Role of Agricultural Diversification in Improving Resilience to Climate Change: An Empirical Analysis with Gaussian Paradigm
Abstract
:1. Introduction
2. Econometric Framework and Estimation Strategy
3. Data, Variable Construction, and Study Site
4. Results
4.1. Descriptive Statistics of the Sample Data
4.2. Empirical Results for the Adoption of Agricultural Diversification and Its Impact on Households’ Farm Income
5. Discussions
6. Conclusions and Implications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brown, P.R.; Afroz, S.; Chialue, L.; Chiranjeevi, T.; El, S.; Grünbühel, C.M.; Khan, I.; Pitkin, C.; Reddy, V.R.; Roth, C.H.; et al. Constraints to the capacity of smallholder farming households to adapt to climate change in South and Southeast Asia. Clim. Dev. 2019, 11, 383–400. [Google Scholar] [CrossRef]
- Galati, A.; Crescimanno, M.; Vrontis, D.; Siggia, D. Contribution to the Sustainability Challenges of the Food-Delivery Sector: Finding from the Deliveroo Italy Case Study. Sustainability 2020, 12, 7045. [Google Scholar] [CrossRef]
- Sardar, A.; Kiani, A.K.; Kuslu, Y. Does adoption of climate-smart agriculture (CSA) practices improve farmers’ crop income? Assessing the determinants and its impacts in Punjab province, Pakistan. Environ. Dev. Sustain. 2021, 23, 10119–10140. [Google Scholar] [CrossRef]
- Sardar, A.; Javed, S.A.; Amir-ud-Din, R. Natural Disasters and Economic Growth in Pakistan: An Enquiry into the Floods Related Hazards’ Triad; Working Paper Series; Centre for Environmental Economics and Climate Change (CEECC), Pakistan Institute of Development Economics: Islamabad, Pakistan, 2016; pp. 1–19. Available online: https://www.pide.org.pk/pdf/WorkingPaper/EE_Working_Paper-10.pdf (accessed on 12 August 2019).
- Kreft, S.; Eckstein, D.; Melchior, I. Global Climate Risk Index. Who Suffers Most from Extreme Weather Events? Weather-Related Loss Events in 2015 and 1996 to 2015, 2017; Germanwatch Nord-Süd Initiative eV: Bonn, Germany, 2016. [Google Scholar]
- Sardar, A.; Kiani, A.K.; Kuslu, Y. An assessment of willingness for adoption of climate-smart agriculture (Csa) practices through the farmers’ adaptive capacity determinants. Yuz. Yil Univ. J. Agric. Sci. 2019, 29, 781–791. [Google Scholar] [CrossRef]
- Kaczan, D.; Arslan, A.; Lipper, L. Climate-Smart Agriculture? A Review of Current Practice of Agroforestry and Conservation Agriculture in Malawi and Zambia. 2013. Available online: www.fao.org/economic/esa (accessed on 14 April 2019).
- Sachikonye, M.T.; Dalu, T.; Gunter, A. Sustainable livelihood principles and urban greening in informal settlements in practice: A case of Zandspruit informal settlement, South Africa. Dev. S. Afr. 2016, 33, 518–531. [Google Scholar] [CrossRef]
- Rao, N.H.; Rogers, P.P. Assessment of agricultural sustainability. Curr. Sci. 2006, 91, 439–448. [Google Scholar] [CrossRef]
- Pokharel, C. Agricultural Diversification in Nepal. In Agricultural Transformation in Nepal; Springer: Singapore, 2019; pp. 323–384. [Google Scholar]
- Shiferaw, B.; Kassie, M.; Jaleta, M.; Yirga, C. Adoption of improved wheat varieties and impacts on household food security in Ethiopia. Food Policy 2014, 44, 272–284. [Google Scholar] [CrossRef]
- Shiferaw, B.; Tesfaye, K.; Kassie, M.; Abate, T.; Prasanna, B.; Menkir, A. Managing vulnerability to drought and enhancing livelihood resilience in sub-Saharan Africa: Technological, institutional and policy options. Weather Clim. Extremes 2014, 3, 67–79. [Google Scholar] [CrossRef] [Green Version]
- Luh, Y.-H.; Chang, Y.-C. Effect of Climate Change on Staple Food Production: Empirical Evidence from a Structural Ricardian Analysis. Agronomy 2021, 11, 369. [Google Scholar] [CrossRef]
