Review of a Disruptive Vision of Future Power Grids: A New Path Based on Hybrid AC/DC Grids and Solid-State Transformers
Abstract
:1. Introduction
2. Hybrid AC/DC Grids
2.1. Unipolar and Bipolar DC Electrical Power Grids
2.2. Structures of Hybrid AC/DC Grids
2.3. Problems to Be Solved
3. Smart Transformer
3.1. Hybrid Transformer
3.2. Solid-State Transformer
4. Unified Multi-Port Systems
5. Collaborative Vision of Technologies
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Deane, P.; Brinkerink, M. Connecting the Continents-A Global Power Grid. IEEE Power Energy Mag. 2020, 18, 121–127. [Google Scholar] [CrossRef]
- Zhou, M.; Yan, J.; Zhou, X. Real-time online analysis of power grid. CSEE J. Power Energy Syst. 2020, 6, 236–238. [Google Scholar]
- Hussain, S.; El-Bayeh, C.Z.; Lai, C.; Eicker, U. Multi-Level Energy Management Systems Toward a Smarter Grid: A Review. IEEE Access 2021, 9, 71994–72016. [Google Scholar] [CrossRef]
- Kroposki, B.D.; Dall-Anese, E.; Bernstein, A.; Zhang, Y.; Hodge, B.S. Autonomous Energy Grids; National Renewable Energy Laboratory: Golden, CO, USA, 2020; pp. 37–46. [Google Scholar]
- Mollah, M.B.; Zhao, J.; Niyato, D.; Lam, K.-Y.; Zhang, X.; Ghias, A.M.Y.M.; Koh, L.H.; Yang, L. Blockchain for Future Smart Grid: A Comprehensive Survey. IEEE Internet Things J. 2020, 8, 18–43. [Google Scholar] [CrossRef]
- Zeng, Z.; Dong, M.; Miao, W.; Zhang, M.; Tang, H. A Data-Driven Approach for Blockchain-Based Smart Grid System. IEEE Access 2021, 9, 70061–70070. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, B.; Wu, H. Smart Grid Cyber-Physical Attack and Defense: A Review. IEEE Access 2021, 9, 29641–29659. [Google Scholar] [CrossRef]
- Hosseini, Z.S.; Khodaei, A.; Paaso, A. Machine Learning-Enabled Distribution Network Phase Identification. IEEE Trans. Power Syst. 2020, 36, 842–850. [Google Scholar] [CrossRef]
- Zhuang, P.; Zamir, T.; Liang, H. Blockchain for cybersecurity in smart grid: A comprehensive survey. IEEE Trans. Ind. Inform. 2020, 17, 3–19. [Google Scholar] [CrossRef]
- Massaoudi, M.; Abu-Rub, H.; Refaat, S.S.; Chihi, I.; Oueslati, F.S. Deep Learning in Smart Grid Technology: A Review of Recent Advancements and Future Prospects. IEEE Access 2021, 9, 54558–54578. [Google Scholar] [CrossRef]
- Vadari, M. The future of distribution operations and planning: The electric utility environment is changing. IEEE Power Energy Mag. 2020, 19, 18–25. [Google Scholar] [CrossRef]
- Li, F.; Tomsovic, K.; Cui, H. A Large-Scale Testbed as a Virtual Power Grid. IEEE Power Energy Mag. 2020, 18, 60–68. [Google Scholar] [CrossRef]
- Kumari, A.; Gupta, R.; Tanwar, S.; Tyagi, S.; Kumar, N. When Blockchain Meets Smart Grid: Secure Energy Trading in Demand Response Management. IEEE Netw. 2020, 34, 299–305. [Google Scholar] [CrossRef]
- Razon, A.; Thomas, T.; Banunarayanan, V. Advanced Distribution Management Systems: Connectivity Through Standardized Interoperability Protocols. IEEE Power Energy Mag. 2019, 18, 26–33. [Google Scholar] [CrossRef]
- Smil, V. Distributed Generation and Megacities: Are Renewables the Answer? IEEE Power Energy Mag. 2019, 17, 37–41. [Google Scholar] [CrossRef]
- Yang, J.; Dong, Z.Y.; Wen, F.; Chen, G.; Qiao, Y. A Decentralized Distribution Market Mechanism Considering Renewable Generation Units with Zero Marginal Costs. IEEE Trans. Smart Grid 2019, 11, 1724–1736. [Google Scholar] [CrossRef]
- Jiang, J.; Peyghami, S.; Coates, C.; Blaabjerg, F. A Decentralized Reliability-Enhanced Power Sharing Strategy for PV-Based Microgrids. IEEE Trans. Power Electron. 2020, 36, 7281–7293. [Google Scholar] [CrossRef]
- Qi, C.; Wang, K.; Fu, Y.; Li, G.-J.; Han, B.; Huang, R.; Pu, T. A Decentralized Optimal Operation of AC/DC Hybrid Distribution Grids. IEEE Trans. Smart Grid 2017, 9, 6095–6105. [Google Scholar] [CrossRef]
- Rosso, R.; Wang, X.; Liserre, M.; Lu, X.; Engelken, S. Grid-Forming Converters: Control Approaches, Grid-Synchronization, and Future Trends—A Review. IEEE Open J. Ind. Appl. 2021, 2, 93–109. [Google Scholar] [CrossRef]
- Gungor, V.C.; Sahin, D.; Kocak, T.; Ergut, S.; Buccella, C.; Cecati, C.; Hancke, G. Smart Grid and Smart Homes: Key Players and Pilot Projects. IEEE Ind. Electron. Mag. 2012, 6, 18–34. [Google Scholar] [CrossRef]
- Yu, X.; Cecati, C.; Dillon, T.; Simoes, M. The New Frontier of Smart Grids. IEEE Ind. Electron. Mag. 2011, 5, 49–63. [Google Scholar] [CrossRef]
