Gorilla Troops Optimizer for Electrically Based Single and Double-Diode Models of Solar Photovoltaic Systems
Abstract
:1. Introduction
- For SDMs and DDMs, the fitness value and convergence characteristics were examined to measure the GTO performance in comparison to other optimizers.
- The efficacy of GTO was assessed with respect to diverse recent optimizers and other existing optimizers when employed on the SDMs and DDMs of various PV modules from the manufacturer’s datasheet;
- The quality of GTO was evaluated through various experiments and statistical analyses, where the experimental results showed that the GTO technique had better or competitive performance in comparison to recently developed optimizers.
2. Problem Formulation
2.1. Single-Diode Model
2.2. Double-Diode Model
2.3. Objective Function Formulation
3. Gorilla Troops Optimization for Parameters Extraction of Solar Cell Models
3.1. Exploration Phase
3.2. Exploitation Phase
4. Simulation Results
4.1. Kyocera KC_200GT PV Module
4.1.1. Case 1: SDM
4.1.2. Case 2: DDM
4.1.3. GTO Validation with Diverse Irradiations and Temperatures
4.2. STM6_40/36 PV Module
4.2.1. Case 1: SD Model
4.2.2. Case 2: DD Module
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Madurai Elavarasan, R.; Pugazhendhi, R.; Jamal, T.; Dyduch, J.; Arif, M.T.; Manoj Kumar, N.; Shafiullah, G.M.; Chopra, S.S.; Nadarajah, M. Envisioning the UN Sustainable Development Goals (SDGs) through the lens of energy sustainability (SDG 7) in the post-COVID-19 world. Appl. Energy 2021, 292, 116665. [Google Scholar] [CrossRef]
- Vathanam, G.S.O.; Kalyanasundaram, K.; Elavarasan, R.M.; Hussain, S.; Subramaniam, U.; Pugazhendhi, R.; Ramesh, M.; Gopalakrishnan, R.M. A review on effective use of daylight harvesting using intelligent lighting control systems for sustainable office buildings in India. Sustainability 2021, 13, 4973. [Google Scholar] [CrossRef]
- Shaheen, A.M.; Ginidi, A.R.; El-Sehiemy, R.A.; Elattar, E.E. Optimal economic power and heat dispatch in Cogeneration Systems including wind power. Energy 2021, 225, 120263. [Google Scholar] [CrossRef]
- Elavarasan, R.M.; Selvamanohar, L.; Raju, K.; Vijayaraghavan, R.R.; Subburaj, R.; Nurunnabi, M.; Khan, I.A.; Afridhis, S.; Hariharan, A.; Pugazhendhi, R.; et al. A Holistic Review of the Present and Future Drivers of the Renewable Energy Mix in Maharashtra, State of India. Sustainability 2020, 12, 6596. [Google Scholar] [CrossRef]
- Shaheen, A.M.; Elsayed, A.M.; Ginidi, A.R.; Elattar, E.E.; El-Sehiemy, R.A. Effective Automation of Distribution Systems With Joint Integration of DGs/ SVCs Considering Reconfiguration Capability by Jellyfish Search Algorithm. IEEE Access 2021, 9, 92053–92069. [Google Scholar] [CrossRef]
- Bana, S.; Saini, R.P. Identification of unknown parameters of a single diode photovoltaic model using particle swarm optimization with binary constraints. Renew. Energy 2016, 101, 1299–1310. [Google Scholar] [CrossRef]
- Qais, M.H.; Hasanien, H.M.; Alghuwainem, S. Parameters extraction of three-diode photovoltaic model using computation and Harris Hawks optimization. Energy 2020, 195, 117040. [Google Scholar] [CrossRef]
- Qais, M.H.; Hasanien, H.M.; Alghuwainem, S. Transient search optimization for electrical parameters estimation of photovoltaic module based on datasheet values. Energy Convers. Manag. 2020, 214, 112904. [Google Scholar] [CrossRef]
- Ayodele, T.R.; Ogunjuyigbe, A.S.O.; Ekoh, E.E. Evaluation of numerical algorithms used in extracting the parameters of a single-diode photovoltaic model. Sustain. Energy Technol. Assess. 2016, 13, 51–59. [Google Scholar] [CrossRef]
- Sudhakar Babu, T.; Prasanth Ram, J.; Sangeetha, K.; Laudani, A.; Rajasekar, N. Parameter extraction of two diode solar PV model using Fireworks algorithm. Sol. Energy 2016, 140, 265–276. [Google Scholar] [CrossRef]