- Ojo, T.O.; Baiyegunhi, L.J.S. Determinants of climate change adaptation strategies and its impact on the net farm income of rice farmers in south-west Nigeria. Land Use Policy 2020, 95, 103946. [Google Scholar] [CrossRef]
- Sardar, A.; Kiani, A.K.; Kuslu, Y.; Bilgic, A. İklim-Akıllı Tarım stratejisinin bir parçası olarak geçim çeşitliliğinin rolünün incelenmesi. Atatürk Üniv. Ziraat Fak. Derg. 2020, 51, 79–87. [Google Scholar] [CrossRef]
- Waha, K.; Van Wijk, M.T.; Fritz, S.; See, L.; Thornton, P.; Wichern, J.; Herrero, M. Agricultural diversification as an important strategy for achieving food security in Africa. Glob. Change Biol. 2018, 24, 3390–3400. [Google Scholar] [CrossRef] [Green Version]
- Aizen, M.A.; Aguiar, S.; Biesmeijer, J.C.; Garibaldi, L.A.; Inouye, D.W.; Jung, C.; Martins, D.J.; Medel, R.; Morales, C.L.; Ngo, H.; et al. Global agricultural productivity is threatened by increasing pollinator dependence without a parallel increase in crop diversification. Glob. Chang. Biol. 2019, 25, 3516–3527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Imran, M.A.; Ali, A.; Ashfaq, M.; Hassan, S.; Culas, R.; Ma, C. Impact of Climate Smart Agriculture (CSA) Practices on Cotton Production and Livelihood of Farmers in Punjab, Pakistan. Sustainability 2018, 10, 2101. [Google Scholar] [CrossRef] [Green Version]
- Imran, M.A.; Ali, A.; Ashfaq, M.; Hassan, S.; Culas, R.; Ma, C. Impact of climate smart agriculture (CSA) through sustainable irrigation management on Resource use efficiency: A sustainable production alternative for cotton. Land Use Policy 2019, 88, 104113. [Google Scholar] [CrossRef]
- Teklewold, H.; Mekonnen, A.; Kohlin, G.; Di Falco, S. Does Adoption of Multiple Climate-Smart Practices Improve Farmers’ Climate Resilience? Empirical Evidence from the Nile Basin of Ethiopia. Clim. Change Econ. 2017, 8, 1750001. [Google Scholar] [CrossRef]
- Thornton, P.; Rosenstock, T.; Förch, W.; Lamanna, C.; Bell, P.; Henderson, B.; Herrero, M. A Qualitative Evaluation of CSA Options in Mixed Crop-Livestock Systems in Developing Countries. In Climate Smart Agriculture; Springer: Berlin/Heidelberg, Germany, 2018; pp. 385–423. [Google Scholar] [CrossRef] [Green Version]
- Kebebe, E.; Shibru, F. Impact of alternative livelihood interventions on household welfare: Evidence from rural Ethiopia. For. Policy Econ. 2017, 75, 67–72. [Google Scholar] [CrossRef]
- Chen, Z.; Yen, S.T.; Eastwood, D.B. Effects of Food Stamp Participation on Body Weight and Obesity. Am. J. Agric. Econ. 2005, 87, 1167–1173. [Google Scholar] [CrossRef]
- Heckman, J.; Tobias, J.L.; Vytlacil, E. Simple Estimators for Treatment Parameters in a Latent-Variable Framework. Rev. Econ. Stat. 2003, 85, 748–755. [Google Scholar] [CrossRef]
- Kasteridis, P.P.; Munkin, M.K.; Yen, S.T. Demand for cigarettes: A mixed binary-ordered probit approach. Appl. Econ. 2010, 42, 413–426. [Google Scholar] [CrossRef]
- Kasteridis, P.; Yen, S.T. Smoking Cessation and Body Weight: Evidence from the Behavioral Risk Factor Surveillance Survey. Health Serv. Res. 2012, 47, 1580–1602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yen, S.T. The effects of SNAP and WIC programs on nutrient intakes of children. Food Policy 2010, 35, 576–583. [Google Scholar] [CrossRef]
- Yen, S.T.; Bruce, D.J.; Jahns, L. Supplemental nutrition assistance program participation and health: Evidence from low-income individuals in tennessee. Contemp. Econ. Policy 2012, 30, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Pudney, S. No Title. Model Individ Choice Basil Blackwell, Oxford. 1989. Available online: https://www.ssc.wisc.edu/~walker/wp/wp-content/uploads/2013/09/pudney89_chapter2.pdf (accessed on 7 August 2019).
