Effects of Amendment with Various Vermicomposts on the Soil Fertility, Growth of Brassica chinensis L., and Resistance of Spodoptera litura Fabricius larvae
Abstract
:1. Introduction
2. Materials and Methods
2.1. VCs, Crop, Soil, and Larvae
2.2. Pot Experiment
2.3. VC, Soil, Plant, and Larvae Analyses
2.4. Statistical Analysis
3. Results and Discussion
3.1. VC Properties
3.2. Pot Experiment
3.2.1. VCs’ Effects on Soil Properties
3.2.2. VCs’ Effects on B. chinensis
3.2.3. VC’s Effect on S. litura Larvae
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Senesi, N. Composted materials as organic fertilizers. Sci. Total Environ. 1989, 81, 521–542. [Google Scholar] [CrossRef]
- Bernal, M.P.; Alburquerque, J.A.; Moral, R. Composting of animal manures and chemical criteria for compost maturity assessment. A review. Bioresour. Technol. 2009, 100, 5444–5453. [Google Scholar] [CrossRef]
- Chatterjee, D.; Dutta, S.K.; Kikon, Z.J.; Kuotsu, R.; Sarkar, D.; Satapathy, B.S.; Deka, B.C. Recycling of agricultural wastes to vermicomposts: Characterization and application for clean and quality production of green bell pepper. J. Clean. Prod. 2021, 315, 128115. [Google Scholar] [CrossRef]
- Miller, F.C.; Metting, F.B. Composting as a process based on the control of ecologically selective factors. Soil microbial ecology: Applications in agricultural and environmental management. In Soil Microbial Ecology; Metting, F.B., Ed.; Marcel Dekker: Ottawa, ON, Canada, 1993; pp. 515–544. [Google Scholar]
- Huang, K.; Xia, H.; Cui, G.; Li, F. Effects of earthworms on nitrification and ammonia oxidizers in vermicomposting systems for recycling of fruit and vegetable wastes. Sci. Total Environ. 2017, 578, 337–345. [Google Scholar] [CrossRef] [Green Version]
- Ndegwa, P.; Thompson, S. Integrating composting ad vermicomposting in the treatment and bioconversion of biosolids. Bioresour. Technol. 2001, 76, 107–112. [Google Scholar] [CrossRef]
- Sharma, K.; Garg, V.K. Comparative analysis of vermicompost quality produced from rice straw and paper waste employing earthworm Eisenia foetida (Sav.). Bioresour. Technol. 2018, 250, 708–715. [Google Scholar] [CrossRef] [PubMed]
- Sinha, R.K. Earthworms: The miracle of nature (Charles Darwin’s ‘unheralded soldiers of mankind & farmer’s friends’). Environmentalist 2009, 29, 339. [Google Scholar]
- Arancon, N.Q.; Galvis, P.A.; Edwards, C.A. Suppression of insect pest populations and damage to plants by vermicomposts. Bioresour. Technol. 2005, 96, 1137–1142. [Google Scholar] [CrossRef]
- Asciutto, K.; Rivera, M.; Wright, E.R.; Morisigue, D.; López, M. Effect of vermicompost on the growth and health of Impatiens wallerana. Phyton 2006, 75, 115–123. [Google Scholar]
- Edwards, C.A.; Arancon, N.; Greytak, S. Effects of vermicompost teas on plant growth and disease. Biocycle 2006, 47, 28–31. [Google Scholar]