- Ma, K.; Wang, J.; Cai, X.; Blaabjerg, F. AC Grid Emulations for Advanced Testing of Grid-Connected Converters—An Overview. IEEE Trans. Power Electron. 2020, 36, 1626–1645. [Google Scholar] [CrossRef]
- Hashimoto, J.; Ustun, T.S.; Suzuki, M.; Sugahara, S.; Hasegawa, M.; Otani, K. Advanced Grid Integration Test Platform for Increased Distributed Renewable Energy Penetration in Smart Grids. IEEE Access 2021, 9, 34040–34053. [Google Scholar] [CrossRef]
- Lopes, J.A.P.; Madureira, A.G.; Matos, M.; Bessa, R.J.; Monteiro, V.; Afonso, J.L.; Santos, S.F.; Catalao, J.P.S.; Antunes, C.H.; Magalhães, P. The future of power systems: Challenges, trends, and upcoming paradigms. Wiley Interdiscip. Rev. Energy Environ. 2020, 9, e368. [Google Scholar] [CrossRef]
- Riaz, S.; Marzooghi, H.; Verbic, G.; Chapman, A.C.; Hill, D.J. Generic Demand Model Considering the Impact of Prosumers for Future Grid Scenario Analysis. IEEE Trans. Smart Grid 2017, 10, 819–829. [Google Scholar] [CrossRef] [Green Version]
- Aliabadi, F.E.; Agbossou, K.; Kelouwani, S.; Henao, N.; Hosseini, S.S. Coordination of Smart Home Energy Management Systems in Neighborhood Areas: A Systematic Review. IEEE Access 2021, 9, 36417–36443. [Google Scholar] [CrossRef]
- Reno, M.J.; Brahma, S.; Bidram, A.; Ropp, M.E. Influence of Inverter-Based Resources on Microgrid Protection: Part 1: Microgrids in Radial Distribution Systems. IEEE Power Energy Mag. 2021, 19, 36–46. [Google Scholar] [CrossRef]
- Reno, M.J.; Brahma, S.; Bidram, A.; Ropp, M.E. Influence of Inverter-Based Resources on Microgrid Protection: Part 2: Secondary Networks and Microgrid Protection. IEEE Power Energy Mag. 2021, 19, 47–57. [Google Scholar] [CrossRef]
- Zarei, S.F.; Mokhtari, H.; Blaabjerg, F. Fault Detection and Protection Strategy for Islanded Inverter-Based Microgrids. IEEE J. Emerg. Sel. Top. Power Electron. 2019, 9, 472–484. [Google Scholar] [CrossRef]
- Askarian, I.; Eren, S.; Pahlevani, M.; Knight, A.M.; Knight, A. Digital Real-Time Harmonic Estimator for Power Converters in Future Micro-Grids. IEEE Trans. Smart Grid 2017, 9, 6398–6407. [Google Scholar] [CrossRef]
- Chen, B.; Wang, J.; Lu, X.; Chen, C.; Zhao, S. Networked microgrids for grid resilience, robustness, and efficiency: A review. IEEE Trans. Smart Grid 2020, 12, 18–32. [Google Scholar] [CrossRef]
- Ansari, S.; Chandel, A.; Tariq, M. A Comprehensive Review on Power Converters Control and Control Strategies of AC/DC Microgrid. IEEE Access 2020, 9, 17998–18015. [Google Scholar] [CrossRef]
- Litwin, M.; Zieliński, D.; Gopakumar, K. Remote Micro-Grid Synchronization Without Measurements at the Point of Common Coupling. IEEE Access 2020, 8, 212753–212764. [Google Scholar] [CrossRef]
- Zhang, M.; Sun, L. PLL and Additional Frequency Control Constituting an Adaptive Synchronization Mechanism for VSCs. IEEE Trans. Power Syst. 2020, 35, 4920–4923. [Google Scholar] [CrossRef]
- Li, M.; Wei, B.; Matas, J.; Guerrero, J.M.; Vasquez, J.C. Advanced synchronization control for inverters parallel operation in microgrids using coupled Hopf oscillators. CPSS Trans. Power Electron. Appl. 2020, 5, 224–234. [Google Scholar] [CrossRef]
- Bakas, P.; Okazaki, Y.; Shukla, A.; Patro, S.K.; Ilves, K.; Dijkhuizen, F.; Nami, A. Review of Hybrid Multilevel Converter Topologies Utilizing Thyristors for HVDC Applications. IEEE Trans. Power Electron. 2020, 36, 174–190. [Google Scholar] [CrossRef]
- Van Hertem, D.; Leterme, W.; Chaffey, G.; Abedrabbo, M.; Wang, M.; Zerihun, F.; Barnes, M. Substations for Future HVdc Grids: Equipment and Configurations for Connection of HVdc Network Elements. IEEE Power Energy Mag. 2019, 17, 56–66. [Google Scholar] [CrossRef]
- Ma, J.; Zhu, M.; Cai, X.; Li, Y. DC Substation for DC Grid—Part I: Comparative Evaluation of DC Substation Configurations. IEEE Trans. Power Electron. 2019, 34, 9719–9731. [Google Scholar] [CrossRef]
- Ma, J.; Zhu, M.; Cai, X.; Li, Y.W. DC Substation for DC Grid—Part II: Hierarchical Control Strategy and Verifications. IEEE Trans. Power Electron. 2018, 34, 8682–8696. [Google Scholar] [CrossRef]
- Bloemink, J.M.; Green, T. Benefits of Distribution-Level Power Electronics for Supporting Distributed Generation Growth. IEEE Trans. Power Deliv. 2013, 28, 911–919. [Google Scholar] [CrossRef] [Green Version]
