1. Introduction
Economic investment is a key factor for a country’s economic development both in the long-term and in the short-term. In many cases, an appropriate development of public infrastructure is an important prerequisite for private investments and thus sustainable economic growth. In this context, Alaloul et al. (2021) [
1] highlight the importance of a country’s construction sector for the development because it is closely intertwined with other sectors of the economy. However, private investment is highly volatile in the short term. Housing investments in particular exhibit pronounced boom bust cycles (Agnello and Schuknecht 2011) [
2]. The financial crisis of the years 2008 and 2009 is an example that these housing cycles might have strong effects on the financial sector and are therefore a threat to financial sector stability (Lee et al., 2021) [
3]. On the other hand, due to several macroprudential policy tools related to the housing market it has the capacity to stabilize the financial sector and promote sustainability of the economic development (Carrasco-Gallego 2021) [
4].
For this reason, the macroeconomic analyses and forecasts of governments at the federal and the state level, central banks, and international organizations like the European Commission also include, among other things, analysis and forecast of investment and, in particular, construction investment. Therefore, forecasts are built bottom up starting with the most important components of gross domestic product (GDP), like consumption, investment in equipment and construction, as well as external trade. This allows in depth analysis of the different economic activities within the economy. For this reason, the most important source for these forecasts is the system of national accounts. In Germany, detailed quarterly data for the whole country from the system of national accounts is published six weeks after the end of the quarter. At the state level, GDP data are available at an annual frequency and published three months after the end of the year. Since the actual needs for this data require quicker forecasting reports, forecasters are looking for unconventional data sources that are available independently from those official statistics and which are able to support quicker but reliable forecasts (e.g., Donaldson and Storeygard 2016 [
5], Ademmer et al., 2021 [
6], Blagov et al., 2021 [
7]).
In particular, investments in construction and in machinery play an important role in the forecasting process as these variables indicate short-run changes in economic activity quite early. The financial crisis of the years 2008 and 2009 is popular evidence that the housing sector often drives the business cycle. From this perspective, it is very interesting that buildings could be identified in satellite images from space. This opens up the possibility that earth observation satellite images could provide information that is able to improve economic forecasts (Blagov et al., 2021 [
7]).
Early studies with macro-economic focus used night light image data to estimate the state of economic development (e.g., Henderson et al., 2012 [
8]). Usually, GDP per capita is used as a measure for this purpose but, in developing and emerging countries, reliable data are not always available to calculate GDP per capita. According to Small et al. (2011) [
9], DMSP (Defense Meteorological Satellite Program) data can be used globally to analyze long-run economic development. The advantage of such data is the global availability in identical quality and the long time series of data over more than 20 years. For macro-economic analysis in well-developed countries, their benefit is discussed controversially. Nordhaus and Chen (2015) [
10], Addison and Stewart (2015) [
11], and Leßmann et al. (2015) [
12] are rather pessimistic on the use of DMSP data for income forecasts. Another example is Faisal and Shaker 2014 [
13], who successfully examine the relationship between built-up areas derived from remote sensing and socio-economic parameters such as GDP in selected Canadian cities. However, this study uses Landsat satellite images with a relatively coarse resolution and utilizes a rather simple classification approach based on two indices.
In addition, other studies were looking for further applications of remote sensing image data for economic analysis like investments in other goods. Very high resolution (VHR) images seem to allow the identification of cars on parking lots (e.g., Spaceknow [
14], Schartner 2018 [
15]). This information could be used as an indicator of the volume of sales in the neighboring shops and therefore could improve short-term forecasts of private consumption. However, the application of earth observation data for the analysis of short-term economic activity is in an early stage of its development. Feasibility studies like the “smart business cycle statistics” project from EUROSTAT propose positive evaluations but still there is a need for specific case studies to judge the effects of integrating information from earth observation satellites into economic models. Mostly related to our study are empirical analyses of land use change by using remote sensing data. Riao et al. (2020) [
16] and Wang et al. (2020) [
17] analyzed the urbanization process in different regions in China. The studies prove the extensive conversion of arable land into building land.
Various earth observation systems have already been available for decades and offer satellite images with different spatial and temporal resolutions. However, comprehensive free data in a high resolution (HR) of up to 10 m have only been available since the launch of modern non-commercial sensors such as the European Space Agency’s Sentinel satellites of the Copernicus program in 2014. Images with very high resolutions (VHR) are acquired from commercial satellites such as WorldView (0.3–0.5 m).