- Edwards, C.A.; Arancon, N. Vermicomposts suppress plant pest and disease attacks. Biocycle 2004, 45, 51–54. [Google Scholar]
- Liu, N.; Jiang, Z.; Li, X.; Liu, H.; Li, N.; Wei, S. Mitigation of rice cadmium (Cd) accumulation by joint application of organic amendments and selenium (Se) in high-Cd-contaminated soils. Chemosphere 2019, 241, 125106. [Google Scholar] [CrossRef] [PubMed]
- Edwards, C.A.; Dominguez, J. Biology and ecology of earthworm species used for vermicomposting. In Vermiculture Technology: Earthworms, Organic Waste and Environmental Management; Edwards, C.A., Arancon, N.Q., Sherman, R.L., Eds.; CRC Press Publishing: Boca Raton, FL, USA, 2010; pp. 25–37. [Google Scholar]
- Liu, M.L.; Wang, C.; Wang, F.Y.; Xie, Y.J. Vermicompost and humic fertilizer improve coastal saline soil by regulating soil aggregates and the bacterial community. Arch. Agron. Soil Sci. 2019, 65, 281–293. [Google Scholar] [CrossRef]
- Zhu, F.; Hou, J.T.; Xue, S.G.; Wu, C.; Wang, Q.L.; Hartley, W. Vermicompost and gypsum amendments improve aggregate formation in bauxite residue. Land Degrad. Dev. 2017, 28, 2109–2120. [Google Scholar] [CrossRef] [Green Version]
- Domínguez, J.; Aira, M.; Gómez-Brandón, M. Vermicomposting: Earthworms enhance the work of microbes. In Microbes at Work; Insam, H., Franke-Whittle, I., Goberna, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 93–114. [Google Scholar]
- Sulaiman, I.S.C.; Mohamad, A. Chapter 16-The use of vermiwash and vermicompost extract in plant disease and pest control. In Natural Remedies for Pest, Disease and Weed Control; Egbuna, C., Sawicka, B., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 187–201. [Google Scholar]
- Yardim, E.N.; Arancon, N.Q.; Edwards, C.A.; Oliver, T.J.; Byrne, R.J. Suppression of tomato hornworm (Manduca quinquemaculata) and cucumber beetles (Acalymma vittatum and Diabotrica undecimpunctata) populations and damage by vermicomposts. Pedobiologia 2006, 50, 23–29. [Google Scholar] [CrossRef]
- Sedaghatbaf, R.; Samih, M.A.; Zohdi, H.; Zarabi, M. Vermicomposts of different origins protect tomato plants against the sweetpotato whitefly. Econ. Entomol. 2018, 111, 146–153. [Google Scholar] [CrossRef]
- Alba, J.M.; Glas, J.J.; Schimmel, B.C.J.; Kant, M.R. Avoidance and suppression of plant defenses by herbivores and pathogens. Plant Interact. 2011, 6, 221–227. [Google Scholar] [CrossRef]
- Lakhdar, A.; Falleh, H.; Ouni, Y.; Oueslati, S.; Debez, A.; Ksouri, R.; Abdelly, C. Municipal solid waste compost application improves productivity, polyphenol content, and antioxidant capacity of Mesembryanthemum edule. J. Hazard. Mater. 2011, 191, 373–379. [Google Scholar] [CrossRef] [PubMed]
- Rimmer, D.L. Free radicals, antioxidants, and soil organic matter recalcitrance. Eur. J. Soil Sci. 2006, 57, 91–94. [Google Scholar] [CrossRef]
