Influence of Land Use Change on the Surface Albedo and Climate Change in the Qinling-Daba Mountains
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. Data and Processing
3.1.1. Land Use Data
3.1.2. Surface Albedo Data
3.1.3. Solar Radiative Data
3.2. Methods
4. Results
4.1. Changes in the Land Use in the Qinling-Daba Mountains from 2000 to 2015
4.2. Effects of Land Use Changes on Surface Albedo in the Qinling-Daba Mountains from 2000 to 2015
4.3. Effect of Land Use Changes on Radiative Forcing in the Qinling-Daba Mountains from 2000 to 2015
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pielke, R.A., Sr.; Pitman, A.; Niyogi, D.; Mahmood, R.; McAlpine, C.; Hossain, F.; Goldewijk, K.K.; Nair, U.; Betts, R.; Fall, S.; et al. Land use/land cover changes and climate: Modeling analysis and observational evidence. Wiley Interdiscip. Rev. Clim. Chang. 2011, 2, 828–850. [Google Scholar] [CrossRef]
- Dissanayake, D. Land use change and Its impacts on land surface temperature in Galle city, Sri Lanka. Climate 2020, 8, 65. [Google Scholar] [CrossRef]
- Bonan, G.B. Forests and Climate Change: Forcings, Feedbacks, and the Climate Benefits of Forests. Science 2008, 320, 1444–1449. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luyssaert, S.; Schulze, E.D.; Börner, A.; Knohl, A.; Hessenmöller, D.; Law, B.E.; Ciais, P.; Grace, J. Old-growth forests as global carbon sinks. Nature 2008, 455, 213–215. [Google Scholar] [CrossRef]
- Andreae, M.O.; Artaxo, P.; Brandao, C.; Carswell, F.E.; Ciccioli, P.; Da Costa, A.L.; Culf, A.D.; Esteves, J.L.; Gash, J.H.; Grace, J.; et al. Biogeochemical cycling of carbon, water, energy, trace gases, and aerosols in Amazonia: The LBA-EUSTACH experiments. J. Geophys. Res. Atmos. 2002, 107, 1–25. [Google Scholar] [CrossRef] [Green Version]
- Pregitzer, K.S.; Euskirchen, E.S. Carbon cycling and storage in world forests: Biome patterns related to forest age. Glob. Chang. Biol. 2010, 10, 2052–2077. [Google Scholar] [CrossRef]
- Quesada, B.; Arneth, A.; Robertson, E.; de Noblet-Ducoudré, N. Potential strong contribution of future anthropogenic land-use and land-cover change to the terrestrial carbon cycle. Environ. Res. Lett. 2018, 13, 064023. [Google Scholar] [CrossRef]
- Schwaiger, H.P.; Bird, D.N. Integration of albedo effects caused by land use change into the climate balance: Should we still account in greenhouse gas units? For. Ecol. Manag. 2010, 260, 278–286. [Google Scholar] [CrossRef]
- Betts, R.A. Offset of the potential carbon sink from boreal forestation by decreases in surface albedo. Nature 2000, 408, 187–190. [Google Scholar] [CrossRef] [PubMed]
- Bathiany, S.; Claussen, M.; Brovkin, V.; Raddatz, T.; Gayler, V. Combined biogeophysical and biogeochemical effects of large-scale forest cover changes in the MPI Earth system model. Biogeosciences 2010, 7, 1383–1399. [Google Scholar] [CrossRef] [Green Version]
- Devaraju, N.; de Noblet-Ducoudré, N.; Quesada, B.; Bala, G. Quantifying the Relative Importance of Direct and Indirect Biophysical Effects of Deforestation on Surface Temperature and Teleconnections. J. Clim. 2018, 31, 3811–3829. [Google Scholar] [CrossRef]
- Brovkin, V.; Ganopolski, A.; Claussen, M.; Kubatzki, C.; Petoukhov, V. Modelling climate response to historical land cover change. Springer US 1999, 8, 509–517. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Deng, X.; Shi, Q.; Ke, X.; Liu, Y. Modeling the Impacts of Boreal Deforestation on the Near-Surface Temperature in European Russia. Adv. Meteorol. 2013, 2013, 486962. [Google Scholar] [CrossRef]
- Ridgwell, A.; Singrayer, J.; Hetherington, A.L.; Valdes, P. Tackling future climate change by leaf albedo bio-geoengineering. Curr. Biol. 2009, 19, 146–150. [Google Scholar] [CrossRef] [Green Version]
