Unit Commitment for Power Generation Systems Based on Prices in Smart Grid Environment Considering Uncertainty
Abstract
:1. Introduction
2. Problem Formulation
2.1. Objective Function, Maximizing Profits
2.2. Constraints of Thermal Units
2.3. Power Balance
2.4. Lower and Upper Band for Power in Units
2.5. Slope Limits for Each Unit
2.6. Minimum off and on Time for Each Unit
3. Modified Gray Wolf Algorithm
4. Case Study
4.1. Uncertainty
4.2. Price Modeling
4.3. Planning without Considering the Uncertainty in the Market Price
4.4. Planning by Considering the Parameter of Uncertainty in the Market Price
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Poncelet, K.; Delarue, E.; D’haeseleer, W. Unit commitment constraints in long-term planning models: Relevance, pitfalls and the role of assumptions on flexibility. Appl. Energy 2020, 258, 113843. [Google Scholar] [CrossRef]
- Shokouhandeh, H.; Jazaeri, M.; Sedighizadeh, M. On-time stabilization of single-machine power system connected to infinite bus by using optimized fuzzy-PID controller. In Proceedings of the 2014 22nd Iranian Conference on Electrical Engineering (ICEE), Tehran, Iran, 20–22 May 2014; pp. 768–773. [Google Scholar]
- Shokouhandeh, H.; Jazaeri, M. Robust design of fuzzy-based power system stabiliser considering uncertainties of loading conditions and transmission line parameters. IET Gener. Transm. Distrib. 2019, 13, 4287–4300. [Google Scholar] [CrossRef]
- Cheng, Q.; Ming, B.; Liu, P.; Huang, K.; Gong, Y.; Li, X.; Zheng, Y. Solving hydro unit commitment problems with multiple hydraulic heads based on a two-layer nested optimization method. Renew. Energy 2021, 172, 317–326. [Google Scholar] [CrossRef]
- Zhang, Z.; Du, E.; Teng, F.; Zhang, N.; Kang, C. Modeling frequency dynamics in unit commitment with a high share of renewable energy. IEEE Trans. Power Syst. 2020, 35, 4383–4395. [Google Scholar] [CrossRef]
- Esmaeily, A.; Ahmadi, A.; Raeisi, F.; Ahmadi, M.R.; Nezhad, A.E.; Janghorbani, M. Evaluating the effectiveness of mixed-integer linear programming for day-ahead hydro-thermal self-scheduling considering price uncertainty and forced outage rate. Energy 2017, 122, 182–193. [Google Scholar] [CrossRef]
- Wang, J.; Guo, M.; Liu, Y. Hydropower unit commitment with nonlinearity decoupled from mixed integer nonlinear problem. Energy 2018, 150, 839–846. [Google Scholar] [CrossRef]
- Zou, J.; Ahmed, S.; Sun, X.A. Multistage stochastic unit commitment using stochastic dual dynamic integer programming. IEEE Trans. Power Syst. 2018, 34, 1814–1823. [Google Scholar] [CrossRef]
- Fu, B.; Ouyang, C.; Li, C.; Wang, J.; Gul, E. An improved mixed integer linear programming approach based on symmetry diminishing for unit commitment of hybrid power system. Energies 2019, 12, 833. [Google Scholar] [CrossRef] [Green Version]
