A Review of the Utilization of Coal Bottom Ash (CBA) in the Construction Industry
Abstract
:1. Introduction
2. Properties of Coal Bottom Ash
2.1. Physical Properties
References | Specific Gravity (No Unit) | Water Absorption (%) | Los Angeles Abrasion, (%) | Moisture Content (%) | Fineness Modulus (No Unit) | Surface Area (cm2/g) |
---|---|---|---|---|---|---|
[25] | 2.21 | - | - | - | 2.79 | - |
[26] | 2.41 | 32 | - | - | - | 3835.75 |
[27] | 1.8 | - | - | - | - | 10,500 |
[28] | 2.08 | 6.8 | - | - | 1.5 | - |
[14] | 2.22 | 20.15 | - | - | 2.71 | - |
[3] | 1.88 | 11.61 | - | - | 3.44 | - |
[17,29] | 1.39 | 31.58 | - | - | 1.37 | |
[30] | 2.00 | - | - | - | - | - |
[31] | 2.21 | 11.17 | - | - | - | - |
[32] | 1.87 | 5.4 | - | - | 2.36 | - |
[33] | 1.39 | 12.10 | - | - | - | - |
[24] | - | - | 55 | - | - | - |
[34] | 2.10 | 6.18 | - | 0.43 | 2.10 | - |
[25] | 2.21 | - | - | - | - | - |
2.2. Chemical Properties
References | Chemical Composition (%) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
SiO2 | Al2O3 | Fe2O3 | CaO | MgO | Na2O | K2O | TiO2 | P2O5 | SO3 | |
[36] | 62.33 | 25.52 | 4.16 | 1.00 | 0.94 | 0.08 | 3.25 | 0.84 | 0.12 | - |
[6] | 65.02 | 19.18 | 6.86 | 1.76 | 2.00 | 0.85 | - | 0.93 | 0.04 | - |
[26] | 52.5 | 17.65 | 8.30 | 4.72 | 0.58 | - | - | 2.17 | - | 0.84 |
[27] | 50.49 | 27.56 | 10.93 | 4.19 | 1.24 | 0.57 | 0.82 | 2.23 | 0.24 | 0.10 |
[37] | 47.1 | 23.1 | 5.7 | 7.8 | 1.5 | 0.7 | 5.3 | 1.2 | - | 1.5 |
[38] | 59.82 | 27.76 | 3.77 | 1.86 | 0.70 | 1.61 | 0.33 | - | - | 1.39 |
[39] | 52.2 | 27.5 | 6.0 | 5.9 | 1.7 | - | 0.6 | 1.53 | 0.74 | 0.13 |
[40] | 58.7 | 20.1 | 6.2 | 9.5 | 1.6 | 0.1 | 1.0 | - | 1.0 | 0.4 |
[14] | 62.32 | 27.21 | 3.57 | 0.50 | 0.95 | 0.70 | 2.58 | 2.15 | - | - |
[3] | 45.30 | 18.10 | 19.84 | 8.70 | 0.97 | - | 2.48 | 3.27 | 0.351 | 0.352 |
[17] | 56.44 | 29.24 | 8.44 | 0.75 | 0.4 | 0.09 | 1.24 | - | - | - |
[30] | 64.45 | 15.89 | 7.77 | 3.92 | 2.45 | 0.89 | 1.6 | - | <0.01 | <0.01 |
[41] | 68.9 | 18.67 | 6.5 | 1.61 | 0.53 | 0.24 | 1.52 | 1.33 | - | - |
[31] | 52.1 | 18.34 | 11.99 | 6.61 | 4.85 | 2.43 | 1.57 | 0.87 | - | - |
[29] | 47.53 | 20.69 | 5.99 | 4.17 | 0.82 | 0.33 | 0.76 | - | - | 1.00 |
[42] | 57.76 | 21.58 | 8.56 | 1.58 | 1.19 | 0.14 | 1.08 | - | - | 0.02 |
[43] | 54.8 | 28.5 | 8.49 | 4.2 | 0.35 | 0.08 | 0.45 | 2.71 | 0.28 | - |
2.3. Comparison between CBA and Different Waste Used as Aggregate Replacement
Waste | Physical Property Parameters | Used As | ||||||
---|---|---|---|---|---|---|---|---|
Specific Gravity (No Unit) | Water Absorption (%) | Los Angeles Abrasion (%) | Moisture Content (%) | Fineness Modulus (%) | Fine | Coarse | Reference | |
Steel slag | 3.41 | 1.49 | 11.29 | √ | [44] | |||
3.01 | - | 14.2 | √ | [45] | ||||
3.42 * | 3.31 * | - | 1.56 * | - | √ | √ | [46] | |
3.58 ** | 4.23 ** | 2.8 ** | ||||||
3.67 | 1.4 | - | - | - | √ | [47] | ||
Coconut waste | 1.15 | 21 | - | 6.78 | √ | [48,49] | ||
1.16 | 13.8 | - | - | - | √ | [50] | ||
Recycled asphalt | 2.68 | 0.20 | 22.2 | √ | √ | [53] | ||
2.55 | 0.23 | 20.25 | √ | √ | [54] | |||
Recycled concrete | 2.41 * | 4.80 * | 18.7 | √ | √ | [55] | ||
2.42 ** | 7.40 ** | |||||||
2.18 * | 2.69 * | 24 | √ | √ | [56,57,58] | |||
2.42 ** | 4.28 ** | |||||||
2.35 | 8.01 | - | 9.1 | - | √ | √ | [61] | |
2.42–2.44 * | 6.5–6.8 * | - | - | - | √ | √ | [64] | |
2.415 ** | 9 ** | |||||||
2.53 | 3.04 | - | - | - | √ | [65] | ||
2.44 | 5.65 | - | - | 6.92 | √ | [28] | ||
Mining waste | 2.34 | 0.86 | 20.5 | √ | [59] | |||
2.87 | 0.23 | 25.3 | √ | √ | [60] | |||
Glass | 2.3 | 20–25 | - | - | - | √ | [66] | |
2.45 | 0.36 | - | - | - | √ | [65] | ||
Crumb rubber | 1.15 | - | - | √ | [67] | |||
1.25 | - | - | √ | [68] | ||||
Palm oil shell | 1.37 | 12.47 | - | - | 6.53 | √ | [51] | |
1.3 | 25 | - | - | - | √ | [52] | ||
Palm oil clinker | 2.08 | - | - | √ | [69,70] | |||
1.51 | 5.5 | - | 0.31 | - | √ | [71] | ||
1.78 | 5.7 | - | 0.38 | - | √ | [62] | ||
1.18 * | 4.35 * | - | 0.28 * | √ | √ | [63] | ||
2.15 ** | 5.75 ** | 0.11 ** |
2.4. Sustainability
3. Applications of Coal Bottom Ash
3.1. Pavement Construction