- Schoonhoven, L.; van Loon, J.; Dicke, M. Insect-Plant Biology; Oxford University Press Publishing: Oxford, UK, 2005; pp. 48–127. [Google Scholar]
- Kant, M.R.; Jonckheere, W.; Knegt, B.; Lemos, F.; Liu, J.; Schimmel, B.C.J.; Villarroel, C.A.; Ataide, L.M.S.; Dermauw, W.; Glas, J.J.; et al. Mechanisms and ecological consequences of plant defence induction and suppression in herbivore communities. Ann. Bot. 2015, 115, 1015–1051. [Google Scholar] [CrossRef]
- Sambangi, P.; Rani, P. Induction of phenolic acids and metals in Arachis hypogea L. plants due to feeding of three Lepidopteran pests. Arthropod Plant Inte. 2013, 7, 517–525. [Google Scholar] [CrossRef]
- Siddiqui, M.H.; Al-Whaibi, M.H.; Sakran, A.M.; Basalah, M.O.; Ali, H.M. Effect of calcium and potassium on antioxidant system of Vicia faba L. Under cadmium Stress. Int. J. Mol. Sci. 2012, 13, 6604–6619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahuja, I.; Rohloff, J.; Bones, A.M. Defence mechanisms of Brassicaceae: Implications for plant-insect interactions and potential for integrated pest management. A review. Agron. Sustain. Dev. 2010, 30, 311–348. [Google Scholar] [CrossRef] [Green Version]
- Falk, K.L.; Tokuhisa, J.G.; Gershenzon, J. The effect of sulfur nutrition on plant glucosinolate content: Physiology and molecular mechanisms. Plant Biol. 2007, 9, 573–581. [Google Scholar] [CrossRef] [PubMed]
- Thomas, G.W. Soil pH and soil acidity. In Methods of Soil Analysis: Part 3, SSSA Book Series No. 5, SSSA and ASA.; Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Johnston., C.T., Sumner, M.E., Eds.; SSSA Inc.: Madison, WI, USA; ASA Inc.: Madison, WI, USA, 1996; pp. 475–490. [Google Scholar]
- Rhoades, J.D. Salinity: Electrical conductivity and total dissolved solids. In Methods of Soil Analysis. Part 3. Chemical Methods; Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Johmston, C.T., Sumner, M.E., Eds.; SSSA Inc.: Madison, WI, USA; ASA Inc.: Madison, WI, USA, 1996; pp. 417–435. [Google Scholar]
- Bremner, J.M. Nitrogen-Total. In Methods of Soil Analysis. Part 3. Chemical Methods; Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Johmston, C.T., Sumner, M.E., Eds.; SSSA Inc.: Madison, WI, USA; ASA Inc.: Madison, WI, USA, 1996; pp. 1085–1121. [Google Scholar]
- Nelson, D.W.; Sommers, L.E. Total carbon, organic carbon, and organic matter. In Methods of Soil Analysis. Part 3. Chemical Methods; Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Johmston, C.T., Sumner, M.E., Eds.; SSSA Inc.: Madison, WI, USA; ASA Inc.: Madison, WI, USA, 1996; pp. 961–1010. [Google Scholar]
- Jones, J.B.; Case, V.W. Sampling, handling and analyzing plant tissue samples. In Soil Testing and Plant Analysis, 3rd ed.; Westerman, R.L., Ed.; SSSA Inc.: Madison, WI, USA, 1990; pp. 389–427. [Google Scholar]
- Murphy, J.; Riley, J.P. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 1962, 27, 31–36. [Google Scholar] [CrossRef]