Corresponding to the variety of different earth observation satellites with their specific characteristics, research studies developed many different strategies to extract information from the imagery. Early methods were based on pixel-based classification strategies that later were complemented by object-based classification approaches (e.g., Myint et al., 2011 [
18], Blaschke et al., 2008 [
19]). These were then complemented by a huge variety of machine learning approaches to use other image features during the classification stage (e.g., Mao et al., 2020 [
20]).
Since satellite images can be acquired with high temporal frequency, they seem to be well suited to support a modified reporting strategy by identifying new construction sites and new buildings and therefore construction investments by comparison with earlier situations. Xi et al. (2019) [
21] as well as Pesaresi et al. (2016) [
22] investigate the use of optical Sentinel-2 data for built-up area detection. Once buildings are detected, it is necessary to evaluate which buildings are new compared to an earlier point in time. Here, specific change detection approaches are necessary (e.g., Radke et al., 2005 [
23], Olteanu-Raimond et al., 2020 [
24], Henits et al., 2016 [
25]). Juergens and Meyer-Heß (2021) [
26] worked with finer spatial resolution and reported on their findings related to construction areas based on mono-temporal VHR satellite images and combined change detection analysis.
Similar to that is the identification of new agricultural machinery on outdoor parking lots, where those goods are waiting to be delivered to the customer. A probable solution could be the detection of the machinery’s pattern within an image using Template Matching as described by (Jasvilis et al., 2016 [
27]) for other complex structures such as oil palms or pavement markings. By assessing the outdoor ”storage“ this way using VHR satellite images in certain intervals, the estimation of the full number of produced land machines seems feasible. For instance, Rosenski and Schartner (2018) [
28] report on such possible applications of VHR satellite images for economic statistics. Further related to this work is research by Zambanini et al., 2020 [
29], who use VHR stereo satellite imagery for the development of parking space availability models, as well as Tang et al., 2017 [
30], who optimize Faster R-CNN for general methodological purposes. However, this study aims at national forecasts. Thus, the short-term detection of construction sites and vehicles with as inexpensive data as possible is too focused and does not allow the use of stereo imagery or LiDAR-derived 3D-models as well as extensive training of machine learning approaches.
Since there is a need and great potential in the HR and VHR image domain for economic applications, this study concentrates on the estimation of investments in the construction sector based on HR and VHR images and on the estimation of investments in agricultural machinery based on orthophotos simulating VHR satellite imagery. Overall, this paper investigates the potential of earth observation imagery for short-term economic forecasting.
2. Materials and Methods
The basic objective is to find out if optical remote sensing data are able to improve short-term economic forecasts. These forecasts are typically produced by using time series models based on economic data. One target variable is construction investments, which are published quarterly. In Germany, data for construction investments are published by the Federal Statistical Office six weeks after the end of the quarter of interest. Another target variable is the investment in machinery.
Variables that are commonly used for forecasting construction investments are either general measures of economic activity like GDP, the unemployment rate (Alaloul et al., 2021 [
1]; Ng et al., 2011 [
31]), or variables that are related to the demand or supply side of the housing market (Demers 2005 [
32]; Lunsford 2015 [
33]). Demers (2005) [
32] uses the price of housing accommodation, the share of the 25- to 44-year-old population, wealth of households, and the interest rate as explanatory variables in the forecast equation. However, some of these variables are published with a lag and, even more importantly, none of these variables is directly related to construction investments. To reduce this problem, an alternative approach includes leading indicators in the forecasting equation that are directly related to the construction sector. Lunsford (2015) [
33] uses building permits and housing starts that are published monthly. In Germany, only building permits are available on a monthly basis at the federal level. Unfortunately, they are published with a delay of six weeks. At the state level, building permits are published quarterly with a delay of six weeks. Another important variable is the number of workers in the construction sector. Forecast evaluation studies (e.g., Aye et al., 2016 [
34]) find that specific housing market variables are able to improve the forecasting performance. From this perspective, the advantages of satellite image data are that it measures construction activity directly and the data provide information on the regional distribution of construction activity. This information must be converted into quantitative time series data, preferably with a monthly or quarterly frequency.
To analyze the general information content of satellite image data, open satellite image data of the Sentinel-2 satellites are investigated first. The aim is to construct a quantitative measure for construction activities in a specific area. A possible measure is the number of construction sites or the size of the areas of these construction sites. In case these data from the satellite images is too coarse, one could add commercial VHR data instead, to reach higher accuracies.