References | Function | Effect on Pavement Performance |
---|---|---|
[83] | Filler in SMA mixture |
|
[84] | Filler replacement |
|
[80] | Fine aggregate in HMA |
|
[82] | Cement replacement in roller-compacted concrete pavement |
|
[88] | Filler replacement in asphalt mixture |
|
[89] | Filler replacement in HMA mixture |
|
[87] | An additive in cold recycled mixture |
|
[24] | Fine aggregate in HMA |
|
[81] | Fine and coarse aggregate replacement |
|
3.2. Aggregate Replacement in Concrete Production
3.3. Cement Replacement in Concrete Production
3.4. Noise Barrier, Geotechnical Fill, Zeolite Composite, and Low-Cost Absorbent
4. Critical Discussion
5. Conclusions
- CBA is a class F pozzolan that contains more than 70% of SiO2, Al2O3, and Fe2O3.
- The porous texture of CBA reduces the density of the pavement and concrete mixtures, making it a suitable lightweight aggregate in pavement and concrete production. Its porosity contributes to the ability of the CBA noise barrier wall to absorb more sound than the conventional wall.
- The high-water absorption of the CBA particles increases the optimum binder content of the pavement mixture and the cement/water ratio in concrete production.
- The pavement mixture incorporated with CBA exhibits enhanced moisture susceptibility. However, most research showed reduced Marshall stability, tensile strength, and resilient modulus. The low resilient modulus indicates that the mixture has a high elastic deformation, which increases its rutting resistance.
- The optimum asphalt mixture performance is achieved with 10–30% CBA replacement. However, the performance can be enhanced by using CBA with other materials, such as fly ash, lime, and superplasticizer.
- The concretes with higher CBA contents have reduced fresh concrete properties such as slump, bleeding, and flow because of the CBA’s interlocking characteristics, rough texture, and irregular shape.
- The properties of the concrete improved with the curing period, and after a certain curing period, the properties are superior to conventional concrete.
- The utilization of CBA as cement replacement is beneficial to the environment because it reduces the CO2 emissions in cement production. The heavy metals present in the raw CBA are below the permissible range.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lior, N. Sustainable energy development: The present (2009) situation and possible paths to the future q. Energy 2010, 35, 3976–3994. [Google Scholar] [CrossRef]
- Yao, Z.T.; Ji, X.S.; Sarker, P.K.; Tang, J.H.; Ge, L.Q.; Xia, M.S.; Xi, Y.Q. Earth-Science Reviews A comprehensive review on the applications of coal fl y ash. Earth-Sci. Rev. 2015, 141, 105–121. [Google Scholar] [CrossRef] [Green Version]
- Rafieizonooz, M.; Mirza, J.; Salim, M.R.; Hussin, M.W.; Khankhaje, E. Investigation of coal bottom ash and fly ash in concrete as replacement for sand and cement. Constr. Build. Mater. 2016, 116, 15–24. [Google Scholar] [CrossRef]
- Abubakar, A.U.; Baharudin, K.S. Tanjung Bin Coal Bottom Ash: From Waste to Concrete Material Tanjung Bin Coal Bottom Ash: From Waste to Concrete Material. Adv. Mater. Res. 2013. [Google Scholar] [CrossRef]
- Muthusamy, K.; Rasid, M.H.; Jokhio, G.A.; Mokhtar Albshir Budiea, A.; Hussin, M.W.; Mirza, J. Coal bottom ash as sand replacement in concrete: A review. Constr. Build. Mater. 2020, 236, 117507. [Google Scholar] [CrossRef]
- Singh, N.; Shehnazdeep; Bhardwaj, A. Reviewing the role of coal bottom ash as an alternative of cement. Constr. Build. Mater. 2020, 233, 117276. [Google Scholar] [CrossRef]
- Ahmaruzzaman, M. A review on the utilization of fly ash. Prog. Energy Combust. Sci. 2010, 36, 327–363. [Google Scholar] [CrossRef]
- Heidrich, C.; Feuerborn, H.; Weir, A. Coal Combustion Products: A Global Perspective. In Proceedings of the World of Coal Ash (WOCA) Conference, Lexington, KY, USA, 22–25 April 2013; Available online: http://www.mcilvainecompany.com/Decision_Tree/subscriber/Tree/DescriptionTextLinks/International%20flyash%20perspective.pdf (accessed on 1 June 2021).