- Sujakhu, N.M.; Ranjitkar, S.; Niraula, R.R.; Salim, M.A.; Nizami, A.; Schmidt-Vogt, D.; Xu, J. Determinants of livelihood vulnerability in farming communities in two sites in the Asian Highlands. Water Int. 2018, 43, 165–182. [Google Scholar] [CrossRef] [Green Version]
- Williams, P.A.; Crespo, O.; Abu, M.; Simpson, N.P. A systematic review of how vulnerability of smallholder agricultural systems to changing climate is assessed in Africa. Environ. Res. Lett. 2018, 13, 103004. [Google Scholar] [CrossRef]
- Holland, M.B.; Shamer, S.Z.; Imbach, P.; Zamora, J.C.; Moreno, C.M.; Hidalgo, E.J.L.; Donatti, C.I.; Martínez-Rodríguez, M.R.; Harvey, C.A. Mapping adaptive capacity and smallholder agriculture: Applying expert knowledge at the landscape scale. Clim. Change 2016, 141, 139–153. [Google Scholar] [CrossRef] [Green Version]
- Adnan, S.; Ullah, K.; Gao, S.; Khosa, A.H.; Wang, Z. Shifting of agro-climatic zones, their drought vulnerability, and precipitation and temperature trends in Pakistan. Int. J. Climatol. 2017, 37, 529–543. [Google Scholar] [CrossRef]
- GOPP. Jhang City Profile. Punjab Cities Improvement Investment Program. Government of Punjab, Pakistan, Lahore. 2018. Available online: http://uu.urbanunit.gov.pk/Documents/Publications/0/111.pdf (accessed on 4 July 2019).
- GOPP. Rahim Yar Khan City Profile. Punjab Cities Improvement Investment Program. Government of Punjab, Pakistan. 2018. Available online: http://uu.urbanunit.gov.pk/Documents/Publications/0/114.pdf (accessed on 9 June 2019).
- GOPP. Sialkot City Profile. Punjab Cities Improvement Investment Program. Government of Punjab, Pakistan, Lahore. 2018. Available online: http://uu.urbanunit.gov.pk/Documents/ProjectDocuments/5/150.pdf (accessed on 22 June 2019).
- Gebru, G.W.; Ichoku, H.E.; Phil-Eze, P.O. Determinants of livelihood diversification strategies in Eastern Tigray Region of Ethiopia. Agric. Food Secur. 2018, 7, 62. [Google Scholar] [CrossRef]
- Parsons, M.; Brown, C.; Nalau, J.; Fisher, K. Assessing adaptive capacity and adaptation: Insights from Samoan tourism operators. Clim. Dev. 2018, 10, 644–663. [Google Scholar] [CrossRef]
- Abidoye, B.O.; Kurukulasuriya, P.; Reed, B.; Mendelsohn, R. Structural ricardian analysis of south-east asian agriculture. Clim. Change Econ. 2017, 8. [Google Scholar] [CrossRef]
- Jones, L.; Ludi, E.; Jeans, H.; Barihaihi, M. Revisiting the Local Adaptive Capacity framework: Learning from the implementation of a research and programming framework in Africa. Clim. Dev. 2017, 11, 3–13. [Google Scholar] [CrossRef]
- Tinch, R.; Jager, J.; Omann, I.; Harrison, P.A.; Wesely, J.; Dunford, R. Applying a capitals framework to measuring coping and adaptive capacity in integrated assessment models. Clim. Change 2015, 128, 323–337. [Google Scholar] [CrossRef]
- Asante, B.O.; Villano, R.A.; Patrick, I.W.; Battese, G.E. Determinants of farm diversification in integrated crop-livestock farming systems in Ghana. Renew. Agric. Food Syst. 2018, 33, 131–149. [Google Scholar] [CrossRef]
Variable Name | Definition |
---|---|
Dependent Variables | |
Farm income | Net income earned from the production of the crops and livestock-related activities (in ‘0000′ Rupees per year) |
Agricultural diversification | 1, if a farmer adopted crops or livestock diversification, 0 otherwise |
Independent Variables | |
Demographic characteristics | |
Working members | Working family members in a household (in numbers) |
Labour force | Number of persons living in a household (1 if the number of individuals in a household is greater than 10, 0 otherwise) |