- Said, M.; Shaheen, A.M.; Ginidi, A.R.; El-Sehiemy, R.A.; Mahmoud, K.; Lehtonen, M.; Darwish, M.M.F. Estimating Parameters of Photovoltaic Models Using Accurate Turbulent Flow of Water Optimizer. Processes 2021, 9, 627. [Google Scholar] [CrossRef]
- Khanna, V.; Das, B.K.; Bisht, D.; Singh, P.K. A three diode model for industrial solar cells and estimation of solar cell parameters using PSO algorithm. Renew. Energy 2015, 78, 105–113. [Google Scholar] [CrossRef]
- Saloux, E.; Teyssedou, A.; Sorin, M. Explicit model of photovoltaic panels to determine voltages and currents at the maximum power point. Sol. Energy 2011, 85, 713–722. [Google Scholar] [CrossRef]
- Soeriyadi, A.H.; Wang, L.; Conrad, B.; Li, D.; Lochtefeld, A.; Gerger, A.; Barnett, A.; Perez-Wurfl, I. Extraction of essential solar cell parameters of subcells in a tandem structure with a novel three-terminal measurement technique. IEEE J. Photovolt. 2018, 8, 327–332. [Google Scholar] [CrossRef]
- Batzelis, E.; Papathanassiou, S.A. A Method for the Analytical Extraction of the Single-Diode PV Model Parameters. IEEE Trans. Sustain. Energy 2016, 7, 504–512. [Google Scholar] [CrossRef]
- AlRashidi, M.R.; AlHajri, M.F.; El-Naggar, K.M.; Al-Othman, A.K. A new estimation approach for determining the I--V characteristics of solar cells. Sol. Energy 2011, 85, 1543–1550. [Google Scholar] [CrossRef]
- Lin, P.; Cheng, S.; Yeh, W.; Chen, Z.; Wu, L. Parameters extraction of solar cell models using a modified simplified swarm optimization algorithm. Sol. Energy 2017, 144, 594–603. [Google Scholar] [CrossRef]
- Kanimozhi, G.; Kumar, H. Modeling of solar cell under different conditions by Ant Lion Optimizer with LambertW function. Appl. Soft Comput. J. 2018, 71, 141–151. [Google Scholar]
- Hasanien, H.M. Shuffled Frog Leaping Algorithm for Photovoltaic Model Identification. IEEE Trans. Sustain. Energy 2015, 6, 509–515. [Google Scholar] [CrossRef]
- Panchal, A.K. I-V Data Operated High-Quality Photovoltaic Solution through Per-Unit Single-Diode Model. IEEE J. Photovolt. 2020, 10, 1175–1184. [Google Scholar] [CrossRef]
- Javier Toledo, F.; Blanes, J.M.; Galiano, V. Two-Step Linear Least-Squares Method for Photovoltaic Single-Diode Model Parameters Extraction. IEEE Trans. Ind. Electron. 2018, 65, 6301–6308. [Google Scholar] [CrossRef]
- Subudhi, B.; Pradhan, R. Bacterial Foraging Optimization approach to parameter extraction of a photovoltaic module. IEEE Trans. Sustain. Energy 2018, 9, 381–389. [Google Scholar] [CrossRef]
- Ben Messaoud, R. Extraction of uncertain parameters of a single-diode model for a photovoltaic panel using lightning attachment procedure optimization. J. Comput. Electron. 2020, 19, 1192–1202. [Google Scholar] [CrossRef]
- Ibrahim, I.A.; Hossain, M.J.; Duck, B.C.; Fell, C.J. An adaptive wind-driven optimization algorithm for extracting the parameters of a single-diode PV cell model. IEEE Trans. Sustain. Energy 2020, 11, 1054–1066. [Google Scholar] [CrossRef]
- Guo, L.; Meng, Z.; Sun, Y.; Wang, L. Parameter identification and sensitivity analysis of solar cell models with cat swarm optimization algorithm. Energy Convers. Manag. 2016, 108, 520–528. [Google Scholar] [CrossRef]
- Gao, X.; Cui, Y.; Hu, J.; Xu, G.; Wang, Z.; Qu, J.; Wang, H. Parameter extraction of solar cell models using improved shuffled complex evolution algorithm. Energy Convers. Manag. 2018, 157, 460–479. [Google Scholar] [CrossRef]
- Chen, X.; Tianfield, H.; Du, W.; Liu, G. Biogeography-based optimization with covariance matrix based migration. Appl. Soft Comput. 2016, 45, 71–85. [Google Scholar] [CrossRef]