- Sutcu, M.; Erdogmus, E.; Gencel, O.; Gholampour, A.; Atan, E.; Ozbakkaloglu, T. Recycling of bottom ash and fly ash wastes in eco-friendly clay brick production. J. Clean. Prod. 2019, 233, 753–764. [Google Scholar] [CrossRef]
- Kumar, D.; Kumar, R.; Abbass, M. Study The Effect of Coal Bottom Ash on Partial Replacement of Fine Aggregate in Concrete With Sugarcane Molasses as an Admixture. Int. J. Sci. Res. Educ. 2016. [Google Scholar] [CrossRef] [Green Version]
- Souad, E.M.E.A.; Moussaoui, R.; Monkade, M.; Lahlou, K.; Hasheminejad, N.; Margaritis, A.; Bergh, W. Van den Lime Treatment of Coal Bottom Ash for Use in Road Pavements: Application to EL Jadida Zone in Morocco. Materials 2019, 12, 1–15. [Google Scholar]
- Lokeshappa, B.; Kumar, A. Behaviour of Metals in Coal Fly Ash Ponds. Apcbee Procedia 2012, 1, 34–39. [Google Scholar] [CrossRef] [Green Version]
- Jarusiripot, C. Removal of Reactive Dye by Adsorption over Chemical Pretreatment Coal based Bottom Ash. Procedia Chem. 2014, 9, 121–130. [Google Scholar] [CrossRef] [Green Version]
- Baite, E.; Messan, A.; Hannawi, K.; Tsobnang, F.; Prince, W. Physical and transfer properties of mortar containing coal bottom ash aggregates from Tefereyre (Niger). Constr. Build. Mater. 2016, 125, 919–926. [Google Scholar] [CrossRef]
- Mangi, S.A.; Wan Ibrahim, M.H.; Jamaluddin, N.; Arshad, M.F.; Memon, F.A.; Putra Jaya, R.; Shahidan, S. A Review on Potential Use of Coal Bottom Ash as a Supplementary Cementing Material in Sustainable Concrete Construction. Int. J. Integr. Eng. 2018, 10, 28–36. [Google Scholar] [CrossRef] [Green Version]
- Rathnayake, M.; Julnipitawong, P.; Tangtermsirikul, S.; Toochinda, P. Utilization of coal fly ash and bottom ash as solid sorbents for sulfur dioxide reduction from coal fired power plant: Life cycle assessment and applications. J. Clean. Prod. 2018, 202, 934–945. [Google Scholar] [CrossRef]
- Singh, M.; Siddique, R. Effect of coal bottom ash as partial replacement of sand on workability and strength properties of concrete. J. Clean. Prod. 2016, 112, 620–630. [Google Scholar] [CrossRef]
- Menéndez, E.; Álvaro, A.M.; Hernández, M.T.; Parra, J.L. New methodology for assessing the environmental burden of cement mortars with partial replacement of coal bottom ash and fl y ash. J. Environ. Manag. 2014, 133, 275–283. [Google Scholar] [CrossRef]
- Jang, J.G.; Ahn, Y.B.; Souri, H.; Lee, H.K. A novel eco-friendly porous concrete fabricated with coal ash and geopolymeric binder: Heavy metal leaching characteristics and compressive strength. Constr. Build. Mater. 2015, 79, 173–181. [Google Scholar] [CrossRef]
- Singh, M.; Siddique, R. Compressive strength, drying shrinkage and chemical resistance of concrete incorporating coal bottom ash as partial or total replacement of sand. Constr. Build. Mater. 2014, 68, 39–48. [Google Scholar] [CrossRef]
- Kim, R.G.; Li, D.; Jeon, C.H. Experimental investigation of ignition behavior for coal rank using a flat flame burner at a high heating rate. Exp. Therm. Fluid Sci. 2014, 54, 212–218. [Google Scholar] [CrossRef] [Green Version]
- Gooi, S.; Mousa, A.A.; Kong, D. A critical review and gap analysis on the use of coal bottom ash as a substitute constituent in concrete. J. Clean. Prod. 2020, 268, 121752. [Google Scholar] [CrossRef]
- Antoni; Klarens, K.; Indranata, M.; Al Jamali, L.; Hardjito, D. The use of bottom ash for replacing fine aggregate in concrete paving blocks. MATEC Web Conf. 2017, 138. [Google Scholar] [CrossRef] [Green Version]
- Colonna, P.; Berloco, N.; Ranieri, V.; Shuler, S.T. Application of Bottom Ash for Pavement Binder Course. Procedia Soc. Behav. Sci. 2012, 53, 961–971. [Google Scholar] [CrossRef] [Green Version]
- Hannan, N.I.R.R.; Shaidan, S.; Ali, N.; Bunnori, N.M.; Mohd Zuki, S.S.; Wan Ibrahim, M.H. Acoustic and non-acoustic performance of coal bottom ash concrete as sound absorber for wall concrete. Case Stud. Constr. Mater. 2020, e00399. [Google Scholar] [CrossRef]