No Schooling | Illiterate (1 if a farmer did not attend the school, 0 otherwise) |
Elementary | 1 if a farmer finished elementary school education, 0 otherwise |
Secondary | 1 if a farm household finished secondary school education, 0 otherwise |
College | 1 if a farmer has at least two years of college-level or above education, 0 otherwise |
Experience | Farming experience (in years) |
Farm size | Size of farmland (area) owned or rented for cultivation (in hectares) |
Social characteristics (strength of the collective action) | |
Social dependency | Dependency of a farmer on the family system (i.e., to be the head of the family) or to the head of the village for taking decision-related to agricultural production (1 = yes, 0 = no) |
Relative assistance | Availability of relatives and friends for assistance such as seeking money or equipment sharing (1 = yes, 0 = no) |
Institutional support/characteristics | |
Market information | Market information (1 if a farmer had access, 0 otherwise) |
Weather information | Weather forecasting information (1 if a farmer had access, 0 otherwise) |
Distance ≤ 20 | 1 if the distance from farmland to the nearest the extension centre is less than or equal to 20 km, 0 otherwise |
Distance 21–50 | 1 if the distance from farmland to the nearest the extension centre is greater than 20 and less than 51 km, 0 otherwise |
Distance 51–80 | 1 if the distance from farmland to the nearest the extension centre is greater than 50 and less than 81 km, 0 otherwise |
Distance 80 | 1 if the distance from farmland to the nearest the extension centre is greater than 80 km, 0 otherwise |
Technology assets | Availability of agricultural technology assets such as tractors and machinery to the farmer (in numbers) |
Credit access | Availability of credit access (1 = yes; 0 = no) |
Climate shocks | Plot-disturbance-index |
Jhang district | 1 if the farmland is located in Jhang district, 0 otherwise. |
Rahim Yar Khan district | 1 if the farmland is located in Rahim Yar Khan district, 0 otherwise. |
Sailkot district | 1 if the farmland is located in Sailkot district, 0 otherwise |
Variable | Mean | Std. dev. | Min | Max |
---|---|---|---|---|
Dependent Variables | ||||
Farm income | 91.834 | 100.617 | 7.066 | 500.163 |
Agricultural diversification | 0.859 | 0.349 | 0 | 1 |
Explanatory Variables | ||||
Working members | 1.927 | 1.189 | 1.000 | 6.000 |
No Schooling (reference) | 0.215 | 0.411 | 0 | 1 |
Elementary | 0.210 | 0.408 | 0 | 1 |
Secondary | 0.410 | 0.492 | 0 | 1 |
College | 0.166 | 0.372 | 0 | 1 |
Labour force | 0.127 | 0.333 | 0 | 1 |
Experience | 22.288 | 11.606 | 0 | 50 |
Credit access | 0.400 | 0.490 | 0 | 1 |
Weather forecasting | 0.671 | 0.471 | 0 | 1 |
Market information | 0.580 | 0.494 | 0 | 1 |
Working members | 1.927 | 1.189 | 1 | 6 |
Technology assets | 1.239 | 0.828 | 0 | 3 |
Relative assistance | 0.690 | 0.463 | 0 | 1 |
Social dependency | 0.483 | 0.500 | 0 | 1 |
Distance ≤ 20 | 0.693 | 0.462 | 0 | 1 |
Distance 21–50 | 0.144 | 0.351 | 0 | 1 |
Distance 51–80 | 0.110 | 0.313 | 0 | 1 |
>80 (Reference) | 0.054 | 0.226 | 0 | 1 |
Farm size | 4.546 | 5.523 | 0.400 | 32.370 |
Index | 1.612 | 1.326 | 0 | 4 |
Jhang district | 0.334 | 0.472 | 0 | 1 |
Numbers of observations | 410 |
Variable | Agricultural Diversification Determinants Model | Farm Income Model |
---|---|---|
Constant | −0.136 (0.627) | 3.707 *** (0.166) |
Elementary | 0.322 (0.235) | 0.085 (0.122) |
Secondary | 0.272 (0.227) | 0.392 *** (0.119) |
College | 0.824 *** (0.362) | 0.616 *** (0.138) |
Labour force | 0.079 (0.286) | 0.284 ** (0.121) |
Experience | 0.036 *** (0.007) | 0.014 *** (0.003) |