- Xiong, G.; Zhang, J.; Yuan, X.; Shi, D.; He, Y.; Yao, G. Parameter extraction of solar photovoltaic models by means of a hybrid differential evolution with whale optimization algorithm. Sol. Energy 2018, 176, 742–761. [Google Scholar] [CrossRef]
- Ebrahimi, S.M.; Salahshour, E.; Malekzadeh, M.; Gordillo, F. Parameters identification of PV solar cells and modules using flexible particle swarm optimization algorithm. Energy 2019, 179, 358–372. [Google Scholar] [CrossRef]
- Abbassi, R.; Abbassi, A.; Asghar, A.; Mirjalili, S. An efficient salp swarm-inspired algorithm for parameters identification of photovoltaic cell models. Energy Convers. Manag. 2019, 179, 362–372. [Google Scholar] [CrossRef]
- Liang, J.; Qiao, K.; Yu, K.; Ge, S.; Qu, B.; Xu, R.; Li, K. Parameters estimation of solar photovoltaic models via a self-adaptive ensemble-based differential evolution. Sol. Energy 2020, 207, 336–346. [Google Scholar] [CrossRef]
- Abbassi, A.; Abbassi, R.; Heidari, A.A.; Oliva, D.; Chen, H.; Habib, A.; Jemli, M.; Wang, M. Parameters identification of photovoltaic cell models using enhanced exploratory salp chains-based approach. Energy 2020, 198, 117333. [Google Scholar] [CrossRef]
- Xiong, G.; Zhang, J.; Shi, D.; He, Y. Parameter extraction of solar photovoltaic models using an improved whale optimization algorithm. Energy Convers. Manag. 2018, 174, 388–405. [Google Scholar] [CrossRef]
- Yu, K.; Qu, B.; Yue, C.; Ge, S.; Chen, X.; Liang, J. A performance-guided JAYA algorithm for parameters identification of photovoltaic cell and module. Appl. Energy 2019, 237, 241–257. [Google Scholar] [CrossRef]
- Ram, J.P.; Babu, T.S.; Dragicevic, T.; Rajasekar, N. A new hybrid bee pollinator flower pollination algorithm for solar PV parameter estimation. Energy Convers. Manag. 2017, 135, 463–476. [Google Scholar] [CrossRef]
- Qais, M.H.; Hasanien, H.M.; Alghuwainem, S. Identification of electrical parameters for three-diode photovoltaic model using analytical and sunflower optimization algorithm. Appl. Energy 2019, 250, 109–117. [Google Scholar] [CrossRef]
- Liao, Z.; Chen, Z.; Li, S. Parameters Extraction of Photovoltaic Models Using Triple-Phase Teaching-Learning-Based Optimization. IEEE Access 2020, 8, 69937–69952. [Google Scholar] [CrossRef]
- Qais, M.H.; Hasanien, H.M.; Alghuwainem, S.; Nouh, A.S. Coyote optimization algorithm for parameters extraction of three-diode photovoltaic models of photovoltaic modules. Energy 2019, 187, 116001. [Google Scholar] [CrossRef]
- Liu, Y.; Heidari, A.A.; Ye, X.; Chi, C.; Zhao, X.; Ma, C.; Turabieh, H.; Chen, H.; Le, R. Evolutionary shuffled frog leaping with memory pool for parameter optimization. Energy Rep. 2021, 7, 584–606. [Google Scholar] [CrossRef]
- Chenouard, R.; El-Sehiemy, R.A. An interval branch and bound global optimization algorithm for parameter estimation of three photovoltaic models. Energy Convers. Manag. 2020, 205, 112400. [Google Scholar] [CrossRef]
- El-Dabah, M.A.; El-Sehiemy, R.A.; Becherif, M.; Ebrahim, M.A. Parameter estimation of triple diode photovoltaic model using an artificial ecosystem-based optimizer. Int. Trans. Electr. Energy Syst. 2021, e13043. [Google Scholar] [CrossRef]
- Bayoumi, A.S.A.; El-Sehiemy, R.A.; Abaza, A. Effective PV Parameter Estimation Algorithm Based on Marine Predators Optimizer Considering Normal and Low Radiation Operating Conditions. Arab. J. Sci. Eng. 2021, 17, 1–21. [Google Scholar]
- Zaky, A.A.; El Sehiemy, R.A.; Rashwan, Y.I.; Elhossieni, M.A.; Gkini, K.; Kladas, A.; Falaras, P. Optimal Performance Emulation of PSCs using the Elephant Herd Algorithm Associated with Experimental Validation. ECS J. Solid State Sci. Technol. 2019, 8, Q249–Q255. [Google Scholar] [CrossRef]