- Feng, Z.K.; Niu, W.J.; Wang, W.C.; Zhou, J.Z.; Cheng, C.T. A mixed integer linear programming model for unit commitment of thermal plants with peak shaving operation aspect in regional power grid lack of flexible hydropower energy. Energy 2019, 175, 618–629. [Google Scholar] [CrossRef]
- Reddy, K.S.; Panwar, L.; Panigrahi, B.K.; Kumar, R. Binary whale optimization algorithm: A new metaheuristic approach for profit-based unit commitment problems in competitive electricity markets. Eng. Optim. 2019, 51, 369–389. [Google Scholar] [CrossRef]
- Navin, N.K.; Sharma, R. A fuzzy reinforcement learning approach to thermal unit commitment problem. Neural Comput. Appl. 2019, 31, 737–750. [Google Scholar] [CrossRef]
- Panossian, N.V.; McLarty, D.; Taylor, M.E. Artificial Neural Network for Unit Commitment on Networks with Significant Energy Storage. In Proceedings of the 2019 IEEE Green Technologies Conference (GreenTech), Lafayette, LA, USA, 3–6 April 2019; pp. 1–5. [Google Scholar]
- Koltsaklis, N.E.; Dagoumas, A.S. Incorporating unit commitment aspects to the European electricity markets algorithm: An optimization model for the joint clearing of energy and reserve markets. Appl. Energy 2018, 231, 235–258. [Google Scholar] [CrossRef]
- Bakirtzis, E.A.; Simoglou, C.K.; Biskas, P.N.; Bakirtzis, A.G. Storage management by rolling stochastic unit commitment for high renewable energy penetration. Electr. Power Syst. Res. 2018, 158, 240–249. [Google Scholar] [CrossRef]
- Zhu, X.; Zhao, S.; Yang, Z.; Zhang, N.; Xu, X. A parallel meta-heuristic method for solving large scale unit commitment considering the integration of new energy sectors. Energy 2021, 121829. [Google Scholar] [CrossRef]
- Shokouhandeh, H.; Jazaeri, M. An enhanced and auto-tuned power system stabilizer based on optimized interval type-2 fuzzy PID scheme. Int. Trans. Electr. Energy Syst. 2018, 28, e2469. [Google Scholar] [CrossRef]
- Nikolaidis, P.; Chatzis, S. Gaussian process-based Bayesian optimization for data-driven unit commitment. Int. J. Electr. Power Energy Syst. 2021, 130, 106930. [Google Scholar] [CrossRef]
- Rezaei, H.; Bozorg-Haddad, O.; Chu, X. Grey wolf optimization (GWO) algorithm. In Advanced Optimization by Nature-Inspired Algorithms; Springer: Singapore, 2018; Volume 1, pp. 81–91. [Google Scholar]
- Xu, Y.; Dong, Z.Y.; Zhang, R.; Xue, Y.; Hill, D.J. A decomposition-based practical approach to transient stability-constrained unit commitment. IEEE Trans. Power Syst. 2014, 30, 1455–1464. [Google Scholar] [CrossRef]
- Ghorbani, S.; Unland, R.; Shokouhandeh, H.; Kowalczyk, R. An innovative stochastic multi-agent-based energy management approach for microgrids considering uncertainties. Inventions 2019, 4, 37. [Google Scholar] [CrossRef] [Green Version]