- Divan, D.; Kandula, P. Distributed Power Electronics: An Enabler for the Future Grid. CPSS Trans. Power Electron. Appl. 2016, 1, 57–65. [Google Scholar] [CrossRef]
- Boroyevich, D.; Cvetkovic, I.; Burgos, R.; Dong, D. Intergrid: A Future Electronic Energy Network? IEEE J. Emerg. Sel. Top. Power Electron. 2013, 1, 127–138. [Google Scholar] [CrossRef]
- Fairley, P. DC Versus AC: The Second War of Currents Has Already Begun [In My View]. IEEE Power Energy Mag. 2012, 10, 103–104. [Google Scholar] [CrossRef]
- Byers, C.; Botterud, A. Additional capacity value from synergy of variable renewable energy and energy storage. IEEE Trans. Sustain. Energy 2020, 11, 1106–1109. [Google Scholar] [CrossRef]
- Mahmud, K.; Ravishankar, J.; Hossain, M.J.; Dong, Z.Y. The Impact of Prediction Errors in the Domestic Peak Power Demand Management. IEEE Trans. Ind. 2019, 16, 4567–4579. [Google Scholar] [CrossRef]
- Luo, F.; Kong, W.; Ranzi, G.; Dong, Z.Y. Optimal home energy management system with demand charge tariff and appliance operational dependencies. IEEE Trans. Smart Grid 2019, 11, 4–14. [Google Scholar] [CrossRef]
- Wei, J.; Zhang, Y.; Wang, J.; Wu, L. Distribution LMP-Based Demand Management in Industrial Park via a Bi-Level Programming Approach. IEEE Trans. Sustain. Energy 2021, 12, 1695–1706. [Google Scholar] [CrossRef]
- Takci, M.T.; Gozel, T.; Hocaoglu, M.H. Quantitative Evaluation of Data Centers’ Participation in Demand Side Management. IEEE Access 2021, 9, 14883–14896. [Google Scholar] [CrossRef]
- Kim, S.; Mowakeaa, R.; Kim, S.-J.; Lim, H. Building Energy Management for Demand Response Using Kernel Lifelong Learning. IEEE Access 2020, 8, 82131–82141. [Google Scholar] [CrossRef]
- Nawaz, A.; Hafeez, G.; Khan, I.; Jan, K.U.; Li, H.; Khan, S.A.; Wadud, Z. An Intelligent Integrated Approach for Efficient Demand Side Management with Forecaster and Advanced Metering Infrastructure Frameworks in Smart Grid. IEEE Access 2020, 8, 132551–132581. [Google Scholar] [CrossRef]
- Zhuo, Z.; Zhang, N.; Yang, J.; Kang, C.; Smith, C.; O’Malley, M.J.; Kroposki, B. Transmission Expansion Planning Test System for AC/DC Hybrid Grid with High Variable Renewable Energy Penetration. IEEE Trans. Power Syst. 2019, 35, 2597–2608. [Google Scholar] [CrossRef]
- Lotfi, H.; Khodaei, A. AC Versus DC Microgrid Planning. IEEE Trans. Smart Grid 2015, 8, 296–304. [Google Scholar] [CrossRef]
- Wang, P.; Goel, L.; Liu, X.; Choo, F.H. Harmonizing AC and DC: A Hybrid AC/DC Future Grid Solution. IEEE Power Energy Mag. 2013, 11, 76–83. [Google Scholar] [CrossRef]
- Suryanarayana, H.; Sudhoff, S.D. Design Paradigm for Power Electronics-Based DC Distribution Systems. IEEE J. Emerg. Sel. Top. Power Electron. 2016, 5, 51–63. [Google Scholar] [CrossRef]
- Pei, W.; Deng, W.; Zhang, X.; Qu, H.; Sheng, K. Potential of Using Multiterminal LVDC to Improve Plug-In Electric Vehicle Integration in an Existing Distribution Network. IEEE Trans. Ind. Electron. 2014, 62, 3101–3111. [Google Scholar] [CrossRef]
- Paez, J.D.; Frey, D.; Maneiro, J.; Bacha, S.; Dworakowski, P. Overview of DC–DC converters dedicated to HVdc grids. IEEE Trans. Power Deliv. 2018, 34, 119–128. [Google Scholar] [CrossRef]
- Khan, Z.W.; Minxiao, H.; Kai, C.; Yang, L.; Rehman, A.U. State of the Art DC-DC Converter Topologies for the Multi-Terminal DC Grid Applications: A Review. In Proceedings of the 2020 IEEE International Conference on Power Electronics, Smart Grid and Renewable Energy, Kochi, India, 2–4 January 2020; pp. 1–7. [Google Scholar]
- Unamuno, E.; Barrena, J.A. Hybrid ac/dc microgrids—Part I: Review and classification of topologies. Renew. Sustain. Energy Rev. 2015, 52, 1251–1259. [Google Scholar] [CrossRef]
- Unamuno, E.; Barrena, J.A. Hybrid ac/dc microgrids—Part II: Review and classification of control strategies. Renew. Sustain. Energy Rev. 2015, 52, 1123–1134. [Google Scholar] [CrossRef]
- Diaz, E.R.; Vasquez, J.C.; Guerrero, J. Intelligent DC Homes in Future Sustainable Energy Systems: When efficiency and intelligence work together. IEEE Consum. Electron. Mag. 2015, 5, 74–80. [Google Scholar] [CrossRef] [Green Version]
- Patterson, B.T. DC, come home: DC microgrids and the birth of the enernet. IEEE Power Energy Mag. 2012, 10, 60–69. [Google Scholar] [CrossRef]