- Zaky, A.A.; Ibrahim, M.N.; Rezk, H.; Christopoulos, E.; El Sehiemy, R.A.; Hristoforou, E.; Kladas, A.; Sergeant, P.; Falaras, P. Energy efficiency improvement of water pumping system using synchronous reluctance motor fed by perovskite solar cells. Int. J. Energy Res. 2020, 44, 11629–11642. [Google Scholar] [CrossRef]
- Abdollahzadeh, B.; Gharehchopogh, F.S.; Mirjalili, S. Artificial gorilla troops optimizer: A new nature-inspired metaheuristic algorithm for global optimization problems. Int. J. Intell. Syst. 2021, 22535. [Google Scholar] [CrossRef]
- El-Sehiemy, R.A.; Abdullah, M.; Sherif, S.M. Ghoneim A Forensic-Based Investigation Algorithm for Parameter Extraction of Solar Cell models. IEEE Access 2020, 9, 1–20. [Google Scholar]
- Faramarzi, A.; Heidarinejad, M.; Stephens, B.; Mirjalili, S. Equilibrium optimizer: A novel optimization algorithm. Knowl. Based Syst. 2020, 191, 105190. [Google Scholar] [CrossRef]
- Chou, J.S.; Truong, D.N. A novel metaheuristic optimizer inspired by behavior of jellyfish in ocean. Appl. Math. Comput. 2021, 389, 125535. [Google Scholar] [CrossRef]
- Askari, Q.; Saeed, M.; Younas, I. Heap-based optimizer inspired by corporate rank hierarchy for global optimization. Expert Syst. Appl. 2020, 161, 113702. [Google Scholar] [CrossRef]
- Elsayed, A.M.; Shaheen, A.M.; Alharthi, M.M.; Ghoneim, S.S.M.; El-Sehiemy, R.A. Adequate operation of hybrid AC/MT-HVDC power systems using an improved multi- objective marine predators optimizer. IEEE Access 2021, 9, 51065–51087. [Google Scholar] [CrossRef]
- Ortiz-Conde, A.; Lugo-Muñoz, D.; García-Sánchez, F.J. An explicit multiexponential model as an alternative to traditional solar cell models with series and shunt resistances. IEEE J. Photovolt. 2012, 2, 261–268. [Google Scholar] [CrossRef]
- Chin, V.J.; Salam, Z.; Ishaque, K. Cell modelling and model parameters estimation techniques for photovoltaic simulator application: A review. Appl. Energy 2015, 154, 500–519. [Google Scholar] [CrossRef]
- Chin, V.J.; Salam, Z. Coyote optimization algorithm for the parameter extraction of photovoltaic cells. Sol. Energy 2019, 194, 656–670. [Google Scholar] [CrossRef]
- Tong, N.T.; Pora, W. A parameter extraction technique exploiting intrinsic properties of solar cells. Appl. Energy 2016, 176, 104–115. [Google Scholar] [CrossRef] [Green Version]
- Abo El-Ela, A.A.; Allam, S.M.; Shaheen, A.M.; Nagem, N.A. Optimal allocation of biomass distributed generation in distribution systems using equilibrium algorithm. Int. Trans. Electr. Energy Syst. 2020, 31, e12727. [Google Scholar] [CrossRef]
- Ginidi, A.R.; Elsayed, A.M.; Shaheen, A.M.; Elattar, E.E.; El-Sehiemy, R.A. A Novel Heap based Optimizer for Scheduling of Large-scale Combined Heat and Power Economic Dispatch. IEEE Access 2021, 9, 83695–83708. [Google Scholar] [CrossRef]
- Shaheen, A.M.; El-Sehiemy, R.A.; Ginidi, A.R.; Ghoneim, S.S.M.; Alharthi, M.M. Multi-objective jellyfish search optimizer for efficient power system operation based on multi-dimensional OPF framework. Energy 2021, 237, 121478. [Google Scholar] [CrossRef]
- Shaheen, A.M.; Elsayed, A.M.; Ginidi, A.R.; El-Sehiemy, R.A.; Alharthid, M.M.; Ghoneim, S.S.M. A novel improved marine predators algorithm for combined heat and power economic dispatch problem. Alex. Eng. J. 2021. [Google Scholar] [CrossRef]
- Al Harthi, M.; Ghoneim, S.; Elsayed, A.; El-Sehiemy, R.; Shaheen, A.; Ginidi, A. A Multi-Objective Marine Predator Optimizer for Optimal Techno-Economic Operation of AC/DC Grids. Stud. Inform. Control 2021, 30, 89–99. [Google Scholar] [CrossRef]
- Liang, J.; Ge, S.; Qu, B.; Yu, K.; Liu, F.; Yang, H.; Wei, P. Classified perturbation mutation based particle swarm optimization algorithm for parameters extraction of photovoltaic models. Energy Convers. Manag. 2020, 203, 112138. [Google Scholar] [CrossRef]