- Mulvaney, R.L. Nitrogen—inorganic forms. In Methods of Soil Analysis. Part 3. Chemical Methods; Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Johmston, C.T., Sumner, M.E., Eds.; SSSA Inc.: Madison, WI, USA; ASA Inc.: Madison, WI, USA, 1996; pp. 1123–1184. [Google Scholar]
- Kuo, S. Phosphorus. In Methods of Soil Analysis. Part 3. Chemical Methods; Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Johmston, C.T., Sumner, M.E., Eds.; SSSA Inc.: Madison, WI, USA; ASA Inc.: Madison, WI, USA, 1996; pp. 869–919. [Google Scholar]
- Tabatabai, M.A. Sulfur. In Methods of Soil Analysis. Part 3. Chemical Methods; Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Johmston, C.T., Sumner, M.E., Eds.; SSSA Inc.: Madison, WI, USA; ASA Inc.: Madison, WI, USA, 1996; pp. 921–960. [Google Scholar]
- Sumner, M.E.; Miller, W.P. Cation exchange capacity and exchange coefficients. In Methods of Soil Analysis. Part 3. Chemical Methods; Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Johmston, C.T., Sumner, M.E., Eds.; SSSA Inc.: Madison, WI, USA; ASA Inc.: Madison, WI, USA, 1996; pp. 1201–1230. [Google Scholar]
- Kemper, W.D.; Rosenau, R.C. Aggregate stability and size distribution. In Methods of Soil Analysis: Part 1. Physical and Mineralogica Methods; Klute, A., Campbell, G.S., Jackson, R.D., Mortland, M.M., Nielsen, D.R., Eds.; SSSA Inc.: Madison, WI, USA; ASA Inc.: Madison, WI, USA, 1986; pp. 425–442. [Google Scholar]
- Hatano, T.; Kagawa, H.; Yasuhara, T.; Okuda, T. Two new flavonoids and other constituents in licorice root: Their relative astringency and radical scavenging effects. Chem. Pharm. Bull. 1988, 36, 2090–2097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edwards, C.A. Vermicomposting organic wastes: A review. Soil Zool. Sustain. Dev. 21st Century 2004, 1, 369–395. [Google Scholar]
- Kaviraj, S.S. Municipal solid waste management through vermicomposting employing exotic and local species of earthworms. Bioresour. Technol. 2003, 90, 169–173. [Google Scholar] [CrossRef]
- Negi, R.; Suthar, S. Degradation of paper mill wastewater sludge and cow dung by brown-rot fungi Oligoporus placenta and earthworm (Eisenia foetida) during vermicomposting. Clean. Prod. 2018, 201, 842–852. [Google Scholar] [CrossRef]
- Moral, R.; Paredes, C.; Bustamante, M.A.; Marhuenda-Egea, F.; Bernal, M.P. Utilisation of manure composts by high-value crops: Safety and environmental challenges. Bioresour. Technol. 2009, 100, 5454–5460. [Google Scholar] [CrossRef]
- Fahey, J.W.; Zalcmann, A.T.; Talalay, P. The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochem 2001, 56, 5–51. [Google Scholar] [CrossRef]
- Havlin, J.L.; Tisdale, S.L.; Nelson, W.L.; Beaton, J.D. Soil Fertility and Fertilizers, 8th ed.; Pearson, Inc.: Upper Saddle River, NJ, USA, 2014. [Google Scholar]