- Nasir, M.; Khan, H.A.; Zaffar, N.A.; Vasquez, J.C.; Guerrero, J.M. Scalable solar dc micrigrids. IEEE Electrif. Mag. 2018, 4, 63–72. [Google Scholar] [CrossRef]
- Diaz, E.R.; Su, X.; Savaghebi, M.; Vasquez, J.C.; Han, M.; Guerrero, J.M. Intelligent DC Microgrid living Laboratories—A Chinese-Danish cooperation project. In Proceedings of the 2015 IEEE First International Conference on DC Microgrids, Atlanta, GA, USA, 7–10 June 2015; pp. 365–370. [Google Scholar]
- Wu, T.F.; Chen, Y.K.; Yu, G.R.; Chang, Y.C. Design and development of DC-distributed system with grid connection for residential applications. In Proceedings of the 8th International Conference on Power Electronics-ECCE Asia, Seogwipo-si, Korea, 29 May–2 June 2011; pp. 235–241. [Google Scholar]
- Hirose, K.; Reilly, J.; Irie, H. The sendai microgrid operational experience in the aftermath of the tohoku earthquake: A case study. New Energy Ind. Technol. Dev. Organ. 2013, 308, 1–6. [Google Scholar]
- Sousa, T.J.C.; Monteiro, V.D.F.; Cunha, J.M.C. On the Viability of DC Homes: An Economic Perspective from Domestic Electrical Appliances. In Proceedings of the ICEE International Con-ference on Energy and Environment: Bringing Together Engineering and Economics, Guimarães, Portugal, 16–17 May 2019. [Google Scholar]
- Sousa, T.J.; Monteiro, V.; Martins, J.S.; Sepúlveda, M.J.; Lima, A.; Afonso, J.L. Comparative Analysis of Power Electronics Topologies to Interface dc Homes with the Electrical ac Power Grid. In Proceedings of the 2019 International Conference on Smart Energy Systems and Technologies, Porto, Portugal, 9–11 September 2019; pp. 1–6. [Google Scholar]
- Sousa, T.J.; Monteiro, V.; Pinto, J.G.; Afonso, J.L. Performance Comparison of a Typical Nonlinear Load Connected to ac and dc Power Grids. In Proceedings of the International Conference on Green Energy and Networking, Guimaraes, Portugal, 21–23 November 2018; pp. 1–8. [Google Scholar]
- Dragicevic, T.; Lu, X.; Vasquez, J.C.; Guerrero, J. DC Microgrids–Part I: A Review of Control Strategies and Stabilization Techniques. IEEE Trans. Power Electron. 2015, 31, 4876–4891. [Google Scholar] [CrossRef] [Green Version]
- Dragičević, T.; Lu, X.; Vasquez, J.C.; Guerrero, J.M. DC microgrids—Part II: A review of power architectures, applications, and standardization issues. IEEE Trans. Power Electron. 2015, 31, 3528–3549. [Google Scholar] [CrossRef] [Green Version]
- Mohammadi, J.; Ajaei, F.B.; Stevens, G. Grounding the DC microgrid. IEEE Trans. Ind. Appl. 2019, 55, 4490–4499. [Google Scholar] [CrossRef]
- Sousa, T.J.; Monteiro, V.; Afonso, J.A.; Afonso, J.L. Selective Harmonic Measurement and Compensation in a Distributed Microgrid. In Proceedings of the IEEE INDIN International Conference on Industrial Informatics, Porto, Portugal, 18–20 July 2018; pp. 439–444. [Google Scholar]
- Li, X.; Guo, L.; Li, Y.; Guo, Z.; Hong, C.; Zhang, Y.; Wang, C. A Unified Control for the DC–AC Interlinking Converters in Hybrid AC/DC Microgrids. IEEE Trans. Smart Grid 2017, 9, 6540–6553. [Google Scholar] [CrossRef]
- Shen, X.; Tan, D.; Shuai, Z.; Luo, A. Control Techniques for Bidirectional Interlinking Converters in Hybrid Microgrids: Leveraging the advantages of both ac and dc. IEEE Power Electron. Mag. 2019, 6, 39–47. [Google Scholar] [CrossRef]
- Dragicevic, T.; Vasquez, J.C.; Guerrero, J.; Škrlec, D. Advanced LVDC Electrical Power Architectures and Microgrids: A step toward a new generation of power distribution networks. IEEE Electrif. Mag. 2014, 2, 54–65. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Diaz, E.; Chen, F.; Vasquez, J.C.; Guerrero, J.M.; Burgos, R.; Boroyevich, D. Voltage-level selection of future two-level LVdc distribution grids: A compromise between grid compatibiliy, safety, and efficiency. IEEE Electrif. Mag. 2016, 4, 20–28. [Google Scholar] [CrossRef] [Green Version]
- Salomonsson, D.; Sannino, A. Low-Voltage DC Distribution System for Commercial Power Systems with Sensitive Electronic Loads. IEEE Trans. Power Deliv. 2007, 22, 1620–1627. [Google Scholar] [CrossRef]
- Li, X.; Guo, L.; Hong, C.; Zhang, Y.; Li, Y.W.; Wang, C. Hierarchical Control of Multiterminal DC Grids for Large-Scale Renewable Energy Integration. IEEE Trans. Sustain. Energy 2018, 9, 1448–1457. [Google Scholar] [CrossRef]