- Mohammad, A.; Maroosi, A. Parameter identification for solar cells and module using a Hybrid Firefly and Pattern Search Algorithms. Sol. Energy 2018, 171, 435–446. [Google Scholar]
- Nematollahi, A.F.; Rahiminejad, A.; Vahidi, B. A novel physical based meta-heuristic optimization method known as Lightning Attachment Procedure Optimization. Appl. Soft Comput. J. 2017, 59, 596–621. [Google Scholar] [CrossRef]
- Sulaiman, M.H.; Mustaffa, Z.; Saari, M.M.; Daniyal, H. Barnacles Mating Optimizer: A new bio-inspired algorithm for solving engineering optimization problems. Eng. Appl. Artif. Intell. 2020, 87, 103330. [Google Scholar] [CrossRef]
- Rizk-Allah, R.M.; El-Fergany, A.A. Conscious neighborhood scheme-based Laplacian barnacles mating algorithm for parameters optimization of photovoltaic single- and double-diode models. Energy Convers. Manag. 2020, 226, 113522. [Google Scholar] [CrossRef]
- Şenel, F.A.; Gökçe, F.; Yüksel, A.S.; Yiğit, T. A novel hybrid PSO–GWO algorithm for optimization problems. Eng. Comput. 2019, 35, 1359–1373. [Google Scholar] [CrossRef]
- Chen, H.; Jiao, S.; Wang, M.; Heidari, A.A.; Zhao, X. Parameters identification of photovoltaic cells and modules using diversification-enriched Harris hawks optimization with chaotic drifts. J. Clean. Prod. 2020, 244, 118778. [Google Scholar] [CrossRef]
- Ali, E.E.; El-Hameed, M.A.; El-Fergany, A.A.; El-Arini, M.M. Parameter extraction of photovoltaic generating units using multi-verse optimizer. Sustain. Energy Technol. Assess. 2016, 17, 68–76. [Google Scholar] [CrossRef]
- Chin, V.J.; Salam, Z. A New Three-point-based Approach for the Parameter Extraction of Photovoltaic Cells. Appl. Energy 2019, 237, 519–533. [Google Scholar] [CrossRef]
- Chen, X.; Yu, K. Hybridizing cuckoo search algorithm with biogeography-based optimization for estimating photovoltaic model parameters. Sol. Energy 2019, 180, 192–206. [Google Scholar] [CrossRef]
- Li, S.; Gong, W.; Yan, X.; Hu, C.; Bai, D.; Wang, L.; Gao, L. Parameter extraction of photovoltaic models using an improved teaching-learning-based optimization. Energy Convers. Manag. 2019, 186, 293–305. [Google Scholar] [CrossRef]
- Kang, T.; Yao, J.; Jin, M.; Yang, S.; Duong, T. A novel improved cuckoo search algorithm for parameter estimation of photovoltaic (PV) models. Energies 2018, 11, 1060. [Google Scholar] [CrossRef] [Green Version]
- Deotti, L.M.P.; Pereira, J.L.R.; Silva Júnior, I.C. da Parameter extraction of photovoltaic models using an enhanced Lévy flight bat algorithm. Energy Convers. Manag. 2020, 221, 113114. [Google Scholar] [CrossRef]
- Lekouaghet, B.; Boukabou, A.; Boubakir, C. Estimation of the photovoltaic cells/modules parameters using an improved Rao-based chaotic optimization technique. Energy Convers. Manag. 2021, 229, 113722. [Google Scholar] [CrossRef]
- Rezaee Jordehi, A. Enhanced leader particle swarm optimisation (ELPSO): An efficient algorithm for parameter estimation of photovoltaic (PV) cells and modules. Sol. Energy 2018, 159, 78–87. [Google Scholar] [CrossRef]
- Yousri, D.; Thanikanti, S.B.; Allam, D.; Ramachandaramurthy, V.K.; Eteiba, M.B. Fractional chaotic ensemble particle swarm optimizer for identifying the single, double, and three diode photovoltaic models’ parameters. Energy 2020, 195, 116979. [Google Scholar] [CrossRef]
Parameter | STM6-40/36 PV Module | Kyocera KC200GT PV Module | ||
---|---|---|---|---|
LB | UB | LB | UB | |
Iph (A) | 0 | 2 | 0 | 10 |
, | 0 | 50 | 0 | 10 |
Rs (Ω) | 0 | 0.36 | 0 | 2 |
Rsh (Ω) | 0 | 100 | 0 | 100 |
, | 1 | 2 | 1 | 2 |
No of series cells | 36 | 54 |
Optimizer | Min | Mean | Max | Std |
---|---|---|---|---|
GTO | 6.367E−4 | 6.367E−4 | 6.369E−4 | 4.405E−8 |
EMPA | 3.847E−3 | 1.5832E−2 | 2.7145E−2 | 5.562E−3 |
