 | 0.8 | |
P5 | 186 | 304 | 76 | 545 | 1320 | 1.0 | |
G0 | 186 | 304 | 76 | 545 | 1320 | 0.0 | |
Gravity | G1 | 186 | 304 | 76 | 545 | 1320 | 0.2 |
G2 | 186 | 304 | 76 | 545 | 1320 | 0.4 | |
G3 | 186 | 304 | 76 | 545 | 1320 | 0.6 | |
G4 | 186 | 304 | 76 | 545 | 1320 | 0.8 | |
G5 | 186 | 304 | 76 | 545 | 1320 | 1.0 |
Grouping | Minimum BPN Values of Wet Surface | Sort of Site |
---|---|---|
A | 65 | Difficult sites such as: (i) Roundabouts (ii) Bends with radius less than 150 m on unrestricted roads |
B | 55 | Motorways, trunk and class 1 roads and heavily trafficked roads in urban areas (carrying more than 200 vehicles per day) |
C | 45 | Other sites |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alyousef, R. Sustainable Use of Waste Polypropylene Fibres to Enhance the Abrasion and Skid Resistance of Two-Stage Concrete. Sustainability 2021, 13, 5200. https://doi.org/10.3390/su13095200
Alyousef R. Sustainable Use of Waste Polypropylene Fibres to Enhance the Abrasion and Skid Resistance of Two-Stage Concrete. Sustainability. 2021; 13(9):5200. https://doi.org/10.3390/su13095200
Chicago/Turabian StyleAlyousef, Rayed. 2021. "Sustainable Use of Waste Polypropylene Fibres to Enhance the Abrasion and Skid Resistance of Two-Stage Concrete" Sustainability 13, no. 9: 5200. https://doi.org/10.3390/su13095200
APA StyleAlyousef, R. (2021). Sustainable Use of Waste Polypropylene Fibres to Enhance the Abrasion and Skid Resistance of Two-Stage Concrete. Sustainability, 13(9), 5200. https://doi.org/10.3390/su13095200