- Mangi, S.A.; Wan Ibrahim, M.H.; Jamaluddin, N.; Arshad, M.F.; Putra Jaya, R. Short-term effects of sulphate and chloride on the concrete containing coal bottom ash as supplementary cementitious material. Eng. Sci. Technol. Int. J. 2019, 22, 515–522. [Google Scholar] [CrossRef]
- Hashemi, S.S.G.; Mahmud, H.B.; Ghuan, T.C.; Chin, A.B.; Kuenzel, C.; Ranjbar, N. Safe disposal of coal bottom ash by solidification and stabilization techniques. Constr. Build. Mater. 2019, 197, 705–715. [Google Scholar] [CrossRef]
- Singh, N.; Mithulraj, M.; Arya, S. Utilization of coal bottom ash in recycled concrete aggregates based self compacting concrete blended with metakaolin. Resour. Conserv. Recycl. 2019, 144, 240–251. [Google Scholar] [CrossRef]
- Singh, M.; Siddique, R. Strength properties and micro-structural properties of concrete containing coal bottom ash as partial replacement of fine aggregate. Constr. Build. Mater. 2014, 50, 246–256. [Google Scholar] [CrossRef]
- Arenas, C.; Leiva, C.; Vilches, L.F.; Cifuentes, H.; Rodríguez-Galán, M. Technical specifications for highway noise barriers made of coal bottom ash-based sound absorbing concrete. Constr. Build. Mater. 2015, 95, 585–591. [Google Scholar] [CrossRef]
- Zhang, B.; Poon, C.S. Use of Furnace Bottom Ash for producing lightweight aggregate concrete with thermal insulation properties. J. Clean. Prod. 2015, 99, 94–100. [Google Scholar] [CrossRef]
- Kim, H.K.; Lee, H.K. Use of power plant bottom ash as fine and coarse aggregates in high-strength concrete. Constr. Build. Mater. 2011, 25, 1115–1122. [Google Scholar] [CrossRef]
- Topçu, I.B.; Bilir, T. Effect of bottom ash as fine aggregate on shrinkage cracking of mortars. ACI Mater. J. 2010, 107, 48–56. [Google Scholar] [CrossRef]
- Onprom, P.; Chaimoon, K.; Cheerarot, R. Influence of Bottom Ash Replacements as Fine Aggregate on the Property of Cellular Concrete with Various Foam Contents. Adv. Mater. Sci. Eng. 2015, 2015. [Google Scholar] [CrossRef] [Green Version]
- Milad, A.; Ali, A.S.B.; Babalghaith, A.M.; Memon, Z.A.; Mashaan, N.S.; Arafa, S.; Nur, N.I. Utilisation of waste-based geopolymer in asphalt pavement modification and construction; a review. Sustainability 2021, 13, 3330. [Google Scholar] [CrossRef]
- Wie, Y.M.; Lee, K. Composition design of the optimum bloating activation condition for artificial lightweight aggregate using coal ash. J. Korean Ceram. Soc. 2020, 57, 220–230. [Google Scholar] [CrossRef]
- Sigvardsen, N.M.; Ottosen, L.M. Characterization of coal bio ash from wood pellets and low-alkali coal fly ash and use as partial cement replacement in mortar. Cem. Concr. Compos. 2019, 95, 25–32. [Google Scholar] [CrossRef]
- Ge, X.; Zhou, M.; Wang, H.; Liu, Z.; Wu, H.; Chen, X. Preparation and characterization of ceramic foams from chromium slag and coal bottom ash. Ceram. Int. 2018, 44, 11888–11891. [Google Scholar] [CrossRef]
- Argiz, C.; Sanjuán, M.Á.; Menéndez, E. Coal Bottom Ash for Portland Cement Production. Adv. Mater. Sci. Eng. 2017, 2017. [Google Scholar] [CrossRef] [Green Version]
- Oruji, S.; Brake, N.A.; Nalluri, L.; Guduru, R.K. Strength activity and microstructure of blended ultra-fine coal bottom ash-cement mortar. Constr. Build. Mater. 2017, 153, 317–326. [Google Scholar] [CrossRef]
- Ibrahim, M.H.W.; Hamzah, A.F.; Jamaluddin, N.; Ramadhansyah, P.J.; Fadzil, A.M. Split Tensile Strength on Self-compacting Concrete Containing Coal Bottom Ash. Procedia Soc. Behav. Sci. 2015, 195, 2280–2289. [Google Scholar] [CrossRef] [Green Version]
- Siddique, R. Compressive strength, water absorption, sorptivity, abrasion resistance and permeability of self-compacting concrete containing coal bottom ash. Constr. Build. Mater. 2013, 47, 1444–1450. [Google Scholar] [CrossRef]
