Perceived Competence and Intrinsic Motivation in Mathematics: Exploring Latent Profiles
Abstract
:1. Introduction
1.1. Theoretical Framework: Expectancy-Value Theory
1.2. Perceived Competence, Intrinsic Motivation and Academic Performance
1.3. Perceived Competence, Intrinsic Motivation and Academic Emotions
1.4. Study Aims and Hypotheses
2. Materials and Methods
2.1. Participants
2.2. Variables and Measures
- (1)
- Perceived competence in mathematics (α = 0.75): this evaluates the student’s level of confidence in themselves for learning mathematics and achieving good results (e.g., “I am very confident in myself about doing mathematics tasks”).
- (2)
- Intrinsic motivation for mathematics (α = 0.72): this assesses how motivated the student is to learn and understand mathematics content (e.g., “Mathematics is enjoyable and stimulating for me”).
- (3)
- Mathematics anxiety (α = 0.77): this assesses the student’s anxiety about mathematics (e.g., “Normally I feel nervous and uncomfortable about mathematics”).
- (4)
- Negative feelings about mathematics (α = 0.70): this assesses the presence and intensity of negative feelings caused by working on mathematics (e.g., “In math class I am sad and unhappy”).
2.3. Procedure
2.4. Data Analysis
3. Results
3.1. Preliminary Analysis
3.2. Identification of Motivational Profiles
3.3. Description of Motivational Profiles
3.4. Differences between the Motivational Profiles in Anxiety, Negative Feelings, and Performance in Mathematics
4. Discussion
4.1. Practical Implications
4.2. Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, C.K.J.; Liu, C.W.; Nie, Y.; Chye, Y.L.S.; Lim, B.S.C.; Liem, G.A.; Tay, E.-G.; Hong, Y.; Chiu, C. Latent profile analysis of students’ motivation and outcomes in mathematics: An organismic integration theory perspective. Heliyon 2017, 3, e00308. [Google Scholar] [CrossRef] [Green Version]
- Ministerio de Educación y Formación Profesional (MEFP). Available online: https://www.educacionyfp.gob.es/dam/jcr:e2be368b-f08c-4ab8-8fd9-eb93b76c6bf2/pisa-2018-programa-para-la-evaluaci-n-online.pdf (accessed on 2 February 2020).
- European Commission. Sustainable Development in the European Union—Monitoring Report on Progress towards the SDGS in an EU Context; Publications Office of the European Union: Luxembourg, 2020. [Google Scholar]
- United Nations General Assembly. Transforming Our World: The 2030 Agenda for Sustainable Development. Available online: https://www.refworld.org/docid/57b6e3e44.html (accessed on 2 February 2020).
- Rodríguez, S.; Regueiro, B.; Piñeiro, I.; Valle, A.; Sánchez, B.; Vieites, T.; Rodríguez-Llorente, C. Success in mathematics and academic wellbeing in primary-school students. Sustainability 2020, 12, 3796. [Google Scholar] [CrossRef]
- Walshaw, M.; Brown, T. Affective productions of mathematical experience. Educ. Stud. Math. 2012, 80, 185–199. [Google Scholar] [CrossRef] [Green Version]
- Eccles, J.S.; Wigfield, A. Motivational beliefs, values, and goals. Annu. Rev. Psychol. 2002, 53, 109–132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wigfield, A.; Eccles, J. Expectancy–value theory of achievement motivation. Contemp. Educ. Psychol. 2000, 25, 68–81. [Google Scholar] [CrossRef]