- Bolinder, M.; Angers, D.; Gregorich, E.; Carter, M. The response of soil quality indicators to conservation management. Can. J. Soil Sci. 1999, 79, 37–45. [Google Scholar] [CrossRef] [Green Version]
- Hinsinger, P. Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: A review. Plant Soil 2001, 237, 173–195. [Google Scholar] [CrossRef]
- Rini, J.; Deepthi, M.P.; Saminathan, K.; Narendhirakannan, R.T.; Karmegam, N.; Kathireswari, P. Nutrient recovery and vermicompost production from livestock solid wastes with epigeic earthworms. Bioresour. Technol. 2020, 313, 10. [Google Scholar] [CrossRef]
- Kopittke, P.M.; Menzies, N.J. A review of the use of the basic cation saturation ratio the ideal soil. Soil Sci. Soc. Am. J. 2007, 71, 259–265. [Google Scholar] [CrossRef]
- Osemwota, I.O.; Omued, J.A.I.; Ogboghodo, A.I. Effect of calcium/magnesium ratio in soil on magnesium availability, yield, and yield components of maize. Comm. Soil Sci. Plant Anal. 2007, 38, 2849–2860. [Google Scholar] [CrossRef]
- Pramanik, P.; Ghosh, G.K.; Chung, Y.R. Changes in nutrient content, enzymatic activities and microbial properties of lateritic soil due to application of different vermicomposts: A comparative study of ergosterol and chitin to determine fungal biomass in soil. Soil Use Manag. 2010, 26, 508–515. [Google Scholar] [CrossRef]
- Mengel, K.; Kirkby, E.A.; Kosegarten, H.; Appel, T. Sulphur. In Principles of Plant Nutrition; Mengel, K., Kirkby, E.A., Kosegarten, H., Appel, T., Eds.; Springer: Dordrecht, The Netherlands, 2001; pp. 435–452. [Google Scholar]
- Sousa, C.; Pereira, D.M.; Pereira, J.A.; Bento, A.; Rodrigues, M.A.; Dopico-Garcia, S.; Valentão, P.; Lopes, G.; Ferreres, F.; Seabra, R.M.; et al. Multivariate analysis of tronchuda cabbage (Brassica oleracea L. var. costata DC) phenolics: Influence of fertilizers. J. Agric. Food Chem. 2008, 56, 2231–2239. [Google Scholar] [CrossRef]
- Leser, C.; Treutter, D. Effects of nitrogen supply on growth, contents of phenolic compounds and pathogen (scab) resistance of apple trees. Physiol. Plant. 2004, 123, 49–56. [Google Scholar] [CrossRef]
- Witzell, J.; Shevtsova, A. Nitrogen-induced changes in phenolics of Vaccinium myrtillus-Implications for interaction with a parasitic fungus. J. Chem. Ecol. 2004, 30, 1937–1956. [Google Scholar] [CrossRef]
- Bonguebartelsman, M.; Phillips, D.A. Nitrogen stress regulates gene-expression of enzymes in the flavonoid biosynthetic-pathway of tomato. Plant. Physiol. Biochem. 1995, 33, 539–546. [Google Scholar]
- Ibrahim, M.H.; Jaafar, H.Z.E.; Rahmat, A.; Rahman, Z.A. The relationship between phenolics and flavonoids production with total nonstructural carbohydrate and photosynthetic rate in Labisia pumila under high CO2 and nitrogen fertilization. Molecules 2011, 16, 162–174. [Google Scholar] [CrossRef] [Green Version]