MPA | 1.487E−2 | 3.9118E−2 | 4.8449E−2 | 1.0157E−2 |
JFS | 9.477E−3 | 1.2126E−2 | 1.4112E−2 | 1.401E−3 |
HEAP | 7.425E−3 | 1.88E−2 | 2.7047E−2 | 5.239E−3 |
EO | 2.888E−3 | 9.771E−3 | 1.3209E−2 | 2.376E−3 |
FBI [46] | 9.88E−4 | 2.381E−3 | 4.135 E−3 | 9.06E−4 |
CPMPSO [60] | 1.53903E−3 | − | − | − |
PSO [12] | 1.0195E−1 | 3.4467E−1 | 5.3291E−1 | 2.1325E−1 |
LAPO [62] | 1.3813E−1 | 2.2513E−1 | 3.7493E−1 | 8.9065E−2 |
PSOGWO [65] | 1.2700E−1 | 3.5490E−1 | 7.6074E−1 | 2.5853E−1 |
BMA [63] | 1.0244E−1 | 1.2442E−1 | 1.4986E−1 | 1.8412E−2 |
NLBMA [64] | 3.3610E−2 | 3.3610E−2 | 3.3610E−2 | 7.2452E−13 |
PGJAYA [34] | 1.5455E−4 | − | − | − |
FPSO [29] | 2.8214E−2 | − | − | − |
HFAPS [61] | 4.9863E−2 | − | − | − |
BMA [63] | 1.0244E−1 | − | − | − |
EHHO [66] | 5.9507E−2 | − | − | − |
MVO [67] | 8.3800E−2 | − | − | − |
Algorithm | Iph (A) | Rs (Ω) | Rsh (Ω) | RMSE | ||
---|---|---|---|---|---|---|
GTO | 8.216767 | 2.62E−2 | 0.004826 | 6.280209 | 1.212905 | 6.367E−4 |
EMPA | 8.21195 | 3.59E−2 | 0.004742 | 7.560713 | 1.232551 | 3.847E−3 |
MPA | 8.184927 | 7.94459E−2 | 0.004537611 | 92.14823504 | 1.285180059 | 1.487E−2 |
JFS | 8.193182 | 4.72E−2 | 0.004679 | 14.97462 | 1.250052 | 9.477E−3 |
HEAP | 8.200974 | 4.49E−2 | 0.004696 | 11.87468 | 1.246924 | 7.425E−3 |
EO | 8.209153 | 2.85E−2 | 0.004815 | 7.714703 | 1.218068 | 2.888E−3 |
IAE (A) | PAE (W) | |||||
---|---|---|---|---|---|---|
0 | 8.21 | 8.210458 | 0 | 0 | 0.000458 | 0 |
4.2 | 8.198 | 8.198082 | 34.4316 | 34.43194 | 0.17E−05 | 0.00034 |
8.3 | 8.186 | 8.185989 | 67.9438 | 67.94371 | 1.1E−05 | 8.8E−05 |
12.5 | 8.174 | 8.17347 | 102.175 | 102.1684 | 0.00053 | 0.006619 |
16.5 | 8.161 | 8.16016 | 134.6565 | 134.6426 | 0.00084 | 0.013864 |
20.2 | 8.136 | 8.135846 | 164.3472 | 164.3441 | 0.00015 | 0.003115 |
23.5 | 8.035 | 8.035615 | 188.8225 | 188.837 | 0.000615 | 0.01446 |
26.3 | 7.61 | 7.610914 | 200.143 | 200.167 | 0.000914 | 0.02405 |
27.9 | 6.915 | 6.915134 | 192.9285 | 192.9322 | 0.000134 | 0.00373 |
29.3 | 5.785 | 5.784098 | 169.5005 | 169.4741 | 0.0009 | 0.02643 |
30.4 | 4.458 | 4.457639 | 135.5232 | 135.5122 | 0.00036 | 0.01097 |
31.2 | 3.239 | 3.239311 | 101.0568 | 101.0665 | 0.000311 | 0.00971 |
31.9 | 2.006 | 2.005855 | 63.9914 | 63.98678 | 0.00014 | 0.004619 |
32.4 | 1.036 | 1.037325 | 33.5664 | 33.60932 | 0.001325 | 0.04292 |
32.9 | 0 | −0.0009 | 0 | −0.02951 | 0.0009 | 0.029507 |
Optimizer | Min | Mean | Max | Std |
---|---|---|---|---|
GTO | 3.736E−4 | 5.795E−4 | 6.367E−4 | 9.482E−5 |
EMPA | 2.425E−3 | 2.762E−3 | 2.57E−3 | 4.98E−5 |
MPA | 2.505E−3 | 2.762E−3 | 2.624E−3 | 3.51E−5 |
JFS | 2.426E−3 | 2.434E−3 | 2.443E−3 | 5.25E−6 |
HEAP | 2.428E−3 | 2.473E−3 | 2.52E−3 | 2.52E−5 |
FBI [46] | 2.425E−3 | 2.431E−3 | 2.443E−3 | 4.75E−6 |
EO | 2.425E−3 | 2.434E−3 | 2.453E−3 | 9.14E−6 |
PSO [12] | 1.2970E−1 | 4.5668E−1 | 7.9194E−1 | 3.1548E−1 |
LAPO [62] | 1.1696E−1 | 0.12798 | 0.13230 | 6.3050E−3 |
PSOGWO [65] | 0.12178 | 0.13013 | 0.135401 | 5.5456E−3 |
BMA [63] | 0.12492 | 0.21858 | 0.30902 | 8.7014E−2 |
NLBMA [64] | 0.033043 | 0.033043 | 0.033043 | 2.6409E−16 |
Algorithm | Iph (A) | Rs (Ω) | Rsh (Ω) | RMSE | ||||
---|---|---|---|---|---|---|---|---|
GTO | 8.216007 | 2.07E−2 | 7.49E−1 | 0.00485 | 6.517429 | 1.199424 | 1.966626 | 3.736E−4 |
EMPA | 8.030514 | 4.25E−12 | 3.48 | 0.033369 | 27.27485 | 1.380775 | 1.351166 | 2.425E−3 |
MPA | 8.030354 | 2.62 | 4.25 | 0.032728 | 30.53537 | 1.067697 | 1.372776 | 2.505E−3 |
JFS | 8.030293 | 2.35 | 1.19 | 0.033339 | 28.17502 | 1.356141 | 1.346628 | 2.426E−3 |
HEAP | 8.030409 | 3.56 | 0 | 0.033326 | 28.33547 | 1.353583 | 1.354422 | 2.428E−3 |
FBI [46] | 8.030533 | 0.0771 | 3.44 | 0.033336 | 27.29641 | 1.335552 | 1.352567 | 2.425E−3 |
EO | 8.03054 | 1.04 | 2.44 | 0.033375 | 27.17874 | 1.351035 | 1.35097 | 2.425E−3 |