Credit access | 0.011 (0.273) | 0.002 (0.115) |
Weather forecasting | 0.474 ** (0.213) | 0.057 (0.111) |
Market information | 0.197 (0.218) | 0.002 (0.111) |
Technology assets | 0.215 ** (0.108) | 0.039 * (0.021) |
Relative assistance | 0.284 (0.183) | 0.017 (0.091) |
Social dependency | 0.097 (0.221) | −0.081 (0.093) |
Working members | 0.124 (0.091) | ----- |
Distance ≤20 | 0.827 ** (0.401) | ----- |
Distance 21–50 | 0.269 (0.679) | ----- |
Distance 51–80 | 0.266 (0.645) | ----- |
Jhang district | 0.147 (0.185) | 0.181 ** (0.084) |
Farm size | ----- | 0.084 *** (0.005) |
Climate shocks | ----- | 0.034 (0.038) |
Agri. diversification | ----- | −0.891 *** (0.231) |
Sigma (σ) | 0.749 *** (0.038) | |
Correlation coefficient (ρ) | 0.553 *** (0.139) | |
Log-likelihood value | −2248.146 |
Variable | Probability of Adaptation | Conditional Level | Unconditional Level |
---|---|---|---|
Elementary | 4.024 (4.828) | 7.254 (14.402) | 5.409 (14.195) |
Secondary | 4.682 (3.910) | 6.443 *** (2.768) | 4.360 *** (1.108) |
College | 7.940 *** (3.347) | 8.924 *** (3.108) | 6.305 *** (2.302) |
Labour force | 1.350 (4.829) | 3.063 ** (1.379) | 3.432 ** (1.385) |
Experience | 0.638 *** (0.129) | 1.099 *** (0.402) | 1.645 *** (0.420) |
Credit access | 0.185 (4.798) | 0.378 (11.921) | 0.127 (12.447) |
Weather forecasting | 8.725 ** (4.192) | 1.230 (11.292) | 10.329 (11.372) |
Market information | 3.448 (3.941) | 1.656 (11.805) | 2.260 (11.689) |
Technology assets | 3.743 ** (1.848) | 2.074 * (1.058) | 0.857 * (0.445) |
Relative assistance | 5.180 (3.461) | 4.866 (9.683) | 1.414 (9.668) |
Social dependency | 1.686 (3.895) | −9.710 (9.674) | −6.666 (10.175) |
Working members | 2.166 (1.601) | 1.247 (1.136) | 1.265 (0.977) |
Distance ≤20 | 12.566 * (6.528) | 6.849 (6.194) | 6.791 (5.373) |
Distance 21–50 | 5.039 (13.192) | 3.013 (11.294) | 3.081 (9.714) |
Distance 51–80 | 5.043 (12.712) | 3.005 (10.916) | 3.075 (9.262) |
Jhang district | −2.627 (3.361) | 2.703 ** (1.323) | 5.775 * (3.463) |
Farm size | ----- | 9.084 *** (1.057) | 7.883 *** (0.905) |
Climate shocks | ----- | 3.771 (4.365) | 3.272 (3.742) |
Agri. diversification | ----- | −137.391 ** (57.818) | −122.433 ** (51.321) |
Average treatment effect (ATE) | 6.818 (12.114) |
Average treatment effect on the treated (ATT) | 9.526 (13.120) |
Average treatment effect on the untreated (ATU) | −11.575 *** (3.929) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kiani, A.K.; Sardar, A.; Khan, W.U.; He, Y.; Bilgic, A.; Kuslu, Y.; Raja, M.A.Z. Role of Agricultural Diversification in Improving Resilience to Climate Change: An Empirical Analysis with Gaussian Paradigm. Sustainability 2021, 13, 9539. https://doi.org/10.3390/su13179539
Kiani AK, Sardar A, Khan WU, He Y, Bilgic A, Kuslu Y, Raja MAZ. Role of Agricultural Diversification in Improving Resilience to Climate Change: An Empirical Analysis with Gaussian Paradigm. Sustainability. 2021; 13(17):9539. https://doi.org/10.3390/su13179539
Chicago/Turabian StyleKiani, Adiqa Kausar, Asif Sardar, Wasim Ullah Khan, Yigang He, Abdulbaki Bilgic, Yasemin Kuslu, and Muhammad Asif Zahoor Raja. 2021. "Role of Agricultural Diversification in Improving Resilience to Climate Change: An Empirical Analysis with Gaussian Paradigm" Sustainability 13, no. 17: 9539. https://doi.org/10.3390/su13179539
APA StyleKiani, A. K., Sardar, A., Khan, W. U., He, Y., Bilgic, A., Kuslu, Y., & Raja, M. A. Z. (2021). Role of Agricultural Diversification in Improving Resilience to Climate Change: An Empirical Analysis with Gaussian Paradigm. Sustainability, 13(17), 9539. https://doi.org/10.3390/su13179539