- Syahrul, M.; Sani, M.; Muftah, F.; Muda, Z. The Properties of Special Concrete Using Washed Bottom Ash (WBA) as Partial Sand Replacement. Int. J. Sustain. Constr. Eng. Technol. 2010, 1, 65–76. [Google Scholar]
- Alinezhad, M.; Sahaf, A. Investigation of the fatigue characteristics of warm stone matrix asphalt (WSMA) containing electric arc furnace (EAF) steel slag as coarse aggregate and Sasobit as warm mix additive. Case Stud. Constr. Mater. 2019, 11, e00265. [Google Scholar] [CrossRef]
- Ameli, A.; Hossein Pakshir, A.; Babagoli, R.; Norouzi, N.; Nasr, D.; Davoudinezhad, S. Experimental investigation of the influence of Nano TiO2 on rheological properties of binders and performance of stone matrix asphalt mixtures containing steel slag aggregate. Constr. Build. Mater. 2020, 265, 120750. [Google Scholar] [CrossRef]
- Pang, B.; Zhou, Z.; Xu, H. Utilization of carbonated and granulated steel slag aggregate in concrete. Constr. Build. Mater. 2015, 84, 454–467. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, G.; Wang, B.; Wu, M. Mechanical strengths and durability properties of pervious concretes with blended steel slag and natural aggregate. J. Clean. Prod. 2020, 271, 122590. [Google Scholar] [CrossRef]
- Mathew, S.P.; Nadir, Y.; Arif, M.M. Experimental study of thermal properties of concrete with partial replacement of coarse aggregate by coconut shell. Mater. Today Proc. 2020, 27, 415–420. [Google Scholar] [CrossRef]
- Nadir, Y.; Sujatha, A. Durability Properties of Coconut Shell Aggregate Concrete. KSCE J. Civ. Eng. 2018, 22, 1920–1926. [Google Scholar] [CrossRef]
- Kanojia, A.; Jain, S.K. Performance of coconut shell as coarse aggregate in concrete. Constr. Build. Mater. 2017, 140, 150–156. [Google Scholar] [CrossRef]
- Ahmad Zawawi, M.N.A.; Muthusamy, K.; Abdul Majeed, A.P.P.; Muazu Musa, R.; Mokhtar Albshir Budiea, A. Mechanical properties of oil palm waste lightweight aggregate concrete with fly ash as fine aggregate replacement. J. Build. Eng. 2020, 27, 100924. [Google Scholar] [CrossRef]
- Mo, K.H.; Alengaram, U.J.; Jumaat, M.Z.; Liu, M.Y.J.; Lim, J. Assessing some durability properties of sustainable lightweight oil palm shell concrete incorporating slag and manufactured sand. J. Clean. Prod. 2016, 112, 763–770. [Google Scholar] [CrossRef]
- Devulapalli, L.; Kothandaraman, S.; Sarang, G. Evaluation of rejuvenator’s effectiveness on the reclaimed asphalt pavement incorporated stone matrix asphalt mixtures. Constr. Build. Mater. 2019, 224, 909–919. [Google Scholar] [CrossRef]
- Devulapalli, L.; Kothandaraman, S.; Sarang, G. Effect of rejuvenating agents on stone matrix asphalt mixtures incorporating RAP. Constr. Build. Mater. 2020, 254, 119298. [Google Scholar] [CrossRef]
- Nwakaire, C.M.; Yap, S.P.; Yuen, C.W.; Onn, C.C.; Koting, S.; Babalghaith, A.M. Laboratory study on recycled concrete aggregate based asphalt mixtures for sustainable flexible pavement surfacing. J. Clean. Prod. 2020, 262, 121462. [Google Scholar] [CrossRef]
- Pourtahmasb, M.S.; Karim, M.R. Performance Evaluation of Stone Mastic Asphalt and Hot Mix. Adv. Mater. Sci. Eng. 2014, 2014, 1–12. [Google Scholar]
- Pourtahmasb, M.S.; Karim, M.R.; Shamshirband, S. Resilient modulus prediction of asphalt mixtures containing Recycled Concrete Aggregate using an adaptive neuro-fuzzy methodology. Constr. Build. Mater. 2015, 82, 257–263. [Google Scholar] [CrossRef]
- Pourtahmasb, M.S.; Karim, M.R. Utilization of Recycled Concrete Aggregates in Stone Mastic Asphalt Mixtures. Adv. Mater. Sci. Eng. 2014, 2014. [Google Scholar] [CrossRef] [Green Version]
- Huang, Q.; Qian, Z.; Hu, J.; Zheng, D. Evaluation of Stone Mastic Asphalt Containing Ceramic Waste Aggregate for Cooling Asphalt Pavement. Materials 2020, 13, 2964. [Google Scholar] [CrossRef] [PubMed]