Optimizer | Min | Mean | Max | Std |
---|---|---|---|---|
GTO | 1.730E−3 | 1.730E−3 | 1.730E−3 | 1.333E−17 |
EMPA | 1.769E−3 | 0.002973 | 0.00535 | 6.33E−4 |
MPA | 3.496E−3 | 0.005176 | 0.005882 | 4.47E−4 |
JFS | 1.807E−3 | 0.001906 | 0.001997 | 5.57E−5 |
HEAP | 3.33E−3 | 0.005103 | 0.00536 | 6.71E−4 |
EO | 1.733E−3 | 0.001835 | 0.001989 | 5.82E−5 |
FBI [46] | 1.73E−3 | 0.001734 | 0.001796 | 1.28E−5 |
ISCE [26] | 1.73E−3 | 0.0017298 | 0.0017298 | 2.3E−17 |
ImCSA [71] | 1.79436E−3 | 0.00179436 | 0.00179436 | 2.11E−14 |
BHCS [69] | 1.7298E−3 | 0.0018365 | 0.00332985 | 4.05942E−4 |
TPBA [68] | 1.774E−3 | − | − | − |
SA [23] | 3.399E−3 | − | − | − |
Algorithm | Iph (A) | Rs (Ω) | Rsh (Ω) | RMSE | ||
---|---|---|---|---|---|---|
GTO | 1.663905 | 1.74 | 0.004274 | 15.92829 | 1.520303 | 1.73E−3 |
EMPA | 1.663418 | 2.03 | 0.003788 | 16.878 | 1.537713 | 1.769E−3 |
MPA | 1.65702 | 2.46 | 0.003831 | 31.50673 | 1.559041 | 3.496E−3 |
JFS | 1.662589 | 1.84 | 0.004105 | 16.96607 | 1.526795 | 1.807E−3 |
HEAP | 1.661527 | 5.51 | 0.00001 | 23.6426 | 1.658694 | 3.33E−3 |
EO | 1.663629 | 1.78 | 0.004205 | 16.24408 | 1.523146 | 1.733E−3 |
FBI [46] | 1.66391 | 1.74 | 0.004281 | 15.91743 | 1.520073 | 1.73E−3 |
ISCE [26] | 1.66390478 | 1.74 | 0.004274 | 15.9283 | 1.5203 | 1.73E−3 |
ImCSA [71] | 1.663971 | 2 | 0.002914 | 15.84051 | 1.5335 | 1.794E−3 |
BHCS [69] | 1.6639 | 1.74 | 0.00427 | 15.9283 | 1.5203 | 1.73E−3 |
TPBA [68] | 1.6632 | 2.77 | 0.004186 | 16.7328 | 1.5656 | 1.774E−3 |
SA [23] | 1.6609 | 5.90 | 0.0049499 | 26.7742 | 1.66602 | 3.399E−3 |
IAE (A) | PAE (W) | |||||
---|---|---|---|---|---|---|
0 | 1.663 | 1.663458256 | 0 | 0 | 0.000458 | 0 |
0.118 | 1.663 | 1.663252307 | 0.196234 | 0.196264 | 0.000252 | 3.000E−05 |
2.237 | 1.661 | 1.659550806 | 3.715657 | 3.712415 | 0.00145 | 0.003242 |
5.434 | 1.653 | 1.653914697 | 8.982402 | 8.987372 | 0.000915 | 0.00497 |
7.26 | 1.65 | 1.650565912 | 11.979 | 11.98311 | 0.000566 | 0.00411 |
9.68 | 1.645 | 1.645430603 | 15.9236 | 15.92777 | 0.000431 | 0.00417 |
11.59 | 1.64 | 1.639233535 | 19.0076 | 18.99872 | 0.00077 | 0.008883 |
12.6 | 1.636 | 1.633712694 | 20.6136 | 20.58478 | 0.00229 | 0.02882 |
13.37 | 1.629 | 1.627285806 | 21.77973 | 21.75681 | 0.00171 | 0.022919 |
14.09 | 1.619 | 1.618313573 | 22.81171 | 22.80204 | 0.00069 | 0.009672 |
14.88 | 1.597 | 1.603090042 | 23.76336 | 23.85398 | 0.00609 | 0.09062 |
15.59 | 1.581 | 1.581588374 | 24.64779 | 24.65696 | 0.000588 | 0.00917 |
16.4 | 1.542 | 1.542330588 | 25.2888 | 25.29422 | 0.000331 | 0.00542 |
16.71 | 1.524 | 1.521192631 | 25.46604 | 25.41913 | 0.00281 | 0.046911 |
16.98 | 1.5 | 1.499194742 | 25.47 | 25.45633 | 0.00081 | 0.013673 |
17.13 | 1.485 | 1.485275267 | 25.43805 | 25.44277 | 0.000275 | 0.00472 |
17.32 | 1.465 | 1.46565424 | 25.3738 | 25.38513 | 0.000654 | 0.01133 |
17.91 | 1.388 | 1.387589366 | 24.85908 | 24.85173 | 0.00041 | 0.007354 |
19.08 | 1.118 | 1.118391375 | 21.33144 | 21.33891 | 0.000391 | 0.00747 |
21.02 | 0 | −2.4810E−05 | 0 | −0.00052 | 2.5E−05 | 0.000522 |
Optimizer | Min | Mean | Max | Std |
---|---|---|---|---|
GTO | 1.688E−3 | 1.714E−3 | 1.730E−3 | 1.369E−5 |
EMPA | 1.735E−3 | 0.003322 | 0.005334 | 1.057E−3 |
MPA | 2.206E−3 | 0.005092 | 0.006513 | 8.21E−4 |
JFS | 1.851E−3 | 0.002383 | 0.002784 | 2.31E−4 |
HEAP | 3.33E−3 | 0.004826 | 0.005931 | 8.47E−4 |
FBI | 1.721E−3 | 0.001732 | 0.001756 | 5.82E−6 |
EO | 1.773E−3 | 0.001874 | 0.002061 | 7.67E−5 |
LCROA [73] | 1.712E−3 | − | − | − |
EPSO [74] | 1.8307E−3 | − | − | − |
FC-EPSO [75] | 1.772E−3 | − | − | − |
BA [72] | 2.1946E−2 | 0.092023 | 0.01448059 | 2.407E−2 |
NBA [72] | 1.8268E−3 | 0.0041404 | 0.007598 | 1.430E−3 |
DBA [72] | 1.7319E−3 | 0.004934 | 0.01372796 | 2.893E−3 |
Algorithm | Iph (A) | Rs (Ω) | Rsh (Ω) | RMSE | ||||