- Strissel, T.; Halbwirth, H.; Hoyer, U.; Zistler, C.; Stich, K.; Treutter, D. Growth-promoting nitrogen nutrition affects flavonoid biosynthesis in young apple (Malus domestica Borkh.) leaves. Plant. Biol. 2005, 7, 677–685. [Google Scholar] [CrossRef] [PubMed]
- Tavarini, S.; Sgherri, C.; Ranieri, A.M.; Angelini, L.G. Effect of nitrogen fertilization and harvest time on steviol glycosides, flavonoid composition, and antioxidant properties in Stevia rebaudiana Bertoni. J. Agric. Food Chem. 2015, 63, 7041–7050. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.H.; Shi, Q.H.; Wang, X.F.; Wei, M.; Hu, J.Y.; Liu, J.; Yang, F.J. Influence of cow manure vermicompost on the growth, metabolite contents, and antioxidant activities of Chinese cabbage (Brassica campestris ssp chinensis). Biol. Fertil. Soils 2010, 46, 689–696. [Google Scholar] [CrossRef]
Treatment | Water Content | pH | EC | OM | C/N Ratio | TN | P2O5 | K2O | CaO | MgO | S | Cd | Cr | Cu | Ni | Pb | Zn |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(%) | (dS m−1) | (%) | % | mg kg−1 | |||||||||||||
VM | 45.9 ± 0.6 | 8.0 ± 0.1 | 3.1 ± 0.3 | 64.4 ± 4.5 | 21.5 | 1.7 ± 0.1 | 1.5 ± 0.0 | 1.2 ± 0.0 | 5.4 ± 0.5 | 0.9 ± 0.0 | 0.18 ± 0.01 | ND | 1 ± 1 | ND | ND | ND | 9 ± 2 |
VRM | 45.8 ± 0.0 | 6.8 ± 0.1 | 5.4 ± 0.3 | 65.5 ± 2.0 | 16.4 | 2.3 ± 0.1 | 2.8 ± 0.0 | 2.0 ± 0.0 | 3.2 ± 0.3 | 1.6 ± 0.0 | 0.23 ± 0.02 | ND | 1 ± 0 | ND | ND | ND | 8 ± 1 |
VPM | 46.8 ± 0.4 | 6.9 ± 0.2 | 5.2 ± 0.6 | 68.3 ± 7.4 | 16.8 | 2.4 ± 0.2 | 2.5 ± 0.1 | 1.2 ± 0.0 | 4.3 ± 0.2 | 1.0 ± 0.0 | 0.33 ± 0.01 | ND | 1 ± 1 | ND | ND | ND | 10 ± 3 |
VCM | 34.0 ± 0.4 | 8.5 ± 0.0 | 2.1 ± 0.0 | 70.2 ± 2.2 | 23.4 | 1.7 ± 0.1 | 1.4 ± 0.0 | 1.3 ± 0.0 | 4.5 ± 0.1 | 0.9 ± 0.0 | 0.51 ± 0.33 | ND | ND | ND | ND | ND | 12 ± 9 |
Treatment | pH | EC | OM | WAS | Avail. N | Avail. P | Ex. K | Avail. S | Ex. Ca | Ex. Mg | Ca/Mg |
---|---|---|---|---|---|---|---|---|---|---|---|
(mS m−1) | % | mg kg−1 | (g kg−1) | (mg kg−1) | (Mole Ratio) | ||||||
Without S. litura larvae | |||||||||||
CK | 8.21 ± 0.18 ab | 5.35 ± 0.45 f | 2.53 ± 0.05 c | 63.7 ± 2.0 a | 6.75 ± 0.00 b | 6.99 ± 0.04 g | 41.1 ± 3.1 c | 2.40 ± 0.44 def | 3.34 ± 0.05 d | 216 ± 7 c | 9.27 ± 0.16 a |
CF | 8.04 ± 0.09 bc | 6.33 ± 0.07 fe | 2.94 ± 0.02 c | 55.8 ± 4.5 a | 6.72 ± 0.00 b | 15.5 ± 0.2 f | 78.5 ± 32.0 bc | 2.00 ± 0.00 f | 3.41 ± 0.00 d | 219 ± 2 c | 9.34 ± 0.08 a |
VM | 8.21 ± 0.03 ab | 8.29 ± 0.13 cd | 4.19 ± 0.19 ab | 57.7 ± 4.5 a | 10.1 ± 3.4 ab | 27.0 ± 2.8 de | 86.6 ± 12.0 bc | 2.36 ± 0.35 ef | 3.70 ± 0.06 abc | 361 ± 11 b | 6.15 ± 0.08 c |
VRM | 7.90 ± 0.00 cd | 7.64 ± 0.02 cde | 4.78 ± 0.53 a | 55.3 ± 4.5 a | 13.5 ± 0.0 a | 88.9 ± 6.1 a | 77.8 ± 1.0 bc | 3.01 ± 0.16 def | 3.62 ± 0.02 c | 454 ± 20 a | 4.80 ± 0.24 d |
VPM | 8.13 ± 0.05 abc | 6.80 ± 0.15 def | 4.21 ± 0.13 ab | 61.2 ± 5.2 a | 10.1 ± 3.4 ab | 38.8 ± 4.6 b | 52.3 ± 4.4 bc | 3.23 ± 0.57 cde | 3.79 ± 0.08 abc | 374 ± 23 b | 6.09 ± 0.25 c |