- Wigfield, A.; Eccles, J. The development of competence beliefs, expectancies for success, and achievement values from childhood through adolescence. In Development of Achievement Motivation; Wigfield, A., Eccles, J., Eds.; Academic Press: London, UK, 2002; pp. 92–120. [Google Scholar]
- Cueli, M.; González-Castro, P.; Álvarez, L.; García, T.; González-Pienda, J.A. Variables afectivo-motivacionales y rendimiento en matemáticas: Un análisis bidireccional. Rev. Mex. Psicol. 2014, 31, 153–163. [Google Scholar]
- Meyer, J.; Fleckenstein, J.; Köller, O. Expectancy value interactions and academic achievement: Differential relationships with achievement measures. Contemp. Educ. Psychol. 2019, 58, 58–74. [Google Scholar] [CrossRef]
- Trautwein, U.; Marsh, H.W.; Nagengast, B.; Lüdtke, O.; Nagy, G.; Jonkmann, K. Probing for the multiplicative term in modern expectancy–value theory: A latent interaction modeling study. J. Educ. Psychol. 2012, 104, 763. [Google Scholar] [CrossRef] [Green Version]
- García, T.; Rodríguez, C.; Betts, L.; Areces, D.; González-Castro, P. How affective-motivational variables and approaches to learning predict mathematics achievement in upper elementary levels. Learn. Individ. Differ. 2016, 49, 25–31. [Google Scholar] [CrossRef] [Green Version]
- Watt, H.M.; Bucich, M.; Dacosta, L. Adolescents’ Motivational Profiles in Mathematics and Science: Antecedents and consequences for engagement and wellbeing. Front. Psychol. 2019, 10, 990. [Google Scholar] [CrossRef]
- Lazarides, R.; Dietrich, J.; Taskinen, P.H. Stability and change in students’ motivational profiles in mathematics classrooms: The role of perceived teaching. Teach. Teach. Educ. 2019, 79, 164–175. [Google Scholar] [CrossRef]
- Lazarides, R.; Dicke, A.L.; Rubach, C.; Eccles, J.S. Profiles of motivational beliefs in math: Exploring their development, relations to student-perceived classroom characteristics, and impact on future career aspirations and choices. J. Educ. Psychol. 2020, 112, 70. [Google Scholar] [CrossRef]
- Hickendorff, M.; Edelsbrunner, P.A.; McMullen, J.; Schneider, M.; Trezise, K. Informative tools for characterizing individual differences in learning: Latent class, latent profile, and latent transition analysis. Learn. Individ. Differ. 2018, 66, 4–15. [Google Scholar] [CrossRef] [Green Version]
- Pérez, D.O.; Izquierdo, J.M.A. Análisis de clases latentes como técnica de identificación de tipologías. Int. J. Educ. Dev. 2019, 5, 251–260. [Google Scholar] [CrossRef] [Green Version]
- Bandura, A. Self-Efficacy: The Exercise of Control; Worth Publishers: London, UK, 1997. [Google Scholar]
- Pajares, F.; Schunk, D.H. Self-beliefs and school success: Self-efficacy, selfconcept, and school achievement. In Perception; Riding, R., Rayner, S., Eds.; Ablex Publishing: New York, NY, USA, 2001; pp. 239–266. [Google Scholar]
- Bandura, A. Self-efficacy conception of anxiety. Anxiety Stress Coping 1988, 1, 77–98. [Google Scholar] [CrossRef]
- Klassen, R.M.; Usher, E.L. Self-efficacy in educational settings: Recent research and emerging directions. In The Decade Ahead: Theoretical Perspectives on Motivation and Achievement; Urdan, T.C., Karabenick, S.A., Eds.; Emerald Group Publishing Limited: Bingley, UK, 2010; pp. 1–33. [Google Scholar]
- Recber, S.; Isiksal, M.; Koç, Y. Investigating self-efficacy, anxiety, attitudes and mathematics achievement regarding gender and school type. Ann. Psychol. 2018, 34, 41–51. [Google Scholar] [CrossRef] [Green Version]