- Culf, A.D.; Fisch, G.; Hodnett, M.G. The Albedo of Amazonian Forest and Ranch Land. J. Clim. 1995, 8, 1544–1554. [Google Scholar] [CrossRef] [Green Version]
- Brovkin, V.; Claussen, M.; Driesschaert, E.; Fichefet, T.; Kicklighter, D.; Loutre, M.F.; Matthews, H.D.; Ramankutty, N.; Schaeffer, M.; Sokolov, A. Biogeophysical effects of historical land cover changes simulated by six Earth system models of intermediate complexity. Clim. Dyn. 2006, 26, 587–600. [Google Scholar] [CrossRef]
- Davin, E.L.; Noblet-Ducoudré, N. Climatic Impact of Global-Scale Deforestation: Radiative versus Nonradiative Processes. J. Clim. 2010, 23, 97–112. [Google Scholar] [CrossRef]
- Matthews, H.D.; Weaver, A.J.; Meissner, K.J.; Gillett, N.P.; Eby, M. Natural and anthropogenic climate change: Incorporating historical land cover change, vegetation dynamics and the global carbon cycle. Clim. Dyn. 2004, 22, 461–479. [Google Scholar] [CrossRef]
- Nobre, C.A.; Sellers, P.J.; Shukla, J. Amazonian Deforestation and Regional Climate Change. J. Clim. 1991, 4, 957–988. [Google Scholar] [CrossRef] [Green Version]
- Defries, R.S.; Bounoua, L.; Collatz, G.J. Human modification of the landscape and surface climate in the next fifty years. Glob. Chang. Biol. 2002, 8, 438–458. [Google Scholar] [CrossRef]
- Bounoua, L.; DeFries, R.; Collatz, G.J.; Sellers, P.; Khan, H. Effects of Land Cover Conversion on Surface Climate. Clim. Chang. 2002, 52, 29–64. [Google Scholar] [CrossRef]
- Govindasamy, B.; Duffy, P.B.; Caldeira, K. Land use changes and northern hemisphere cooling. Geophys. Res. Lett. 2001, 28, 291–294. [Google Scholar] [CrossRef]
- Liu, J.; Worth, D.E.; Desjardins, R.L.; Haak, D.; McConkey, B.; Cerkowniak, D. Influence of two management practices in the Canadian Prairies on radiative forcing. Sci. Total Environ. 2021, 765, 142701. [Google Scholar] [CrossRef]
- Shenhui, Z.; Wenli, L.; Ke, W.; Yuxuan, Z.; Shiqi, Y.; Bin, Z.; Yaoping, C.; Lijun, W. Research on Surface Radiative Regulation of Urban Expansion in Huanghuai Plain in China from 2000 to 2015. J. Henan Univ. (Nat. Sci.) 2021, 51, 1–11. (In Chinese) [Google Scholar]
- Shi, S.; Zhu, B.; Lu, W.; Yan, S.; Fang, C.; Liu, X.; Liu, D.; Liu, C. Estimation of radiative forcing and heating rate based on vertical observation of black carbon in Nanjing, China. Sci. Total Environ. 2021, 756, 144135. [Google Scholar] [CrossRef]
- Srivastava, A.K.; Mehrotra, B.J.; Singh, A.; Singh, V.; Bisht, D.S.; Tiwari, S.; Srivastava, M.K. Implications of different aerosol species to direct radiative forcing and atmospheric heating rate. Atmos. Environ. 2020, 241, 117820. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, H.; Che, H.Z.; Tan, S.C.; Yao, X.P.; Peng, Y.; Shi, G.Y. Radiative forcing of the aerosol-cloud interaction in seriously polluted East China and East China Sea. Atmos. Res. 2020, 252, 105405. [Google Scholar] [CrossRef]
- Chang, D.Y.; Yoon, J.; Lelieveld, J.; Park, S.K.; Yum, S.S.; Kim, J.; Jeong, S. Direct radiative forcing of biomass burning aerosols from the extensive Australian wildfires in 2019–2020. Environ. Res. Lett. 2021, 16, 044041. [Google Scholar] [CrossRef]
- Khan, R.; Kumar, K.R.; Zhao, T.; Ali, G. The contribution of different aerosol types to direct radiative forcing over distinct environments of Pakistan inferred from the AERONET data. Environ. Res. Lett. 2020, 15, 114062. [Google Scholar] [CrossRef]
- Peace, A.H.; Carslaw, K.S.; Lee, L.A.; Regayre, L.A.; Booth, B.B.B.; Johnson, J.S.; Bernie, D. Effect of aerosol radiative forcing uncertainty on projected exceedance year of a 1.5 degrees C global temperature rise. Environ. Res. Lett. 2020, 15, 0940a6. [Google Scholar] [CrossRef]