VCM | 8.35 ± 0.01 a | 7.88 ± 0.23 cde | 4.55 ± 0.07 ab | 50.1 ± 6.6 a | 13.5 ± 6.7 b | 32.9 ± 1.7 bcd | 198 ± 6 a | 4.07 ± 0.07 bc | 3.86 ± 0.02 a | 368 ± 11 b | 6.31 ± 0.15 c |
Infested with S. litura larvae | |||||||||||
CK | 8.14 ± 0.13 abc | 5.92 ± 0.36 f | 2.60 ± 0.18 c | 64.7 ± 4.7 a | 6.73 ± 0.01 b | 6.87 ± 0.50 g | 41.1 ± 3.0 c | 3.31 ± 0.14 cde | 3.36 ± 0.10 d | 239 ± 8 c | 8.47 ± 0.53 b |
CF | 7.69 ± 0.17 d | 18.4 ± 0.7 a | 2.91 ± 0.05 c | 50.7 ± 13.0 a | 10.1 ± 3.4 ab | 21.8 ± 1.7 ef | 57.0 ± 6.8 bc | 2.87 ± 0.65 def | 3.23 ± 0.13 d | 219 ± 12 c | 8.87 ± 0.16 ab |
VM | 8.15 ± 0.14 abc | 8.68 ± 0.85 bc | 3.99 ± 0.18 b | 62.0 ± 1.3 a | 13.5 ± 0.0 a | 29.1 ± 1.0 cde | 185 ± 10 a | 3.40 ± 0.25 bcd | 3.69 ± 0.01 abc | 353 ± 4 b | 6.29 ± 0.05 c |
VRM | 8.14 ± 0.00 abc | 8.81 ± 0.37 bc | 4.83 ± 0.28 a | 64.5 ± 1.7 a | 6.72 ± 0.00 b | 92.2 ± 3.1 a | 153 ± 16 a | 4.04 ± 0.28 bc | 3.66 ± 0.03 bc | 463 ± 7 a | 4.75 ± 0.11 d |
VPM | 8.11 ± 0.07 abc | 8.44 ± 0.84 c | 4.24 ± 0.14 ab | 60.5 ± 1.0 a | 13.5 ± 0.0 a | 37.4 ± 0.2 b | 96.1 ± 21.0 b | 4.41 ± 0.08 b | 3.76 ± 0.01 abc | 366 ± 5 b | 6.17 ± 0.11 c |
VCM | 8.09 ± 0.00 abc | 10.2 ± 0.90 b | 4.49 ± 0.26 ab | 54.8 ± 9.0 a | 13.5 ± 6.7 a | 35.4 ± 1.9 bc | 199 ± 28 a | 5.93 ± 0.25 a | 3.80 ± 0.01 ab | 367 ± 14 b | 6.22 ± 0.22 c |
Treatment | SPAD Reading | Shoot Height | Fresh Weight |
---|---|---|---|
(cm) | (g Plant−1) | ||
Without S. litura larvae | |||
CK | 7.45 ± 0.85 def | 19.0 ± 1.1 ef | 3.16 ± 0.01 e |
CF | 16.9 ± 1.0 a | 25.2 ± 0.8 a | 18.1 ± 0.2 a |
VM | 12.1 ± 0.0 bc | 21.2 ± 0.3 cde | 8.86 ± 1.90 bc |
VRM | 11.5 ± 1.7 bc | 23.3 ± 0.3 abc | 11.3 ± 1.6 b |
VPM | 13.2 ± 2.8 ab | 22.6 ± 0.9 bcd | 11.2 ± 1.0 b |
VCM | 10.7 ± 0.5 bcde | 18.8 ± 0.7 f | 4.00 ± 0.49 de |
Infested with S. litura larvae | |||
CK | 7.05 ± 0.25 ef | 20.3 ± 0.4 def | 3.09 ± 0.14 e |
CF | 10.6 ± 1.3 bcde | 24.4 ± 1.0 ab | 8.05 ± 0.58 c |
VM | 8.95 ± 0.75 cdef | 22.3 ± 1.4 bcd | 6.86 ± 1.23 cd |
VRM | 10.6 ± 0.6 bcde | 23.3 ± 0.4 abc | 8.06 ± 0.32 c |
VPM | 11.1 ± 1.0 bcd | 22.2 ± 0.6 bcd | 8.78 ± 1.37 bc |
VCM | 6.40 ± 1.60 f | 18.7 ± 0.0 f | 4.39 ± 0.41 de |
Treatment | N | P | K | Ca | Mg | S |
---|---|---|---|---|---|---|
% | ||||||
Without S. litura larvae | ||||||
CK | 1.38 ± ±0.05 e | 0.453 ± 0.019 e | 3.60 ± 0.27 c | 2.56 ± 0.13 d | 0.329 ± 0.024 f | 0.122 ± 0.098 bcde |
CF | 3.10 ± 0.25 bc | 0.512 ± 0.033 de | 3.67 ± 0.24 c | 3.47 ± 0.03 a | 0.486 ± 0.024 bc | 0.071 ± 0.019 e |
VM | 1.86 ± 0.29 de | 0.807 ± 0.062 bc | 5.91 ± 0.02 ab | 2.86 ± 0.05 bcd | 0.408 ± 0.003 de | 0.105 ± 0.005 de |
VRM | 2.51 ± 0.10 cd | 0.895 ± 0.022 abc | 6.33 ± 0.64 ab | 2.53 ± 0.19 d | 0.504 ± 0.011 b | 0.109 ± 0.016 cde |
VPM | 2.53 ± 0.35 cd | 0.731 ± 0.138 bcd | 5.37 ± 0.27 b | 2.37 ± 0.06 d | 0.465 ± 0.000 bcd | 0.119 ± 0.020 bcde |