- Sun, K.; Li, K.-J.; Wang, Z.-D.; Sun, H.; Wang, M.; Liu, Z.; Wang, M. Operation Modes and Combination Control for Urban Multivoltage-Level DC Grid. IEEE Trans. Power Deliv. 2017, 33, 360–370. [Google Scholar] [CrossRef]
- Rouzbehi, K.; Candela, J.I.; Luna, A.; Gharehpetian, G.B.; Rodriguez, P. Flexible Control of Power Flow in Multiterminal DC Grids Using DC–DC Converter. IEEE J. Emerg. Sel. Top. Power Electron. 2016, 4, 1135–1144. [Google Scholar] [CrossRef] [Green Version]
- Vuyyuru, U.; Maiti, S.; Chakraborty, C. Active Power Flow Control Between DC Microgrids. IEEE Trans. Smart Grid 2019, 10, 5712–5723. [Google Scholar] [CrossRef]
- Arias, N.B.; Lopez, J.C.; Hashemi, S.; Franco, J.F.; Rider, M.J. Multi-Objective Sizing of Battery Energy Storage Systems for Stackable Grid Applications. IEEE Trans. Smart Grid 2020, 12, 2708–2721. [Google Scholar] [CrossRef]
- Gu, Y.; Li, W.; He, X. Analysis and Control of Bipolar LVDC Grid with DC Symmetrical Component Method. IEEE Trans. Power Syst. 2015, 31, 685–694. [Google Scholar] [CrossRef]
- Kakigano, H.; Miura, Y.; Ise, T. Low-Voltage Bipolar-Type DC Microgrid for Super High Quality Distribution. IEEE Trans. Power Electron. 2010, 25, 3066–3075. [Google Scholar] [CrossRef]
- Rivera, S.; Lizana, R.; Kouro, S.; Dragičević, T.; Wu, B. Bipolar DC Power Conversion: State-of-the-Art and Emerging Technologies. IEEE J. Emerg. Sel. Top. Power Electron. 2020, 9, 1192–1204. [Google Scholar] [CrossRef]
- Yan, J.; Zhu, X.; Lu, N. Smart hybrid house test systems in a solid-state transformer supplied microgrid. In Proceedings of the 2015 IEEE Power & Energy Society General Meeting, Denver, CO, USA, 26–30 July 2015; pp. 1–5. [Google Scholar] [CrossRef]
- Hannan, M.A.; Ker, P.J.; Lipu, M.S.H.; Choi, Z.H.; Rahman, M.S.A.; Muttaqi, K.M.; Blaabjerg, F. State of the art of solid-state transformers: Advanced topologies, implementation issues, recent progress and improvements. IEEE Access 2020, 8, 19113–19132. [Google Scholar] [CrossRef]
- Zhu, R.; Andresen, M.; Langwasser, M.; Liserre, M.; Lopes, J.P.; Moreira, C.; Rodrigues, J.; Couto, M. Smart transformer/large flexible transformer. China Electrotech. Soc. Trans. Electr. Mach. Syst. 2020, 4, 264–274. [Google Scholar] [CrossRef]
- Bala, S.; Das, D.; Aeloiza, E.; Maitra, A.; Rajagopalan, S. Hybrid distribution transformer: Concept development and field demonstration. In Proceedings of the 2012 IEEE Energy Conversion Congress and Exposition, Raleigh, NC, USA, 15–20 September 2012; pp. 4061–4068. [Google Scholar] [CrossRef]
- Liu, Y.; Liang, D.; Kou, P.; Zhang, M.; Cai, S.; Zhou, K.; Liang, Y.; Chen, Q.; Yang, C. Compound Control System of Hybrid Distribution Transformer. IEEE Trans. Ind. Appl. 2020, 56, 6360–6373. [Google Scholar] [CrossRef]
- Burkard, J.; Biela, J. Design of a Protection Concept for a 100-kVA Hybrid Transformer. IEEE Trans. Power Electron. 2019, 35, 3543–3557. [Google Scholar] [CrossRef]
- Huber, J.E.; Kolar, J.W. Solid-State Transformers: On the Origins and Evolution of Key Concepts. IEEE Ind. Electron. Mag. 2016, 10, 19–28. [Google Scholar] [CrossRef]
- Liserre, M.; Buticchi, G.; Andresen, M.; De Carne, G.; Costa, L.; Zou, Z.-X. The Smart Transformer: Impact on the Electric Grid and Technology Challenges. IEEE Ind. Electron. Mag. 2016, 10, 46–58. [Google Scholar] [CrossRef] [Green Version]
- De Carne, G.; Buticchi, G.; Liserre, M.; Vournas, C. Real-Time Primary Frequency Regulation using Load Power Control by Smart Transformers. IEEE Trans. Smart Grid 2019, 10, 5630–5639. [Google Scholar] [CrossRef] [Green Version]
- Huber, J.E.; Kolar, J.W. Applicability of Solid-State Transformers in Today’s and Future Distribution Grids. IEEE Trans. Smart Grid 2017, 10, 317–326. [Google Scholar] [CrossRef]
- Saleh, S.A.M.; Richard, C.; Onge, X.F.S.; McDonald, K.M.; Ozkop, E.; Chang, L.; Alsayid, B. Solid-State Transformers for Distribution Systems–Part I: Technology and Construction. IEEE Trans. Ind. Appl. 2019, 55, 4524–4535. [Google Scholar] [CrossRef]
- Saleh, S.A.; Ozkop, E.; Alsayid, B.; Richard, C.; Onge, X.F.S.; McDonald, K.M.; Chang, L. Solid-State Transformers for Distribution Systems–Part II: Deployment Challenges. IEEE Trans. Ind. Appl. 2019, 55, 5708–5716. [Google Scholar] [CrossRef]
- Solid State Transformer Market. Available online: https://www.alliedmarketresearch.com/solid-state-transformer-market (accessed on 12 August 2021).