Start 1: Selection of algorithm parameters such as the number of wolves, maximum iteration, etc. 2: t = 1. 3: While t < 24. 4: The wolf place initialization (each wolf place contains the unit’s production capacity). 5: Run the power flow. 6: Calculate the objective function for each wolf. 7: Choosing alpha, beta and omega wolves according to their objective function value. 8: Update the wolves’ position. 9: Perform mutations for the omega wolves. 10: Check the constraints (penalty should be considered if any constraint was not met). 11: Check if the number of iterations is more than the maximum iteration (if not, go to step 4, or else go to the next step). 12: t = t + 1. End |
Hour (h) | Cargo (MW) | Price ($) |
---|---|---|
1 | 700 | 22.15 |
2 | 750 | 22 |
3 | 850 | 23.1 |
4 | 950 | 22.65 |
5 | 1000 | 23.25 |
6 | 1100 | 22.95 |
7 | 1150 | 22.5 |
8 | 1200 | 22.15 |
9 | 1300 | 22.8 |
10 | 1400 | 29.35 |
11 | 1450 | 30.15 |
12 | 1500 | 31.65 |
13 | 1400 | 24.6 |
14 | 1300 | 24.5 |
15 | 1200 | 22.5 |
16 | 1050 | 23.3 |
17 | 1000 | 22.25 |
18 | 1100 | 22.05 |
19 | 1200 | 22.2 |
20 | 1400 | 22.65 |
21 | 1300 | 23.1 |
22 | 1100 | 22.95 |
23 | 900 | 22.75 |
24 | 800 | 22.55 |
PSO | Population | Maximum Iteration | C1 = C2 | ω | Vmin | Vmax |
100 | 50 | 2.05 | 0.66 | 0.7 | 0.9 | |
GWO | Population | Maximum Iteration | α | r | ||
100 | 50 | 2 | 0.47 | |||
MGWO | Population | Maximum Iteration | α | r | Mf | |
100 | 50 | 2 | 0.47 | 0.07 |
Scenario | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|
Hours | |||||
1 | 17.296 | 19.723 | 22.15 | 24.577 | 27.004 |
2 | 17.146 | 19.573 | 22 | 24.427 | 26.854 |
3 | 18.246 | 20.673 | 23.1 | 25.527 | 27.954 |
4 | 17.796 | 20.223 | 22.65 | 25.077 | 27.504 |
5 | 18.396 | 20.823 | 23.25 | 25.677 | 28.104 |
6 | 18.096 | 20.523 | 22.95 | 25.377 | 27.804 |
7 | 17.646 | 20.073 | 22.5 | 24.927 | 27.354 |
8 | 17.296 | 19.723 | 22.15 | 24.577 | 27.004 |
9 | 17.946 | 20.373 | 22.8 | 25.227 | 27.654 |
10 | 24.496 | 26.923 | 29.35 | 31.777 | 34.204 |
11 | 25.296 | 27.723 | 30.15 | 32.577 | 35.004 |
12 | 26.796 | 29.223 | 31.65 | 34.077 | 36.504 |
13 | 19.746 | 22.173 | 24.6 | 27.027 | 29.454 |
14 | 19.646 | 22.073 | 24.5 | 26.927 | 29.354 |
15 | 17.646 | 20.073 | 22.5 | 24.927 | 27.354 |
16 | 18.446 | 20.873 | 23.3 | 25.727 | 28.154 |
17 | 17.396 | 19.823 | 22.25 | 24.677 | 27.104 |
18 | 17.196 | 19.623 | 22.05 | 24.477 | 26.904 |
19 | 17.346 | 19.773 | 22.2 | 24.627 | 27.054 |
20 | 17.796 | 20.223 | 22.65 | 25.077 | 27.504 |
21 | 18.246 | 20.673 | 23.1 | 25.527 | 27.954 |
22 | 18.096 | 20.523 | 22.95 | 25.377 | 27.804 |
23 | 17.896 | 20.323 | 22.75 | 25.177 | 27.604 |
24 | 17.696 | 20.123 | 22.55 | 24.977 | 27.404 |
Scenario | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|
Hours | |||||
1 | 0.033 | 0.23 | 0.45 | 0.23 | 0.033 |
2 | 0.033 | 0.23 | 0.45 | 0.23 | 0.033 |
3 | 0.033 | 0.23 | 0.45 | 0.23 | 0.033 |
4 | 0.033 | 0.23 | 0.45 | 0.23 | 0.033 |
5 | 0.033 | 0.23 | 0.45 | 0.23 | 0.033 |
6 | 0.033 | 0.23 | 0.45 | 0.23 | 0.033 |
7 | 0.033 | 0.23 | 0.45 | 0.23 | 0.033 |
8 | 0.033 | 0.23 | 0.45 | 0.23 | 0.033 |
9 | 0.033 | 0.23 | 0.45 | 0.23 | 0.033 |
10 | 0.033 | 0.23 | 0.45 | 0.23 | 0.033 |
11 | 0.033 | 0.23 | 0.45 | 0.23 | 0.033 |