VCM | 1.47 ± 0.37 de | 0.775 ± 0.135 bc | 5.27 ± 0.66 b | 2.54 ± 0.39 d | 0.423 ± 0.040 cde | 0.221 ± 0.065 a |
Infested with S. litura larvae | ||||||
CK | 1.80 ± 0.13 de | 0.500 ± 0.047 de | 5.37 ± 0.91 b | 3.24 ± 0.05 ab | 0.398 ± 0.010 e | 0.154 ± 0.130 abcde |
CF | 5.31 ± 0.17 a | 0.682 ± 0.220 cde | 5.59 ± 0.00 b | 3.33 ± 0.26 ab | 0.478 ± 0.005 bcd | 0.168 ± 0.001 abcd |
VM | 3.22 ± 0.71 bc | 0.850 ± 0.06 1abc | 6.67 ± 0.29 ab | 3.16 ± 0.12 abc | 0.474 ± 0.006 bcd | 0.184 ± 0.033 abcd |
VRM | 4.16 ± 0.67 b | 1.08 ± 0.053 a | 7.04 ± 0.12 a | 2.80 ± 0.11 bcd | 0.621 ± 0.019 a | 0.197 ± 0.007 ab |
VPM | 3.81 ± 0.15 b | 0.961 ± 0.003 ab | 6.35 ± 0.61 ab | 2.67 ± 0.11 cd | 0.487 ± 0.006 bc | 0.195 ± 0.005 abc |
VCM | 1.52 ± 0.15 de | 0.776 ± 0.045 bc | 5.69 ± 0.44 ab | 2.53 ± 0.25 d | 0.389 ± 0.047 ef | 0.233 ± 0.007 a |
Treatment | Total Phenolic (TPC) | Total Flavonoid (TFC) | DPPH Free Radical Scavenging Ability |
---|---|---|---|
(mg-GAE g-DW−1) | (mg-QE g-DW−1) | (%) | |
Without S. litura larvae | |||
CK | 6.96 ± 0.16 a | 6.90 ± 1.07 cde | 57.8 ± 1.0 abc |
CF | 5.65 ± 0.26 bc | 14.4 ± 2.0 a | 43.1 ± 3.2 cd |
VM | 4.69 ± 0.05 c | 7.60 ± 1.14 cde | 52.2 ± 3.7 abcd |
VRM | 5.39 ± 0.03 bc | 11.9 ± 0.6 ab | 56.2 ± 0.3 abc |
VPM | 5.76 ± 0.26 bc | 9.73 ± 0.85 bc | 58.0 ± 0.7 abc |
VCM | 6.37 ± 0.06 ab | 6.67 ± 0.27 de | 58.7 ± 8.5 ab |
Infested with S. litura larvae | |||
CK | 6.46 ± 0.29 ab | 6.04 ± 0.28 e | 66.1 ± 1.2 a |
CF | 4.64 ± 0.36 c | 9.52 ± 0.50 bcd | 40.1 ± 0.4 d |
VM | 5.30 ± 0.35 bc | 6.68 ± 0.36 de | 52.9 ± 5.8 abcd |
VRM | 4.81 ± 0.92 c | 8.31 ± 1.70 cde | 47.3 ± 10.0 bcd |
VPM | 5.26 ± 0.31 bc | 7.46 ± 0.00 cde | 56.7 ± 2.2 abc |
VCM | 4.97 ± 0.58 c | 5.82 ± 0.21 e | 53.6 ± 7.3 abcd |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fong, C.-J.; Chuang, Y.-Y.; Lai, H.-Y. Effects of Amendment with Various Vermicomposts on the Soil Fertility, Growth of Brassica chinensis L., and Resistance of Spodoptera litura Fabricius larvae. Sustainability 2021, 13, 9441. https://doi.org/10.3390/su13169441
Fong C-J, Chuang Y-Y, Lai H-Y. Effects of Amendment with Various Vermicomposts on the Soil Fertility, Growth of Brassica chinensis L., and Resistance of Spodoptera litura Fabricius larvae. Sustainability. 2021; 13(16):9441. https://doi.org/10.3390/su13169441
Chicago/Turabian StyleFong, Chang-Jun, Yi-Yuan Chuang, and Hung-Yu Lai. 2021. "Effects of Amendment with Various Vermicomposts on the Soil Fertility, Growth of Brassica chinensis L., and Resistance of Spodoptera litura Fabricius larvae" Sustainability 13, no. 16: 9441. https://doi.org/10.3390/su13169441
APA StyleFong, C. -J., Chuang, Y. -Y., & Lai, H. -Y. (2021). Effects of Amendment with Various Vermicomposts on the Soil Fertility, Growth of Brassica chinensis L., and Resistance of Spodoptera litura Fabricius larvae. Sustainability, 13(16), 9441. https://doi.org/10.3390/su13169441