- Das, D.; Hrishikesan, V.M.; Kumar, C.; Liserre, M. Smart Transformer-Enabled Meshed Hybrid Distribution Grid. IEEE Trans. Ind. Electron. 2020, 68, 282–292. [Google Scholar] [CrossRef]
- Yao, J.; Chen, W.; Xue, C.; Yuan, Y.; Wang, T. An ISOP Hybrid DC Transformer Combining Multiple SRCs and DAB Converters to Interconnect MVDC and LVDC Distribution Networks. IEEE Trans. Power Electron. 2020, 35, 11442–11452. [Google Scholar] [CrossRef]
- Sun, Y.; Gao, Z.; Fu, C.; Wu, C.; Chen, Z. A Hybrid Modular DC Solid-State Transformer Combining High Efficiency and Control Flexibility. IEEE Trans. Power Electron. 2019, 35, 3434–3449. [Google Scholar] [CrossRef]
- Zheng, G.; Chen, Y.; Kang, Y. Modeling and control of the modular multilevel converter (MMC) based solid state transformer (SST) with magnetic integration. China Electrotech. Soc. Trans. Electr. Mach. Syst. 2020, 4, 309–318. [Google Scholar] [CrossRef]
- Liu, T.; Yang, X.; Chen, W.; Xuan, Y.; Li, Y.; Huang, L.; Hao, X. High-Efficiency Control Strategy for 10-kV/1-MW Solid-State Transformer in PV Application. IEEE Trans. Power Electron. 2020, 35, 11770–11782. [Google Scholar] [CrossRef]
- Shi, H.; Wen, H.; Hu, Y.; Yang, Y.; Wang, Y. Efficiency Optimization of DC Solid-State Transformer for Photovoltaic Power Systems. IEEE Trans. Ind. Electron. 2019, 67, 3583–3595. [Google Scholar] [CrossRef]
- Pool-Mazun, E.I.; Sandoval, J.J.; Enjeti, P.; Pitel, I.J. An Integrated Solid State Transformer (I-SST) with High-Frequency Isolation for EV Fast-Charging Applications. IEEE J. Emerg. Sel. Top. Ind. Electron. 2020, 1, 46–56. [Google Scholar] [CrossRef]
- Dong, D.; Agamy, M.; Bebic, J.Z.; Chen, Q.; Mandrusiak, G. A Modular SiC High-Frequency Solid-State Transformer for Medium-Voltage Applications: Design, Implementation, and Testing. IEEE J. Emerg. Sel. Top. Power Electron. 2019, 7, 768–778. [Google Scholar] [CrossRef]
- Rahman, M.A.; Islam, M.R.; Muttaqi, K.M.; Sutanto, D. Modeling and Control of SiC-Based High-Frequency Magnetic Linked Converter for Next Generation Solid State Transformers. IEEE Trans. Energy Convers. 2020, 35, 549–559. [Google Scholar] [CrossRef]
- Zheng, L.; Kandula, R.P.; Divan, D. Soft-Switching Solid-State Transformer with Reduced Conduction Loss. IEEE Trans. Power Electron. 2020, 36, 5236–5249. [Google Scholar] [CrossRef]
- Sun, X.; Wang, H.; Qi, L.; Liu, F. Research on Single-Stage High-Frequency-Link SST Topology and Its Optimization Control. IEEE Trans. Power Electron. 2020, 35, 8701–8711. [Google Scholar] [CrossRef]
- Olowu, T.O.; Jafari, H.; Moghaddami, M.; Sarwat, A.I. Multiphysics and Multiobjective Design Optimization of High-Frequency Transformers for Solid-State Transformer Applications. IEEE Trans. Ind. Appl. 2020, 57, 1014–1023. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, Y.; Ge, B.; Abu-Rub, H. Interactive Grid Interfacing System by Matrix-Converter-Based Solid State Transformer with Model Predictive Control. IEEE Trans. Ind. Inform. 2020, 16, 2533–2541. [Google Scholar] [CrossRef]
- Rodriguez, L.A.G.; Jones, V.; Oliva, A.R.; Escobar-Mejía, A.; Balda, J.C. A New SST Topology Comprising Boost Three-Level AC/DC Converters for Applications in Electric Power Distribution Systems. IEEE J. Emerg. Sel. Top. Power Electron. 2017, 5, 735–746. [Google Scholar] [CrossRef]
- Kimura, N.; Morizane, T.; Iyoda, I.; Nakao, K.; Yokoyama, T. Application of Solid-State Transformer for HVDC Transmission from Offshore Windfarm. In Proceedings of the 2018 7th International Conference on Renewable Energy Research and Applications, Paris, France, 14–17 October 2018; pp. 902–907. [Google Scholar]
- Jianqiao, Z.; Jianwen, Z.; Xu, C.; Jiacheng, W.; Jiajie, Z. Family of Modular Multilevel Converter (MMC) Based Solid State Transformer (SST) Topologies for Hybrid AC/DC Distribution Grid Applications. In Proceedings of the 2018 IEEE International Power Electronics and Application Conference and Exposition, Shenzhen, China, 4–7 November 2018; pp. 1–5. [Google Scholar]
- Monteiro, V.; Oliveira, C.; Afonso, J.L. A Multilevel Bidirectional Four-Port DC-DC Converter to Create a DC-Grid in Solid-State Transformers with Hybrid AC/DC Grids. In Proceedings of the 2021 International Young Engineers Forum, Online, 9 July 2021; pp. 26–31. [Google Scholar]
- Rodrigues, J.; Moreira, C.; Lopes, J.A.P. Smart Transformers—Enabling Power-Frequency Regulation Services for Hybrid AC/DC Networks. In Proceedings of the 2019 IEEE Milan PowerTech, Milano, Italy, 23–27 June 2019; pp. 1–6. [Google Scholar]