For the methodological approaches one followed three ideas:
Exploit freely available HR Sentinel-2 data to detect construction areas and new buildings by using the spectral bands with 10 m and 20 m geometric resolution (
Section 2.1.1). Based on the twin constellation of Sentinel-2A and Sentinel-2B it is possible to get their imagery every five days.
Extract construction areas with high precision from commercial VHR images of the WorldView satellite family with 0.3 m–0.5 m and find out which benefits could result from using the higher geometric resolution (
Section 2.1.2). Based on the orbital characteristics and the pointing capabilities of the WorldView satellites, it is possible to get their imagery every 1–5 days.
Perform a feasibility study on the possible extraction of agricultural machinery in different image resolutions. Due to availability and practical reasons, the use of VHR satellite images will be simulated with orthophotos. The original resolution of 0.1 m will be reduced to 0.3 m, 0.5 m, and 1 m to find the minimal resolution that is needed for successful detections of agricultural machinery. This could then ease the choice of suitable satellite imagery to perform the same task on larger scales (
Section 2.2).
2.1. Detection of Construction Sites
To evaluate the usability of HR and VHR earth observation data to identify and quantify construction activities, the German capital Berlin is selected as it must publish national accounts data including construction investments as a federal state. This investigation is based on freely available HR Sentinel-2 images and on commercial VHR images from the family of WorldView (WV) satellites.
Each scene is classified using object-based image analysis (OBIA) and a kNN (k-nearest neighbors) machine learning classifier as this approach visually worked best among the other machine learning techniques such as Support Vector Machine or Random Forest with the given data. The algorithm utilizes previously learned properties such as spectral signatures for different land cover classes and assigns unknown image objects accordingly. To train the classifier, samples are collected for each scene individually to gather representative surface information for each land cover category. Basically, the mono-temporal classification results for all individual scenes are then used to refine the result with GIS-based analysis.
Two reference datasets are consulted for evaluation of built-up structures: The first one is the Imperviousness Classified Change (IMCC) 2015–2018 dataset, that contains changes of sealed surfaces from 2015 to 2018 with a resolution of 20 m. It was produced as part of the Copernicus program and is a continuation of a time series going back to 2006, which is derived from HR satellite data (including Sentinel-2) and other data sources (Copernicus [
35]).
The second dataset,
Land Cover DE of the German Aerospace Center (DLR), is based on Sentinel-2 scenes from June 2015 to April 2017 and includes a multi-temporal land cover classification with a geometric resolution of 10 m. It covers the whole of Germany and is subdivided into artificial surfaces (built-up areas), bare soil, water, and vegetation. The latter also includes a temporal component and is further subdivided into high/low and seasonal/permanent vegetation. In addition to the satellite spectral channels, a number of indices are used: Normalized Difference Vegetation Index (NDVI), Normalized Difference Water Index (NDWI), and Normalized Difference Built-Up Index (NDBI). Classification is performed using a Random Forest machine learning approach, taking additional information on sealing into account (DLR 2020 [
36], Weigand et al., 2020 [
37]).
2.1.1. Sentinel-2 HR Image Analysis for the Detection of Construction Areas and New Buildings
For the time period 2015–2020, available cloud-free Sentinel-2 scenes for the city of Berlin are downloaded. Altogether, the 20 scenes listed in
Table 1 have good quality. It becomes clear that cloud-free images are less frequent in the second half of the year because the weather conditions in Germany’s climate region do not allow more cloud-free image acquisition days in the respective seasons. This makes it more difficult to create a reliable indicator on a quarterly basis since the number of images differ between quarters, however statistical forecasts are traditionally based on observations at regular intervals. The Sentinel-2 images cover the area shown in
Figure 1. Only the far eastern part is not covered, but the forest dominated area is of low interest for the detection of new buildings and construction areas. Therefore, this small missing area is neglected.
In this study, images of the past (2015–2020) are used to find an extraction methodology for new buildings and construction areas. Since some of the new objects (e.g., construction areas) can only be identified (to be buildings) after completion, one is dependent on images showing the final stage of a construction process. A simple indicator for construction activity within a region would be the number of construction completions between two observations. Even better would be an indicator based on information about the build-up areas. To comprise these future stages of development, one needs historical images for verification. Once the methodology works properly, it is believed that it can be applied on images without knowing the final stage beforehand.