- Weihs, P.; Laimighofer, J.; Formayer, H.; Olefs, M. Influence of snow making on albedo and local radiative forcing in an alpine area. Atmos. Res. 2021, 255, 105448. [Google Scholar] [CrossRef]
- Liu, M.; Matsui, H. Aerosol radiative forcings induced by substantial changes in anthropogenic emissions in China from 2008 to 2016. Atmos. Chem. Phys. 2021, 21, 5965–5982. [Google Scholar] [CrossRef]
- Li, N.; Cui, Y.; Fu, Y.; Liu, X.; Run, Y.; Li, M.; Chen, L.; Xia, H.; Lu, H. Contribution of anthropogenic CO(2)in China to global radiative forcing and its offset by the ecosystem during 2000–2015. Ann. N. Y. Acad. Sci. 2021, 1488, 56–66. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.; Liu, J.; Zhu, W.; Zhang, B.; Zhu, L. Spatial variation of altitudinal belts as dividing index between warm temperate and subtropical zones in the Qinling-Daba Mountains. J. Geogr. Sci. 2020, 30, 642–656. [Google Scholar] [CrossRef]
- Guo, S.; Bai, H.; Meng, Q.; Zhao, T.; Huang, X.; Qi, G. Landscape pattern changes of woodland and grassland and its driving forces in Qinling Mountains. Acta Ecol. Sin. 2020, 40, 130–140. [Google Scholar]
- Yuanyuan, R. Vegetation Index Change and Its Driving Force Analysis in Daba Mountains. Master’s Thesis, Northwest University, Xian, China, 2012. [Google Scholar]
- Liang, S. Narrowband to broadband conversions of land surface albedo I: Algorithms. Remote Sens. Environ. 2001, 76, 213–238. [Google Scholar] [CrossRef]
- Tang, X.; Cui, Y.; Li, N.; Fu, Y.; Liu, X.; Run, Y.; Li, M.; Zhao, G.; Dong, J. Human activities enhance radiation forcing through surface albedo associated with vegetation in Beijing. Remote Sens. 2020, 12, 837. [Google Scholar] [CrossRef] [Green Version]
- Muñoz, I.; Campra, P.; Fernández-Alba, A. Including CO2-emission equivalence of changes in land surface albedo in life cycle assessment. Methodology and case study on greenhouse agriculture. Int. J. Life Cycle Assess. 2010, 15, 672–681. [Google Scholar] [CrossRef]
- Bright, R.M.; Cherubini, F.; Strømman, A.H. Climate impacts of bioenergy: Inclusion of carbon cycle and albedo dynamics in life cycle impact assessment. Environ. Impact Assess. Rev. 2012, 37, 2–11. [Google Scholar] [CrossRef]
- Zhang, J.; Ren, Z. Spatiotemporal pattern and terrain gradient effect of land use change in Qinling-Bashan mountains. Trans. Chin. Soc. Agric. Eng. 2016, 32, 250–257. [Google Scholar]
- Gen, G. In the process of city land use problems and solution approach--Taking Beijing city as an example. Master’s Thesis, Huazhong Normal University, Wuhan, China, 2015. [Google Scholar]
- Zhiyou, Y.; Jun, W.; Junpeng, S. Study on the Relationship between rainstorm and topography in Qinling Mountains. Shaanxi Meteorol. 2004, 1. (In Chinese) [Google Scholar]
- Qing-Ling, L.; Yan-Fang, L. Effect of Urbanization on the Water Landscape Pattern. Hubei Agric. Sci. 2016, 55, 1949–1956. [Google Scholar]
- Betts, R.A. Biogeophysical impacts of land use on present-day climate: Near-surface temperature change and radiative forcing. Atmos. Sci. Lett. 2001, 2, 39–51. [Google Scholar] [CrossRef]
- Bonan, G.B. Effects of land use on the climate of the United States. Clim. Chang. 1997, 37, 449–486. [Google Scholar] [CrossRef]
- Zheng, Y.H.; Huang, L.; Zhai, J. Impacts of land cover changes on surface albedo in China, the United States, India and Brazil. J. Remote Sens. 2020, 24, 917–932. [Google Scholar]
- Doughty, C.E.; Field, C.B.; McMillan, A.M. Can crop albedo be increased through the modification of leaf trichomes, and could this cool regional climate? Clim. Chang. 2011, 104, 379–387. [Google Scholar] [CrossRef]