- Zhou, J.; Zhang, J.; Wang, J.; Zang, J.; Shi, G.; Feng, X.; Cai, X. Design and Control of Power Fluctuation Delivery for Cell Capacitance Optimization in Multiport Modular Solid-State Transformers. IEEE Trans. Power Electron. 2020, 36, 1412–1427. [Google Scholar] [CrossRef]
- Liu, J.; Yue, S.; Yao, W.; Li, W.; Lu, Z. DC Voltage Ripple Optimization of a Single-Stage Solid-State Transformer Based on the Modular Multilevel Matrix Converter. IEEE Trans. Power Electron. 2020, 35, 12801–12815. [Google Scholar] [CrossRef]
- Zhao, X.; Li, B.; Fu, Q.; Mao, S.; Xu, D.G.; Leon, J.I.; Franquelo, L.G. DC Solid State Transformer Based on Three-Level Power Module for Interconnecting MV and LV DC Distribution Systems. IEEE Trans. Power Electron. 2020, 36, 1563–1577. [Google Scholar] [CrossRef]
- Atkar, D.; Chaturvedi, P.; Suryawanshi, H.M.; Nachankar, P.; Yadeo, D. Optimal Design of Solid State Transformer based Interlink Converter for Hybrid AC/DC Micro-Grid Applications. IEEE J. Emerg. Sel. Top. Power Electron. 2021. [Google Scholar] [CrossRef]
- Nair, A.C.; Fernandes, B.G. A novel multi-port solid state transformer enabled isolated hybrid microgrid architecture. In Proceedings of the IECON 2017-43rd Annual Conference of the IEEE Industrial Electronics Society, Beijing, China, 29 October–1 November 2017; pp. 651–656. [Google Scholar]
- Agrawal, A.; Nalamati, C.S.; Gupta, R. Hybrid DC–AC Zonal Microgrid Enabled by Solid-State Transformer and Centralized ESD Integration. IEEE Trans. Ind. Electron. 2019, 66, 9097–9107. [Google Scholar] [CrossRef]
- Zhao, B.; Song, Q.; Liu, W. A Practical Solution of High-Frequency-Link Bidirectional Solid-State Transformer Based on Advanced Components in Hybrid Microgrid. IEEE Trans. Ind. Electron. 2014, 62, 4587–4597. [Google Scholar] [CrossRef]
- Al Zishan, A.; Haji, M.M.; Ardakanian, O. Adaptive Congestion Control for Electric Vehicle Charging in the Smart Grid. IEEE Trans. Smart Grid 2021, 12, 2439–2449. [Google Scholar] [CrossRef]
- Gomez, J.; Morcos, M. Impact of EV battery chargers on the power quality of distribution systems. IEEE Trans. Power Deliv. 2003, 18, 975–981. [Google Scholar] [CrossRef]
- Chen, C.; Duan, S. Optimal Integration of Plug-In Hybrid Electric Vehicles in Microgrids. IEEE Trans. Ind. Inform. 2014, 10, 1917–1926. [Google Scholar] [CrossRef]
- Mazumder, M.; Debbarma, S. EV Charging Stations with a Provision of V2G and Voltage Support in a Distribution Network. IEEE Syst. J. 2020, 15, 662–671. [Google Scholar] [CrossRef]
- Yu, R.; Zhong, W.; Xie, S.; Yuen, C.; Gjessing, S.; Zhang, Y. Balancing Power Demand Through EV Mobility in Vehicle-to-Grid Mobile Energy Networks. IEEE Trans. Ind. Inform. 2015, 12, 79–90. [Google Scholar] [CrossRef]
- Yilmaz, M.; Krein, P.T. Review of the Impact of Vehicle-to-Grid Technologies on Distribution Systems and Utility Interfaces. IEEE Trans. Power Electron. 2012, 28, 5673–5689. [Google Scholar] [CrossRef]
- Monteiro, V.; Pinto, J.G.; Afonso, J.L. Operation modes for the electric vehicle in smart grids and smart homes: Present and proposed modes. IEEE Trans. Veh. Technol. 2015, 65, 1007–1020. [Google Scholar] [CrossRef] [Green Version]
- Gao, S.; Chau, K.T.; Liu, C.; Wu, D.; Chan, C.C. Integrated Energy Management of Plug-in Electric Vehicles in Power Grid with Renewables. IEEE Trans. Veh. Technol. 2014, 63, 3019–3027. [Google Scholar] [CrossRef] [Green Version]
- Vithayasrichareon, P.; Mills, G.; MacGill, I.F. Impact of electric vehicles and solar PV on future generation portfolio investment. IEEE Trans. Sustain. Energy 2015, 6, 899–908. [Google Scholar] [CrossRef]
- Tushar, W.; Yuen, C.; Huang, S.; Smith, D.B.; Poor, H.V. Cost Minimization of Charging Stations with Photovoltaics: An Approach with EV Classification. IEEE Trans. Intell. Transp. Syst. 2015, 17, 156–169. [Google Scholar] [CrossRef] [Green Version]
- Park, T.; Kim, T. Novel Energy Conversion System Based on a Multimode Single-Leg Power Converter. IEEE Trans. Power Electron. 2012, 28, 213–220. [Google Scholar] [CrossRef]
- Gamboa, G.; Hamilton, C.; Kerley, R.; Elmes, S.; Arias, A.; Shen, J.; Batarseh, I. Control Strategy of a Multi-Port, Grid Connected, Direct-DC PV Charging Station for Plug-in Electric Vehicles. In Proceedings of the IEEE Energy Conversion Congress and Exposition, Atlanta, GA, USA, 12–16 September 2010; pp. 1173–1177. [Google Scholar]
- Liang, Y.; Zhang, H.; Du, M.; Sun, K. Parallel Coordination Control of Multi-Port DC-DC Converter for Stand-Alone Photovoltaic-Energy Storage Systems. CPSS Trans. Power Electron. Appl. 2020, 5, 235–241. [Google Scholar] [CrossRef]