- Gautam, P.K.; Kalla, P.; Nagar, R.; Agrawal, R.; Jethoo, A.S. Laboratory investigations on hot mix asphalt containing mining waste as aggregates. Constr. Build. Mater. 2018, 168, 143–152. [Google Scholar] [CrossRef]
- Bui, N.K.; Satomi, T.; Takahashi, H. Improvement of mechanical properties of recycled aggregate concrete basing on a new combination method between recycled aggregate and natural aggregate. Constr. Build. Mater. 2017, 148, 376–385. [Google Scholar] [CrossRef]
- Hamada, H.M.; Yahaya, F.M.; Muthusamy, K.; Jokhio, G.A.; Humada, A.M. Fresh and hardened properties of palm oil clinker lightweight aggregate concrete incorporating Nano-palm oil fuel ash. Constr. Build. Mater. 2019, 214, 344–354. [Google Scholar] [CrossRef]
- Abutaha, F.; Razak, H.A.; Ibrahim, H.A.; Ghayeb, H.H. Adopting particle-packing method to develop high strength palm oil clinker concrete. Resour. Conserv. Recycl. 2018, 131, 247–258. [Google Scholar] [CrossRef]
- Omrane, M.; Kenai, S.; Kadri, E.H.; Aït-Mokhtar, A. Performance and durability of self compacting concrete using recycled concrete aggregates and natural pozzolan. J. Clean. Prod. 2017, 165, 415–430. [Google Scholar] [CrossRef]
- Lu, J.X.; Yan, X.; He, P.; Poon, C.S. Sustainable design of pervious concrete using waste glass and recycled concrete aggregate. J. Clean. Prod. 2019, 234, 1102–1112. [Google Scholar] [CrossRef]
- Adhikary, S.K.; Rudzionis, Z. Influence of expanded glass aggregate size, aerogel and binding materials volume on the properties of lightweight concrete. Mater. Today Proc. 2020, 32, 712–718. [Google Scholar] [CrossRef]
- Wang, X.; Fan, Z.; Li, L.; Wang, H.; Huang, M. Durability evaluation study for crumb rubber-asphalt pavement. Appl. Sci. 2019, 9, 3434. [Google Scholar] [CrossRef] [Green Version]
- Malarvizhi, G.; Senthil, N.; Kamaraj, C. A Study on Recycling Of Crumb Rubber and Low Density Polyethylene Blend on Stone Matrix Asphalt. Int. J. Sci. Res. Publ. 2012, 2, 1–16. [Google Scholar] [CrossRef]
- Mohammed Babalghaith, A.; Koting, S.; Ramli Sulong, N.H.; Karim, M.R.; Mohammed AlMashjary, B. Performance evaluation of stone mastic asphalt (SMA) mixtures with palm oil clinker (POC) as fine aggregate replacement. Constr. Build. Mater. 2020, 262, 120546. [Google Scholar] [CrossRef]
- Babalghaith, A.M.; Koting, S.; Ramli Sulong, N.H.; Karim, M.R.; Mohammed, S.A.; Ibrahim, M.R. Effect of palm oil clinker (POC) aggregate on the mechanical properties of stone mastic asphalt (SMA) mixtures. Sustainability 2020, 12, 2716. [Google Scholar] [CrossRef] [Green Version]
- Nayaka, R.R.; Alengaram, U.J.; Jumaat, M.Z.; Yusoff, S.B.; Ganasan, R. Performance evaluation of masonry grout containing high volume of palm oil industry by-products. J. Clean. Prod. 2019, 220, 1202–1214. [Google Scholar] [CrossRef]
- Inayat, A.; Inayat, M.; Shahbaz, M.; Sulaiman, S.A.; Raza, M.; Yusup, S. Parametric analysis and optimization for the catalytic air gasification of palm kernel shell using coal bottom ash as catalyst. Renew. Energy 2020, 145, 671–681. [Google Scholar] [CrossRef]
- Singh, N.; Mithulraj, M.; Arya, S. Influence of coal bottom ash as fine aggregates replacement on various properties of concretes: A review. Resour. Conserv. Recycl. 2018, 138, 257–271. [Google Scholar] [CrossRef]
- Ankur, N.; Singh, N. Performance of cement mortars and concretes containing coal bottom ash: A comprehensive review. Renew. Sustain. Energy Rev. 2021, 149, 111361. [Google Scholar] [CrossRef]
- Kim, H.K.; Lee, H.K. Coal bottom ash in field of civil engineering: A review of advanced applications and environmental considerations. KSCE J. Civ. Eng. 2015, 19, 1802–1818. [Google Scholar] [CrossRef]
- Atiyeh, M.; Aydin, E. Data for bottom ash and marble powder utilization as an alternative binder for sustainable concrete construction. Data Br. 2020, 29, 105160. [Google Scholar] [CrossRef]