12 | 0.033 | 0.23 | 0.45 | 0.23 | 0.033 |
13 | 0.033 | 0.23 | 0.45 | 0.23 | 0.033 |
14 | 0.033 | 0.23 | 0.45 | 0.23 | 0.033 |
15 | 0.033 | 0.23 | 0.45 | 0.23 | 0.033 |
16 | 0.033 | 0.23 | 0.45 | 0.23 | 0.033 |
17 | 0.033 | 0.23 | 0.45 | 0.23 | 0.033 |
18 | 0.033 | 0.23 | 0.45 | 0.23 | 0.033 |
19 | 0.033 | 0.23 | 0.45 | 0.23 | 0.033 |
20 | 0.033 | 0.23 | 0.45 | 0.23 | 0.033 |
21 | 0.033 | 0.23 | 0.45 | 0.23 | 0.033 |
22 | 0.033 | 0.23 | 0.45 | 0.23 | 0.033 |
23 | 0.033 | 0.23 | 0.45 | 0.23 | 0.033 |
24 | 0.033 | 0.23 | 0.45 | 0.23 | 0.033 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
---|---|---|---|---|---|---|---|---|---|---|
h1 | 455 | 245 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
h2 | 455 | 295 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
h3 | 455 | 395 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
h4 | 455 | 455 | 0 | 0 | 0 | 0 | 0 | 40 | 0 | 0 |
h5 | 455 | 445 | 100 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
h6 | 455 | 455 | 130 | 0 | 60 | 0 | 0 | 0 | 0 | 0 |
h7 | 455 | 455 | 130 | 0 | 110 | 0 | 0 | 0 | 0 | 0 |
h8 | 455 | 455 | 130 | 0 | 160 | 0 | 0 | 0 | 0 | 0 |
h9 | 455 | 455 | 130 | 100 | 160 | 0 | 0 | 0 | 0 | 0 |
h10 | 455 | 455 | 130 | 130 | 162 | 68 | 0 | 0 | 0 | 0 |
h11 | 455 | 455 | 130 | 130 | 162 | 80 | 0 | 38 | 0 | 0 |
h12 | 455 | 455 | 130 | 130 | 162 | 80 | 0 | 50 | 38 | 0 |
h13 | 455 | 455 | 130 | 130 | 162 | 58 | 0 | 10 | 0 | 0 |
h14 | 455 | 455 | 100 | 130 | 160 | 0 | 0 | 0 | 0 | 0 |
h15 | 455 | 455 | 0 | 130 | 160 | 0 | 0 | 0 | 0 | 0 |
h16 | 455 | 425 | 0 | 130 | 40 | 0 | 0 | 0 | 0 | 0 |
h17 | 455 | 390 | 0 | 130 | 25 | 0 | 0 | 0 | 0 | 0 |
h18 | 455 | 455 | 0 | 130 | 60 | 0 | 0 | 0 | 0 | 0 |
h19 | 455 | 455 | 0 | 130 | 150 | 0 | 0 | 10 | 0 | 0 |
h20 | 455 | 455 | 0 | 130 | 162 | 70 | 0 | 50 | 40 | 38 |
h21 | 455 | 455 | 0 | 100 | 162 | 80 | 0 | 48 | 0 | 0 |
h22 | 455 | 455 | 0 | 0 | 120 | 60 | 10 | 0 | 0 | |
h23 | 455 | 445 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
h24 | 455 | 345 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
---|---|---|---|---|---|---|---|---|---|---|
h1 | 0 | 210 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
h2 | 0 | 160 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
h3 | 0 | 60 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
h4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 15 | 0 | 0 |
h5 | 0 | 10 | 30 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
h6 | 0 | 0 | 0 | 0 | 102 | 0 | 0 | 0 | 0 | 0 |
h7 | 0 | 0 | 0 | 0 | 52 | 0 | 0 | 0 | 0 | 0 |
h8 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 |
h9 | 0 | 0 | 0 | 30 | 2 | 0 | 0 | 0 | 0 | 0 |
h10 | 0 | 0 | 0 | 0 | 0 | 12 | 0 | 0 | 0 | 0 |
h11 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 17 | 0 | 0 |
h12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 5 | 17 | 0 |
h13 | 0 | 0 | 0 | 0 | 0 | 22 | 0 | 45 | 0 | 0 |
h14 | 0 | 0 | 30 | 0 | 2 | 0 | 0 | 0 | 0 | 0 |