- Rosário, P.; Lourenço, A.; Paiva, O.; Rodrigues, A.; Valle, A.; TueroHerrero, E. Prediction of mathematics achievement: Effect of personal, socioeducational and contextual variables. Psicothema 2012, 24, 289–295. [Google Scholar] [PubMed]
- Talsma, K.; Schüz, B.; Schwarzer, R.; Norris, K. I believe, therefore I achieve (and vice versa): A meta-analytic cross-lagged panel analysis of self-efficacy and academic performance. Learn. Individ. Differ. 2018, 61, 136–150. [Google Scholar] [CrossRef]
- Usher, E.; Pajares, F. Sources of self-efficacy in school: Critical review of the literature and future directions. Rev. Educ. Res. 2008, 78, 751–796. [Google Scholar] [CrossRef] [Green Version]
- Honicke, T.; Broadbent, J. The influence of academic self-efficacy on academic performance: A systematic review. Educ. Res. Rev. 2016, 17, 63–84. [Google Scholar] [CrossRef]
- Ryan, R.M.; Deci, E.L. Intrinsic and extrinsic motivations: Classic definitions and new directions. Contemp. Educ. Psychol. 2000, 25, 54–67. [Google Scholar] [CrossRef] [PubMed]
- Ryan, R.M.; Deci, E.L. Intrinsic and extrinsic motivation from a self-determination theory perspective: Definitions, theory, practices, and future directions. Contemp. Educ. Psychol. 2020, 101860. [Google Scholar] [CrossRef]
- Denissen, J.J.; Zarrett, N.R.; Eccles, J.S. I like to do it, I’m able, and I know I am: Longitudinal couplings between domain-specific achievement, self-concept, and interest. Child Dev. 2007, 78, 430–447. [Google Scholar] [CrossRef] [PubMed]
- Nicolaidou, M.; Philippou, G. Attitudes towards mathematics, self-efficacy and achievement in problem solving. Eur. Res. Math. Educ. III Pisa Univ. Pisa 2003, 1, 1–11. [Google Scholar]
- Henderlong, J.; Wormington, S.V. Profiles of intrinsic and extrinsic motivations in elementary school: A longitudinal analysis. Int. J. Exp. Educ. 2014, 82, 480–501. [Google Scholar] [CrossRef]
- Frenzel, A.C.; Pekrun, R.; Goetz, T. Girls and mathematics. A “hopeless” issue? A control-value approach to gender differences in emotions towards mathematics. Eur. J. Psychol. Educ. 2007, 22, 497–514. [Google Scholar] [CrossRef] [Green Version]
- Goetz, T.; Cronjaeger, H.; Frenzel, A.C.; Ludtke, O.; Hall, L.C. Academic self-concept and emotion relations: Domain specificity and age effects. Contemp. Educ. Psychol. 2010, 35, 44–58. [Google Scholar] [CrossRef] [Green Version]
- Hanin, V.; Van Nieuwenhoven, C. Developing an expert and reflexive approach to problemsolving: The place of emotional knowledge and skills. Psychology 2018, 9, 280–309. [Google Scholar] [CrossRef] [Green Version]
- Hanin, V.; Van Nieuwenhoven, C. Emotional and motivational relationship of elementary students to mathematical problem-solving: A person-centered approach. Eur. J. Psychol. Educ. 2019, 34, 705–730. [Google Scholar] [CrossRef]
- Peixoto, F.; Sanches, C.; Mata, L.; Monteiro, V. “How do you feel about math?”: Relationships between competence and value appraisals, achievement emotions and academic achievement. Eur. J. Psychol. Educ. 2017, 32, 385–405. [Google Scholar] [CrossRef] [Green Version]
- Stankov, L.; Morony, S.; Lee, Y.P. Confidence: The best non-cognitive predictor of academic achievement? J. Exp. Educ. 2014, 34, 9–28. [Google Scholar] [CrossRef]