- Jamora, J.B.; Gudia, S.E.L.; Go, A.W.; Giduquio, M.B.; Loretero, M.E. Potential CO2 reduction and cost evaluation in use and transport of coal ash as cement replacement: A case in the Philippines. Waste Manag. 2020, 103, 137–145. [Google Scholar] [CrossRef]
- Bajare, D.; Bumanis, G.; Upeniece, L. Coal combustion bottom ash as microfiller with pozzolanic properties for traditional concrete. Procedia Eng. 2013, 57, 149–158. [Google Scholar] [CrossRef] [Green Version]
- Gautam, P.K.; Kalla, P.; Jethoo, A.S.; Agrawal, R.; Singh, H. Sustainable use of waste in flexible pavement: A review. Constr. Build. Mater. 2018, 180, 239–253. [Google Scholar] [CrossRef]
- Yoo, B.S.; Park, D.W.; Vo, H.V. Evaluation of Asphalt Mixture Containing Coal Ash. Transp. Res. Procedia 2016, 14, 797–803. [Google Scholar] [CrossRef] [Green Version]
- Ksaibati, K.; Stephen, J. Utilization of Bottom Ash in Asphalt Mixes; No. MCP Report No. 99–104A; Department of Civil and Architectural Engineering, University of Wyoming: Laramie, WY, USA, 1999; Available online: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.593.9395&rep=rep1&type=pdf (accessed on 1 June 2021).
- Hesami, S.; Modarres, A.; Soltaninejad, M.; Madani, H. Mechanical properties of roller compacted concrete pavement containing coal waste and limestone powder as partial replacements of cement. Constr. Build. Mater. 2016, 111, 625–636. [Google Scholar] [CrossRef]
- Ameli, A.; Babagoli, R.; Norouzi, N.; Jalali, F.; Poorheydari Mamaghani, F. Laboratory evaluation of the effect of coal waste ash (CWA) and rice husk ash (RHA) on performance of asphalt mastics and Stone matrix asphalt (SMA) mixture. Constr. Build. Mater. 2020, 236, 117557. [Google Scholar] [CrossRef]
- Xu, P.; Chen, Z.; Cai, J.; Pei, J.; Gao, J.; Zhang, J.; Zhang, J. The effect of retreated coal wastes as filler on the performance of asphalt mastics and mixtures. Constr. Build. Mater. 2019, 203, 9–17. [Google Scholar] [CrossRef]
- Goh, S.W.; You, Z. A preliminary study of the mechanical properties of asphalt mixture containing bottom ash. Can. J. Civ. Eng. 2008, 35, 1114–1119. [Google Scholar] [CrossRef]
- López-López, E.; Vega Zamanillo, Á.; Calzada-Pérez, M.; Taborga-Sedano, M.A. Use of bottom ash from thermal power plant and lime as filler in bituminous mixtures. Mater. Constr. 2015, 65, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Modarres, A.; Ayar, P. Coal waste application in recycled asphalt mixtures with bitumen emulsion. J. Clean. Prod. 2014, 83, 263–272. [Google Scholar] [CrossRef]
- Suárez-Macías, J.; Terrones-Saeta, J.M.; Iglesias-Godino, F.J.; Corpas-Iglesias, F.A. Evaluation of physical, chemical, and environmental properties of biomass bottom ash for use as a filler in bituminous mixtures. Sustainability 2021, 13, 4119. [Google Scholar] [CrossRef]
- Modarres, A.; Rahmanzadeh, M. Application of coal waste powder as filler in hot mix asphalt. Constr. Build. Mater. 2014, 66, 476–483. [Google Scholar] [CrossRef]
- Aydin, E. Novel coal bottom ash waste composites for sustainable construction. Constr. Build. Mater. 2016, 124, 582–588. [Google Scholar] [CrossRef]
- García Arenas, C.; Marrero, M.; Leiva, C.; Solís-Guzmán, J.; Vilches Arenas, L.F. High fire resistance in blocks containing coal combustion fly ashes and bottom ash. Waste Manag. 2011, 31, 1783–1789. [Google Scholar] [CrossRef]
- Lacasta, A.M.; Penaranda, A.; Cantalapiedra, I.R.; Auguet, C.; Bures, S.; Urrestarazu, M. Acoustic evaluation of modular greenery noise barriers. Urban For. Urban Green. 2016, 20, 172–179. [Google Scholar] [CrossRef] [Green Version]
- Arenas, C.; Leiva, C.; Vilches, L.F.; Cifuentes, H. Use of co-combustion bottom ash to design an acoustic absorbing material for highway noise barriers. Waste Manag. 2013, 33, 2316–2321. [Google Scholar] [CrossRef]