h15 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 |
h16 | 0 | 30 | 0 | 0 | 122 | 0 | 0 | 0 | 0 | 0 |
h17 | 0 | 65 | 0 | 0 | 137 | 0 | 0 | 0 | 0 | 0 |
h18 | 0 | 0 | 0 | 0 | 102 | 0 | 0 | 0 | 0 | 0 |
h19 | 0 | 0 | 0 | 0 | 12 | 0 | 0 | 45 | 0 | 0 |
h20 | 0 | 0 | 0 | 0 | 0 | 10 | 5 | 15 | 17 | |
h21 | 0 | 0 | 0 | 30 | 0 | 0 | 0 | 7 | 0 | 0 |
h22 | 0 | 0 | 0 | 0 | 42 | 20 | 0 | 45 | 0 | 0 |
h23 | 0 | 10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
h24 | 0 | 110 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
---|---|---|---|---|---|---|---|---|---|---|
h1 | 0 | 210 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
h2 | 0 | 160 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
h3 | 0 | 60 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
h4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 15 |
h5 | 0 | 10 | 30 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
h6 | 0 | 0 | 0 | 0 | 102 | 0 | 0 | 0 | 0 | 0 |
h7 | 0 | 0 | 0 | 0 | 52 | 0 | 0 | 0 | 0 | 0 |
h8 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 |
h9 | 0 | 0 | 0 | 30 | 2 | 0 | 0 | 0 | 0 | 0 |
h10 | 0 | 0 | 0 | 0 | 0 | 12 | 0 | 0 | 0 | 0 |
h11 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 17 | 0 | 0 |
h12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 5 | 17 | 0 |
h13 | 0 | 0 | 0 | 0 | 0 | 22 | 0 | 45 | 0 | 0 |
h14 | 0 | 0 | 30 | 0 | 2 | 0 | 0 | 0 | 0 | 0 |
h15 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 |
h16 | 0 | 30 | 0 | 0 | 122 | 0 | 0 | 0 | 0 | 0 |
h17 | 0 | 65 | 0 | 0 | 137 | 0 | 0 | 0 | 0 | 0 |
h18 | 0 | 0 | 0 | 0 | 102 | 0 | 0 | 0 | 0 | 0 |
h19 | 0 | 0 | 0 | 0 | 12 | 0 | 0 | 45 | 0 | 0 |
h20 | 0 | 0 | 0 | 0 | 0 | 10 | 0 | 5 | 15 | 17 |
h21 | 0 | 0 | 0 | 30 | 0 | 0 | 0 | 7 | 0 | 0 |
h22 | 0 | 0 | 0 | 0 | 42 | 20 | 0 | 45 | 0 | 0 |
h23 | 0 | 10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
h24 | 0 | 110 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shokouhandeh, H.; Ahmadi Kamarposhti, M.; Colak, I.; Eguchi, K. Unit Commitment for Power Generation Systems Based on Prices in Smart Grid Environment Considering Uncertainty. Sustainability 2021, 13, 10219. https://doi.org/10.3390/su131810219
Shokouhandeh H, Ahmadi Kamarposhti M, Colak I, Eguchi K. Unit Commitment for Power Generation Systems Based on Prices in Smart Grid Environment Considering Uncertainty. Sustainability. 2021; 13(18):10219. https://doi.org/10.3390/su131810219
Chicago/Turabian StyleShokouhandeh, Hassan, Mehrdad Ahmadi Kamarposhti, Ilhami Colak, and Kei Eguchi. 2021. "Unit Commitment for Power Generation Systems Based on Prices in Smart Grid Environment Considering Uncertainty" Sustainability 13, no. 18: 10219. https://doi.org/10.3390/su131810219
APA StyleShokouhandeh, H., Ahmadi Kamarposhti, M., Colak, I., & Eguchi, K. (2021). Unit Commitment for Power Generation Systems Based on Prices in Smart Grid Environment Considering Uncertainty. Sustainability, 13(18), 10219. https://doi.org/10.3390/su131810219