- Lyons, I.M.; Beilock, S.L. Mathematics anxiety: Separating the math from the anxiety. Cereb. Cortex 2012, 22, 2102–2110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morony, S.; Kleitman, S.; Lee, Y.P.; Stankov, L. Predicting achievement: Confidence vs self-efficacy, anxiety, and self-concept in Confucian and European countries. Int. J. Educ. Res. 2013, 58, 79–96. [Google Scholar] [CrossRef]
- Yi, H.; Tian, L.; Huebner, E.S. Mastery goal orientations and subjective well-being in school among elementary school students: The mediating role of school engagement. Eur. J. Psychol. Educ. 2019, 35, 429–450. [Google Scholar] [CrossRef]
- Monteiro, V.; Peixoto, F.; Mata, L.; Sanches, C. Mathematics: I don’t like it! I like it! Very much, a little, not at all… Social support and emotions in students from 2nd and 3rd cycles of education. Anal. Psicol. 2017, 35, 281–296. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Lukowski, S.L.; Hart, S.A.; Lyons, I.M.; Thompson, L.A.; Kovas, Y.; Michèle, M.M.; Mazzocco, R.; Stephen, A.; Petrill, S.A. Is math anxiety always bad for math learning? The role of math motivation. Psychol. Sci. 2015, 26, 1863–1876. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Fuentes, M.D.C.; Núñez, A.; Molero, M.D.M.; Gázquez, J.J.; Rosário, P.; Núñez, J.C. The Role of Anxiety in the Relationship between Self-efficacy and Math Achievement. Psicol. Educ. 2020, 26, 137–143. [Google Scholar] [CrossRef]
- Frenzel, A.C.; Goetz, T.; Pekrun, R.; Watt, H.M. Development of mathematics interest in adolescence: Influences of gender, family, and school context. J. Res. Adolesc. 2010, 20, 507–537. [Google Scholar] [CrossRef]
- Fennema, E.; Sherman, J.A. Fennema-Sherman Mathematics Attitudes Scales: Instruments designed to measure attitudes toward the learning of mathematics by females and males. Math. Educ. Res. J. 1976, 7, 324–326. [Google Scholar] [CrossRef]
- Lo, Y.; Mendell, N.R.; Rubin, D.B. Testing the number of components in a normal mixture. Biometrika 2001, 88, 767–778. [Google Scholar] [CrossRef]
- Hipp, J.R.; Bauer, D.J. Local solutions in the estimation of growth mixture models. Psychol. Methods 2006, 11, 36–53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Lawrence Erlbaum: London, UK, 1988. [Google Scholar]
- Finney, S.J.; DiStefano, C. Non-normal and categorical data in structural equation modeling. In Structural Equation Modeling. A Second Course; Hancock, G.R., Mueller, R.O., Eds.; Information Age Publishing: Charlotte, NC, USA, 2006; pp. 269–314. [Google Scholar]
- Jansen, M.; Lüdtke, O.; Schroeders, U. Evidence for a positive relation between interest and achievement: Examining between-person and within-person variation in five domains. Contemp. Educ. Psychol. 2016, 46, 116–127. [Google Scholar] [CrossRef]
- Nie, Y.; Lau, S.; Liau, A.K. Role of academic self-efficacy in moderating the relation between task importance and test anxiety. Learn. Individ. Differ. 2011, 21, 736–741. [Google Scholar] [CrossRef]
- Olivier, E.; Archambault, I.; De Clercq, M.; Galand, B. Student self-efficacy, classroom engagement, and academic achievement: Comparing three theoretical frameworks. J. Youth Adolesc. 2019, 48, 326–340. [Google Scholar] [CrossRef] [PubMed]