---|---|---|---|---|---|---|---|---|
GTO | 1.663922 | 3.24 | 4.63E−4 | 0.007956 | 17.15709 | 1.644348 | 1.000 | 1.688E−3 |
EMPA | 1.663663 | 1.60 | 1.56E−6 | 0.004171 | 16.54272 | 1.991067 | 1.511379 | 1.735E−3 |
JFS | 1.663119 | 2.27 | 2.11E−5 | 0.003355 | 17.39551 | 1.550411 | 1.898414 | 1.851E−3 |
HEAP | 1.661449 | 9.32 | 5.53E−6 | 0.00001 | 23.8459 | 1.6667 | 1.659115 | 3.33E−3 |
FBI | 1.663831 | 3.20 | 1.52E−6 | 0.004494 | 16.55124 | 1.583049 | 1.506537 | 1.721E−3 |
EO | 1.663011 | 1.94 | 1.99E−5 | 0.003974 | 17.18739 | 1.532521 | 1.20884 | 1.773E−3 |
LCROA [73] | 1.6637 | 72.2 | 3.28E−6 | 0.16717 | 16.7419 | 1.5739 | 2.000 | 1.712E−3 |
EPSO [74] | 1.6648 | 16.70 | 6.21E−6 | 0.5000 | 16.858 | 1.16649 | 1.87067 | 1.8307E−3 |
FC-EPSO [75] | 1.6634 | 1.85 | 9.72E−5 | 0.01101 | 16.5914 | 1.5818 | 1.5445 | 1.772E−3 |
BA [72] | 1.637941 | 1.59 | 3.94 E−5 | 0.003887 | 24.6958 | 1.504536 | 1.4783 | 2.194577E−2 |
NBA [72] | 1.662865 | 6.60 | 1.61 E−6 | 0.004653 | 16.694049 | 1.678806 | 1.511867 | 1.82684E−3 |
DBA [72] | 1.663860 | 1.80 | 3.66 E−6 | 0.004167 | 16.066503 | 1.524098 | 1.43939 | 1.731960 E−3 |
IAE (A) | PAE (W) | |||||
---|---|---|---|---|---|---|
0 | 1.663 | 1.65900933 | 0 | 0 | 0.00399 | 0 |
0.118 | 1.663 | 1.658924113 | 0.196234 | 0.195753 | 0.00408 | 0.000481 |
2.237 | 1.661 | 1.657371351 | 3.715657 | 3.70754 | 0.00363 | 0.008117 |
5.434 | 1.653 | 1.654802159 | 8.982402 | 8.992195 | 0.001802 | 0.00979 |
7.26 | 1.650 | 1.652940879 | 11.979 | 12.00035 | 0.002941 | 0.02135 |
9.68 | 1.645 | 1.648991785 | 15.9236 | 15.96224 | 0.003992 | 0.03864 |
11.59 | 1.640 | 1.642480987 | 19.0076 | 19.03635 | 0.002481 | 0.02875 |
12.6 | 1.636 | 1.636140201 | 20.6136 | 20.61537 | 0.00014 | 0.00177 |
13.37 | 1.629 | 1.628783702 | 21.77973 | 21.77684 | 0.00022 | 0.002892 |
14.09 | 1.619 | 1.618780269 | 22.81171 | 22.80861 | 0.00022 | 0.003096 |
14.88 | 1.597 | 1.602458291 | 23.76336 | 23.84458 | 0.005458 | 0.08122 |
15.59 | 1.581 | 1.580179795 | 24.64779 | 24.635 | 0.00082 | 0.012787 |
16.4 | 1.542 | 1.540779658 | 25.2888 | 25.26879 | 0.00122 | 0.020014 |
16.71 | 1.524 | 1.519823253 | 25.46604 | 25.39625 | 0.00418 | 0.069793 |
16.98 | 1.500 | 1.498182042 | 25.47 | 25.43913 | 0.00182 | 0.030869 |
17.13 | 1.485 | 1.484514576 | 25.43805 | 25.42973 | 0.00049 | 0.008315 |
17.32 | 1.465 | 1.46524093 | 25.3738 | 25.37797 | 0.000241 | 0.00417 |
17.91 | 1.388 | 1.388337911 | 24.85908 | 24.86513 | 0.000338 | 0.00605 |
19.08 | 1.118 | 1.118906384 | 21.33144 | 21.34873 | 0.000906 | 0.01729 |
21.02 | 0 | −0.00028274 | 0 | −0.00594 | 0.00028 | 0.005943 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ginidi, A.; Ghoneim, S.M.; Elsayed, A.; El-Sehiemy, R.; Shaheen, A.; El-Fergany, A. Gorilla Troops Optimizer for Electrically Based Single and Double-Diode Models of Solar Photovoltaic Systems. Sustainability 2021, 13, 9459. https://doi.org/10.3390/su13169459
Ginidi A, Ghoneim SM, Elsayed A, El-Sehiemy R, Shaheen A, El-Fergany A. Gorilla Troops Optimizer for Electrically Based Single and Double-Diode Models of Solar Photovoltaic Systems. Sustainability. 2021; 13(16):9459. https://doi.org/10.3390/su13169459
Chicago/Turabian StyleGinidi, Ahmed, Sherif M. Ghoneim, Abdallah Elsayed, Ragab El-Sehiemy, Abdullah Shaheen, and Attia El-Fergany. 2021. "Gorilla Troops Optimizer for Electrically Based Single and Double-Diode Models of Solar Photovoltaic Systems" Sustainability 13, no. 16: 9459. https://doi.org/10.3390/su13169459
APA StyleGinidi, A., Ghoneim, S. M., Elsayed, A., El-Sehiemy, R., Shaheen, A., & El-Fergany, A. (2021). Gorilla Troops Optimizer for Electrically Based Single and Double-Diode Models of Solar Photovoltaic Systems. Sustainability, 13(16), 9459. https://doi.org/10.3390/su13169459