All 20 scenes are classified according to the land cover nomenclature listed in
Table 2. The nomenclature assumes that these classes are relevant and that construction activities could be characterized by bare soil without vegetation (e.g., construction sites) or by sealed surfaces consisting of artificial materials (e.g., concrete, roof tiles, etc.).
The idea behind the classification strategy is that each scene is classified independently, so that changes will turnout in the following image(s). Afterwards, a change detection approach based upon a post-classification comparison was performed.
For the classification approach, between 600 and 900 representative samples per scene for all different land cover types to cover all their different spectral appearances are defined manually. Different object features (spectral values, indices, and color space transformation) are used to feed the classifier (
Table 3).
The high number and spectral resolution of the spectral bands of Sentinel-2 allows one to calculate a number of different indices (e.g., Normalized Difference Vegetation Index (NDVI), NDVIre (NDVI Red Edge), Normalized Difference Built-Up Index (NDBI), Built Up Index (BU), Urban Index (UI), etc.) and color transformations like Intensity-Hue-Saturation transformation (IHS-transformation), and also offers a good chance for simple spectral based classification. According to Jungnickl and Bill (2017) [
40] as well as Ettehadi Osgouei et al. (2019) [
41], one has to be careful with those “building indices“ regarding seasonality effects. Here, the criteria to be used for the classifier as mentioned above are determined as explorative.
2.1.2. WorldView VHR Image Analysis for the Detection of Construction Areas and New Buildings
To investigate the benefits of higher spatial resolution, six commercial cloud-free pan-sharpened WorldView satellite images were ordered. Depending on the satellite, the spatial resolution is between 30 cm and 50 cm (
Table 4). Due to this very high spatial resolution, the extraction of construction areas is especially in the focus here. To judge the suitability, one selected a test area (ca. 30 km²) at the southern edge of Berlin.
Again, for the VHR images, this study uses images of the past (2015–2020) to find an extraction methodology for construction areas. The number of construction sites or the sum of the built-up area are simple indicators for construction activity within a given time-period. The logic is the same as with the Sentinel-2 images. Once the developed methodology works, it can be applied on further images without knowing the final stage beforehand. To get reliable information about construction activity within this area it would be ideal to get images at a quarterly frequency. Due to the climatic conditions in central Europe, clouds often obscure the satellite images. This causes an uneven distribution of cloud-free images, time-wise.
As construction areas are spectrally different from other land cover types, a land cover classification could be an efficient way to identify construction activities as well as new buildings. Prepared by an image segmentation, a K-nearest neighbor classification is applied, based on approximately 38,000 samples per image collected on a 4 m grid beforehand. Those samples are representative for each land cover class (
Table 5). The object features listed in
Table 6 are used to train the classifier.
Per satellite scene, a mono-temporal classification is performed and the result is then used to refine it with GIS-based analysis.
The first attempt is to analyze the “classification pattern”. It is based on the observation that construction areas are composed of many small objects of different materials. This could lead to neighboring areas classified to different land cover classes. To identify the class composition pattern, eight test sites are used, each for known residential, industrial, and construction areas. Inside each area, the class compositions and their frequency are analyzed. It is hoped that characteristic patterns for those three land cover types could be identified.
Since for each of the six image acquisition dates one classification result will be available, it is possible to consider a post-classification comparison based on more than one classification result. This time series constellation is an option to retrace the construction activities. The retrospective tracking of land cover changes can then help to understand the construction activity and use observed multi-temporal results for forecasting.
Table 7 lists three possible approaches to identify new buildings and construction areas.
The first approach (A) does not identify a construction area between two image acquisitions, since in the first image there is no construction visible, but only the “normal” land cover. In the second image, the construction activity is already completed and new buildings can be observed. This could happen, if the time interval between the two cloud-free images is too large to identify construction activities in-between.
Approach B is applicable when three stages can be identified. Beginning with no construction activity (“unsealed normal land cover”), followed by, secondly, a construction activity, and in the third image the stage of completed buildings.
The third approach (C) is useful for construction areas that exist in two temporally adjacent images. In the third image the construction is completed.
2.2. Detection of Machinery
Besides investments in buildings, one is interested in investments in machinery. One significant type that can be observed from space is agricultural machinery which is typically parked on outdoor parking lots after completion. Since it is unclear if identification and counting of agricultural machinery is possible with VHR satellite images, an experiment with degraded aerial RGBI-ortho-images was designed. The ortho-images themselves are not available world-wide and have an uncertain temporal resolution, thus it is not considered for routine economic forecasts.