- Awang, A.R.; Marto, A.; Makhtar, A.M. Geotechnical properties of tanjung bin coal ash mixtures for backfill materials in embankment construction. Electron. J. Geotech. Eng. 2011, 16 L, 1515–1531. [Google Scholar]
- Kim, B.; Prezzi, M.; Rodrigo, S. Geotechnical Properties of Fly and Bottom Ash Mixtures for Use in Highway Embankments. J. Geotech. Geoenviron. Eng. 2007, 1, 1–7. [Google Scholar] [CrossRef]
- Jorat, M.E.; Marto, A.; Namazi, E.; Amin, M.F.M. Engineering characteristics of kaolin mixed with various percentages of bottom ash. Electron. J. Geotech. Eng. 2011, 16 H, 841–850. [Google Scholar]
- Widiastuti, N.; Hidayah, M.Z.N.; Praseytoko, D.; Fansuri, H. Synthesis of zeolite X-carbon from coal bottom ash for hydrogen storage material. Adv. Mater. Lett. 2014, 5, 453–458. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Boyjoo, Y.; Choueib, A.; Zhu, Z.H. Removal of dyes from aqueous solution using fly ash and red mud. Water Res. 2005, 39, 129–138. [Google Scholar] [CrossRef] [PubMed]
- Daneshvar, N.; Ayazloo, M.; Khataee, A.R.; Pourhassan, M. Biological decolorization of dye solution containing Malachite Green by microalgae Cosmarium sp. Bioresour. Technol. 2007, 98, 1176–1182. [Google Scholar] [CrossRef] [PubMed]
- Hajjaji, M.; Alami, A.; Bouadili, A. El Removal of methylene blue from aqueous solution by fibrous clay minerals. J. Hazard. Mater. 2006, 135, 188–192. [Google Scholar] [CrossRef] [PubMed]
- Catalfamo, P.; Arrigo, I.; Primerano, P.; Corigliano, F. Efficiency of a zeolitized pumice waste as a low-cost heavy metals adsorbent. J. Hazard. Mater. 2006, 134, 140–143. [Google Scholar] [CrossRef]
- Önal, Y. Kinetics of adsorption of dyes from aqueous solution using activated carbon prepared from waste apricot. J. Hazard. Mater. 2006, 137, 1719–1728. [Google Scholar] [CrossRef]
- Arami, M.; Limaee, N.Y.; Mahmoodi, N.M.; Tabrizi, N.S. Equilibrium and kinetics studies for the adsorption of direct and acid dyes from aqueous solution by soy meal hull. J. Hazard. Mater. 2006, 135, 171–179. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, V.C.; Mall, I.D.; Mishra, I.M. Characterization of mesoporous rice husk ash (RHA) and adsorption kinetics of metal ions from aqueous solution onto RHA. J. Hazard. Mater. 2006, 134, 257–267. [Google Scholar] [CrossRef] [PubMed]
- Aksu, Z.; Isoglu, I.A. Use of agricultural waste sugar beet pulp for the removal of Gemazol turquoise blue-G reactive dye from aqueous solution. J. Hazard. Mater. 2006, 137, 418–430. [Google Scholar] [CrossRef] [PubMed]
- Papinutti, L.; Mouso, N.; Forchiassin, F. Removal and degradation of the fungicide dye malachite green from aqueous solution using the system wheat bran-Fomes sclerodermeus. Enzyme. Microb. Technol. 2006, 39, 848–853. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohammed, S.A.; Koting, S.; Katman, H.Y.B.; Babalghaith, A.M.; Abdul Patah, M.F.; Ibrahim, M.R.; Karim, M.R. A Review of the Utilization of Coal Bottom Ash (CBA) in the Construction Industry. Sustainability 2021, 13, 8031. https://doi.org/10.3390/su13148031
Mohammed SA, Koting S, Katman HYB, Babalghaith AM, Abdul Patah MF, Ibrahim MR, Karim MR. A Review of the Utilization of Coal Bottom Ash (CBA) in the Construction Industry. Sustainability. 2021; 13(14):8031. https://doi.org/10.3390/su13148031
Chicago/Turabian StyleMohammed, Syakirah Afiza, Suhana Koting, Herda Yati Binti Katman, Ali Mohammed Babalghaith, Muhamad Fazly Abdul Patah, Mohd Rasdan Ibrahim, and Mohamed Rehan Karim. 2021. "A Review of the Utilization of Coal Bottom Ash (CBA) in the Construction Industry" Sustainability 13, no. 14: 8031. https://doi.org/10.3390/su13148031
APA StyleMohammed, S. A., Koting, S., Katman, H. Y. B., Babalghaith, A. M., Abdul Patah, M. F., Ibrahim, M. R., & Karim, M. R. (2021). A Review of the Utilization of Coal Bottom Ash (CBA) in the Construction Industry. Sustainability, 13(14), 8031. https://doi.org/10.3390/su13148031