- Henderson-Sellers, A.; Dickinson, R.E.; Durbidge, T.B.; Kennedy, P.J.; McGuffie, K.; Pitman, A.J. Tropical deforestation: Modeling local- to regional-scale climate change. J. Geophys. Res. 1993, 98, 7289–7315. [Google Scholar] [CrossRef]
Land Use Type | 2000 | 2005 | 2010 | 2015 |
Cultivated land | 120,820.92 | 119,270.15 | 118,782.79 | 117,590.21 |
Woodland | 166,513.10 | 166,300.86 | 166,356.31 | 166,112.52 |
Grassland | 124,723.29 | 125,524.47 | 125,493.51 | 125,435.23 |
Water area | 4347.12 | 4655.25 | 4772.90 | 4953.59 |
Construction land | 6295.76 | 6881.25 | 7152.86 | 8419.70 |
Unused land | 3483.51 | 3555.25 | 3622.24 | 3669.23 |
2000 Land Use Type | 2010 | |||||
---|---|---|---|---|---|---|
Cultivated Land | Woodland | Grassland | Water Area | Construction Land | Unused Land | |
Cultivated land | 118,204.44 | 512.80 | 939.74 | 339.01 | 804.50 | 5.36 |
Woodland | 197.80 | 165,367.82 | 697.63 | 102.45 | 77.06 | 68.92 |
Grassland | 246.08 | 455.34 | 123,774.35 | 50.22 | 40.02 | 154.26 |
Water area | 58.65 | 12.92 | 3.89 | 4244.57 | 21.28 | 1.00 |
Construction land | 65.79 | 3.62 | 3.11 | 13.82 | 6209.30 | 0.13 |
Unused land | 0.06 | 0.93 | 72.01 | 17.95 | 3392.56 |
2010 Land Use Type | 2015 | |||||
---|---|---|---|---|---|---|
Cultivated Land | Woodland | Grassland | Water Area | Construction Land | Unused Land | |
Cultivated land | 117,271.58 | 136.04 | 163.28 | 138.84 | 1039.31 | 21.98 |
Woodland | 118.91 | 165,943.91 | 36.29 | 54.00 | 199.51 | 3.69 |
Grassland | 106.04 | 27.96 | 125,224.66 | 25.44 | 82.32 | 26.89 |
Water area | 15.84 | 1.33 | 4.76 | 4728.61 | 21.92 | |
Construction land | 70.46 | 3.28 | 1.64 | 2.92 | 7073.44 | 1.12 |
Unused land | 0.03 | 4.12 | 1.00 | 2.00 | 3614.89 |
Albedo Variation in Years | Albedo Variation during 2000–2010 (2000) (W·m−2) | Albedo Variation during 2000–2010 (2010) (W·m−2) | Albedo Variation during 2010–2015 (2010) (W·m−2) | Albedo Variation during 2010–2015 (2015) (W·m−2) | |
---|---|---|---|---|---|
Land Use Change | |||||
Cultivated land to woodland | 0.167 | 0.154 | 0.153 | 0.166 | |
Cultivated land to grassland | 0.165 | 0.148 | 0.164 | 0.163 | |
Cultivated land to water area | 0.153 | 0.146 | 0.153 | 0.143 | |
Cultivated land to unused land | 0.192 | 0.193 | 0.163 | 0.166 | |
Cultivated land to construction land | 0.168 | 0.166 | 0.164 | 0.167 | |
Woodland to construction land | 0.165 | 0.158 | 0.155 | 0.162 | |
Grassland to construction land | 0.172 | 0.158 | 0.156 | 0.162 | |
Water area to construction land | 0.164 | 0.157 | 0.161 | 0.154 |
Land Use Type | 2005 (W·m−2) | 2010 (W·m−2) | 2015 (W·m−2) |
---|---|---|---|
Cultivated land | 0.49 | 0.33 | −0.24 |
Woodland | 0.33 | 0.82 | −0.23 |
Grassland | 0.02 | 2.04 | −0.20 |
Water area | 0.85 | 0.08 | 0.03 |
Construction land | 0.85 | −0.53 | 0.05 |
Unused land | −0.84 | 4.60 | −1.50 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, F.; Lan, X.; Li, W.; Zhu, W.; Li, T. Influence of Land Use Change on the Surface Albedo and Climate Change in the Qinling-Daba Mountains. Sustainability 2021, 13, 10153. https://doi.org/10.3390/su131810153
Zhao F, Lan X, Li W, Zhu W, Li T. Influence of Land Use Change on the Surface Albedo and Climate Change in the Qinling-Daba Mountains. Sustainability. 2021; 13(18):10153. https://doi.org/10.3390/su131810153
Chicago/Turabian StyleZhao, Fang, Xincan Lan, Wuyang Li, Wenbo Zhu, and Tianqi Li. 2021. "Influence of Land Use Change on the Surface Albedo and Climate Change in the Qinling-Daba Mountains" Sustainability 13, no. 18: 10153. https://doi.org/10.3390/su131810153
APA StyleZhao, F., Lan, X., Li, W., Zhu, W., & Li, T. (2021). Influence of Land Use Change on the Surface Albedo and Climate Change in the Qinling-Daba Mountains. Sustainability, 13(18), 10153. https://doi.org/10.3390/su131810153