- Schunk, D.H.; Pajares, F. Self-efficacy theory. In Handbook of Motivation at School; Wentzel, K.R., Wigfield, A., Eds.; Routledge: London, UK, 2009; pp. 35–54. [Google Scholar]
- Núñez, J.C.; Cabanach, R.G.; Rodríguez, S.; González-Pienda, J.A.; Rosário, P. Perfiles motivacionales en estudiantes de secundaria: Análisis diferencial en estrategias cognitivas, estrategias de autorregulación y rendimiento académico. Rev. Mex. Psicol. 2014, 26, 113–124. [Google Scholar]
1 | 2 | 3 | 4 | 5 | |
---|---|---|---|---|---|
1. Perceived competence | – | ||||
2. Intrinsic motivation | 0.68 * | – | |||
3. Anxiety | −0.50 * | −0.44 * | – | ||
4. Negative feelings | −0.43 * | −0.51 * | 0.48 * | – | |
5. Academic performance | 0.29 * | 0.19 * | −0.30 * | −0.34 * | – |
M | 4.05 | 3.71 | 1.78 | 1.78 | 3.40 |
SD | 0.76 | 0.86 | 0.87 | 0.87 | 1.26 |
Asymmetry | −0.88 | −0.51 | 1.26 | 1.26 | −0.42 |
Kurtosis | 0.77 | −0.16 | 1.42 | 1.42 | −0.91 |
Latent Class Model | |||
---|---|---|---|
M2 | M3 | M4 | |
AIC | 3745.919 | 3549.116 | 3527.283 |
BIC | 3779.242 | 3596.720 | 3589.168 |
SSA-BIC | 3757.012 | 3564.963 | 3547.884 |
LMRT | 410.287 | 193.274 | 26.525 |
(LMRT p) | (0.000) | (0.000) | (0.069) |
Entropy | 0.747 | 0.793 | 0.815 |
Nº of groups with n < 5% | 0 | 0 | 1 |
Model with Three Latent Classes | |||||
---|---|---|---|---|---|
Group 1 | Group 2 | Group 3 | n | % | |
Group 1 | 0.931 | 0.000 | 0.069 | 64 | 7.4 |
Group 2 | 0.000 | 0.918 | 0.082 | 467 | 54.1 |
Group 3 | 0.025 | 0.094 | 0.881 | 332 | 38.5 |
Confidence Intervals | ||||
---|---|---|---|---|
Mean | Standard Error | Lower 5% | Upper 5% | |
Profile 1 (n = 64) | ||||
Perceived competence | 2.413 | 0.098 | 2.252 | 2.574 |
Intrinsic motivation | 2.161 | 0.127 | 1.952 | 2.370 |
Profile 2 (n = 467) | ||||
Perceived competence | 4.543 | 0.029 | 4.496 | 4.591 |
Intrinsic motivation | 4.275 | 0.036 | 4.216 | 4.335 |
Profile 3 (n = 332) | ||||
Perceived competence | 3.666 | 0.046 | 3.589 | 3.742 |
Intrinsic motivation | 3.243 | 0.052 | 3.158 | 3.328 |
Anxiety | Negative Feelings | Academic Performance | ||||
---|---|---|---|---|---|---|
M | SD | M | SD | M | SD | |
Group 1 | 3.36 | 1.24 | 2.91 | 1.15 | 2.70 | 1.16 |
Group 2 | 1.69 | 0.89 | 1.47 | 0.71 | 3.66 | 1.21 |
Group 3 | 2.46 | 0.96 | 1.99 | 0.78 | 3.17 | 1.27 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodríguez, S.; Estévez, I.; Piñeiro, I.; Valle, A.; Vieites, T.; Regueiro, B. Perceived Competence and Intrinsic Motivation in Mathematics: Exploring Latent Profiles. Sustainability 2021, 13, 8707. https://doi.org/10.3390/su13168707
Rodríguez S, Estévez I, Piñeiro I, Valle A, Vieites T, Regueiro B. Perceived Competence and Intrinsic Motivation in Mathematics: Exploring Latent Profiles. Sustainability. 2021; 13(16):8707. https://doi.org/10.3390/su13168707
Chicago/Turabian StyleRodríguez, Susana, Iris Estévez, Isabel Piñeiro, Antonio Valle, Tania Vieites, and Bibiana Regueiro. 2021. "Perceived Competence and Intrinsic Motivation in Mathematics: Exploring Latent Profiles" Sustainability 13, no. 16: 8707. https://doi.org/10.3390/su13168707
APA StyleRodríguez, S., Estévez, I., Piñeiro, I., Valle, A., Vieites, T., & Regueiro, B. (2021). Perceived Competence and Intrinsic Motivation in Mathematics: Exploring Latent Profiles. Sustainability, 13(16), 8707. https://doi.org/10.3390/su13168707