- Khan, S.A.; Islam, R.; Guo, Y.; Zhu, J. A New Isolated Multi-Port Converter with Multi-Directional Power Flow Capabilities for Smart Electric Vehicle Charging Stations. IEEE Trans. Appl. Supercond. 2019, 29, 1–4. [Google Scholar] [CrossRef]
- Chandrasekar, B.; Nallaperumal, C.; Padmanaban, S.; Bhaskar, M.S.; Holm-Nielsen, J.B.; Leonowicz, Z.; Masebinu, S. Non-Isolated High-Gain Triple Port DC–DC Buck-Boost Converter with Positive Output Voltage for Photovoltaic Applications. IEEE Access 2020, 8, 113649–113666. [Google Scholar] [CrossRef]
- Shan, Z.; Ding, X.; Jatskevich, J.; Tse, C.K. Synthesis of Multi-Input Multi-Output DC/DC Converters Without Energy Buffer Stages. IEEE Trans. Circuits Syst. II Express Briefs 2020, 68, 712–716. [Google Scholar] [CrossRef]
References | Topology/Structure | Features/Capabilities |
---|---|---|
[115] | Multi-stage based on three multilevel AC–DC (primary side), isolation based on DC–DC DAB, and three multilevel DC–AC and a multilevel DC–DC (secondary side) | LV AC at the primary side, and LV DC and LV AC at the secondary side for interfacing a hybrid AC/DC grid |
[116] | Multi-stage based on a full-bridge AC–DC (primary side), isolation based on DC–DC DAB, and DC–DC and full-bridge DC–AC (secondary side) | MV AC at the primary side and MV DC, LV DC, and LV AC at the secondary side (three outputs) |
[117] | Multi-stage based on modular multilevel converters (primary side), isolation based on DC–DC DAB, and full-bridge DC–AC (secondary side) | MV AC at the primary side and MV DC, LV DC, and LV AC at the secondary side (three outputs) |
[102] | Multi-stage based on modular multilevel converters (primary side), isolation based on a magnetic integration without converter, and full-bridge DC–AC (secondary side) | MV AC at the primary side and LV DC at the secondary side, without intermediary DC–DC converter |
[118] | Single-stage based on modular multilevel matrix converter (primary side), isolation based on three-phase three-port transformer, and by full-bridge DC–AC (secondary side) | MV AC at the primary side and two LV DC at the secondary side, formed from the two outputs of the transformer |
[119] | Multi-stage with multilevel DC–DC, and isolation based on a DC–DC formed by an NPC (primary side) and by a full-bridge (secondary side) | MV DC at the primary side and LV DC at the secondary side, with DC operation in both sides |
[120] | Multi-stage with full-bridge AC–DC (primary side), a bidirectional DC–DC, isolation based on dual stacked half-bridge DC–DC DAB, and DC–AC (secondary side) | LV AC at the primary side and LV DC and LV AC at the secondary side for interfacing a microgrid |
[121] | Multi-stage with cascade AC–DC (primary side), isolation based on a full-bridge DC–DC (four-winding topology), and individual DC–DC and DC–AC (secondary side) | MV AC at the primary side, and two LV DC and a LV AC at the secondary side formed through each output of the DC–DC |
[122] | Multi-stage with full-bridge AC–DC (primary side), isolation based on DC–DC DAB, and for the hybrid AC/DC grid a full-bridge DC–AC and DC–DC DAB (secondary side) | MV AC at the primary side, and LV DC and a LV AC at the secondary side for interfacing a microgrid |
[123] | Multi-stage with cascade full-bridge AC–DC (primary side), isolation based on DC–DC DAB, and full-bridge DC–AC (secondary side) | HV AC at the primary side, and LV DC (formed from the output of the DC–DC DAB) and a LV AC at the secondary side |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Monteiro, V.; Martins, J.S.; Aparício Fernandes, J.C.; Afonso, J.L. Review of a Disruptive Vision of Future Power Grids: A New Path Based on Hybrid AC/DC Grids and Solid-State Transformers. Sustainability 2021, 13, 9423. https://doi.org/10.3390/su13169423
Monteiro V, Martins JS, Aparício Fernandes JC, Afonso JL. Review of a Disruptive Vision of Future Power Grids: A New Path Based on Hybrid AC/DC Grids and Solid-State Transformers. Sustainability. 2021; 13(16):9423. https://doi.org/10.3390/su13169423
Chicago/Turabian StyleMonteiro, Vitor, Julio S. Martins, João Carlos Aparício Fernandes, and Joao L. Afonso. 2021. "Review of a Disruptive Vision of Future Power Grids: A New Path Based on Hybrid AC/DC Grids and Solid-State Transformers" Sustainability 13, no. 16: 9423. https://doi.org/10.3390/su13169423
APA StyleMonteiro, V., Martins, J. S., Aparício Fernandes, J. C., & Afonso, J. L. (2021). Review of a Disruptive Vision of Future Power Grids: A New Path Based on Hybrid AC/DC Grids and Solid-State Transformers. Sustainability, 13(16), 9423. https://doi.org/10.3390/su13169423