For the detection of vehicles or agricultural machinery, a parking lot of an important manufacturer in Harsewinkel, Germany, was chosen. For this area, a digital orthophoto with a spatial resolution of 10 cm was acquired. To use such images to judge the usability of agricultural machinery in VHR satellite images, the spatial resolution was degraded to 30 cm, 50 cm, and 1 m, which corresponds to most VHR satellites.
The detection of agricultural machinery or vehicles cannot be performed solely upon local spectral image properties to be reliable. Much more promising is the analysis of spatial patterns in an image’s grey value matrix. This can be performed by identifying objects via template matching. The principle is based on the comparison between a given sample or template of the desired object and the image content. A template is moved across the image to identify fitting objects within the image. The fit is calculated by a correlation coefficient and the result is stored in a separate image. Locations with correlation values above a given threshold are assumed to be successful matches of the sought object (
Figure 2).
Template Matching is performed using eCognition. Templates are generated by measuring and fusing multiple example objects (
Figure 3) to take different lighting conditions and vehicle configurations into account. These are then scaled and rotated during execution to detect vehicles in different orientations and sizes.
To be able to judge the result, a reference data set is prepared manually. In the original ortho-image (27 March 2017) of the factory in Harsewinkel, all land machines are counted and transformed into a reference data set with 744 vehicles (
Figure 4). This is later used to evaluate the results of the template matching based on different spatial resolutions. The template matching is applied to identify field choppers and combine harvesters with slightly varying configurations.
4. Discussion
This study attempts to measure two economic variables directly by using satellite images: new buildings or construction areas and agricultural machinery. It is one of the few studies trying to use HR and VHR satellite data for an application in short-term economic forecasting. One advantage of satellite images is that it is possible to measure construction activities directly by identifying affected areas or objects. In contrast, current forecasting models use more indirect indicators such as building permits or the number of workers in the construction sector. A second advantage is that using satellite data allows the provision of regionally strongly differentiated information about construction activities.
Regarding the detection of construction activities, one can assume that Sentinel-2 images can be used to detect new buildings. However, the results were dependent on season. Confusion with bare soil as well as vegetation cover could influence the distinct detection. Regardless of the high temporal frequency, the spectral ambiguity of some land covers in mono-temporal classification cannot be overcome due to seasonal effects. Application of multi-temporal classification approaches could help to overcome this and lead to much more reliable results. However, for this specific application, multi-temporal classification is not effective, due to the fact that quick changes are to be mapped. The multi-temporal approach could cause delays as it would need at least one second cloud-free image with the respective later acquisition date.
VHR satellite images benefit from the very high spatial resolution and can be used to detect construction sites as well as new buildings. Post-classification change detection approaches support the identification and help to categorize these objects. However, even these images suffer from seasonal fluctuations and ambiguity of other land cover categories. Another drawback is the costs associated with commercial satellite images. In conjunction with the small area captured per image this could hinder a broad application, e.g., nationwide. Here, a strategy concentrating on a number of well selected proxy locations could help to overcome this bottleneck.
The initial mono-temporal classifications of both Sentinel-2 and WorldView scenes are intentionally kept simple to better reveal the influence of the geometric resolution. However, in particular the classification of VHR-data could benefit from additional features such as shape, size, or texture.
Concerning the detection of agricultural machinery, it could be demonstrated that VHR satellites like WorldView with a spatial resolution of 30 to 50 cm are well suited for an object extraction approach via template matching. For this economic indicator nationwide imagery is not needed, and instead one could concentrate on the known locations of the manufacturers.
This study concentrates on the feasibility and on the development of practical and quick approaches. In a next step, the usability as well as the reliability in economic models must be evaluated. It is therefore necessary to create a time series with an annual or preferably quarterly (or even monthly) frequency. In order to evaluate its information content for forecasting activity in the construction sector and selected industries, a period of several years is required.
One should also do research on the robustness of the economic models against shortcomings of the image analysis results such as missing observations caused by clouds.
The increasing availability of new earth observation satellites with higher spatial resolution and higher temporal revisit rates will most likely be beneficial in supporting the data needs for quick and reliable forecasts.
Further research could also investigate weather independent RADAR images based on synthetic aperture Radar (SAR) to overcome the cloud cover problem of optical satellites.