Using Optimized Two and Three-Band Spectral Indices and Multivariate Models to Assess Some Water Quality Indicators of Qaroun Lake in Egypt
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling and Analyses
2.3. Spatial Distributions of Water Quality Indicators
2.4. Ground-Based Remote-Sensing Measurements
2.5. Selection of Newly Constructed and Commonly Used Spectral Reflectance Indices
2.6. Partial Least Squares Regression (PLSR)
2.7. Data Analysis
3. Results and Discussion
3.1. Water Quality Indicators and Spatial Distribution Maps
3.2. Variation of Spectral Reflectance Indices of Water Surface in Qaroun Lake
3.3. Ability of Different SRIs for Indirect Assessment Water Quality Indicators
3.4. Performance of PLSR Models to Predict Water Quality Indicators
3.5. Outcomes and Practical Applications of the Research
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Premakumara, D.G.J.; Canete, A.M.L.; Nagaishi, M.; Kurniawan, T.A. Policy implementation of the Republic Act (RA) No. 9003 in the Philippines: A case study of Cebu city. Waste Manag. 2014, 34, 971–979. [Google Scholar] [CrossRef] [PubMed]
- Kurniawan, T.A.; Singh, D.; Xue, W.; Othman, M.H.D.; Hwang, G.H.; Setiadi, T.; Avtar, R.; Albadarin, A.B.; Shirazian, S. Resource recovery toward sustainability through nutrient removal from landfill leachate. J. Environ. Manag. 2021, 287, 112265. [Google Scholar] [CrossRef] [PubMed]
- Mian, M.M.; Zeng, X.; Nasry Al-Hamadani, S.M.Z.F. Municipal solid waste management in China: A comparative analysis. J. Mater. Cycles Waste Manag. 2017, 19, 1127–1135. [Google Scholar] [CrossRef]
- Ghodeif, K.; Arnous, M.; Geriesh, M. Define a protected buffer zone for Ismailia Canal, Egypt using geographic information systems. Arab. J. Geosci. 2013, 6, 43–53. [Google Scholar] [CrossRef]
- LaMoreaux, P.E.; LaMoreaux, J.W.; Soliman, M.M.; Memon, B.A.; Assaad, F.A. Environmental Hydrogeology, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2008; p. 373. [Google Scholar]
- Ayres, S.W.; Busia, A.; Dinar, A.; Hirji, R.; Lintner, S.F.; McCalla, A.F.; Robelus, R. Integrated lake and reservoir management. World Bank Tech. Pap. 1997, 358. [Google Scholar]
- Brebbia, C.A.; Anagnostopoulos, P. Water Pollution: Modelling, Measuring and Prediction; WIT Press: Southampton, UK, 1991. [Google Scholar]
- Baird, C.; Cann, M. Environmental Chemistry, 3rd ed; Freeman Publishers: New York, NY, USA, 2005. [Google Scholar]
- Hassan, F.A. Holocene lakes and prehistoric settlements of the Western Faiyum, Egypt. J. Archaeol. Sci. 1986, 13, 483–501. [Google Scholar] [CrossRef]
- El Maghraby, A.M.; Dowidar, N.M. The occurrence of marine plankton organisms in Lake Qarun (Egypt). Comm. Int. Explor. Sci. Mer. Mediterr. Monaco 1969, 19, 849–851. [Google Scholar]
- Shafei, A. Lake Moeris and Lahun Mi-wer and Ro-hun: The great Nile control project executed by the ancient Egyptians. Soci. Geogr. Egypte Bull. 1960, 33, 187–215. [Google Scholar]
- Said, R.; Albritton, C.; Wendorf, F.; Schild, R.; Kobusewicz, M. A preliminary report on the Holocene geology and archaeology of the northern Faiyum desert. Playa Lake Sympos. 1972, 4, 41–61. [Google Scholar]
- Khalil, M.T.; Fishar, M.R.; Shakir, S.H.; Amer, A.S.; Nassif, M.G. Impact of drainage water on macrobenthos structure of Lake Qaroun, El-Fayoum, Egypt. Egypt. J. Aquat. Biol. Fish. 2017, 21, 17–32. [Google Scholar] [CrossRef] [Green Version]
- El-Sayed, S.A.; Moussa, E.M.M.; El-Sabagh, M.E.I. Evaluation of heavy metal content in Qaroun Lake, el-fayoum, Egypt. Part I: Bottom sediments. J. Radiat. Res. Appl. Sci. 2015, 8, 276–285. [Google Scholar] [CrossRef] [Green Version]
- Redwan, M.; Elhaddad, E. Heavy metals seasonal variability and distribution in Lake Qaroun sediments, El-Fayoum, Egypt. J. Afr. Earth Sci. 2017, 134, 48–55. [Google Scholar] [CrossRef]
- El-Zeiny, A.M.; El Kafrawy, S.B.; Ahmed, M.H. Geomatics based approach for assessing Qaroun Lake pollution, Egypt. J. Remote. Sens. Space Sci. 2019, 22, 279–296. [Google Scholar]
- El-Shabrawy, G.M.; Dumont, H.J. The fayum depression and its lakes. In The Nile: Origin, Environments, Limnology and Human Use; Dumont, H.J., Ed.; Springer: Amsterdam, The Netherlands, 2009; pp. 95–124. [Google Scholar]
- Fouda, M.; Fishar, M.R.A. Information Sheet on Ramsar Wetlands (RIS), 2009–2012. Ramsar 2012, Site No. 2040. 32. Available online: http://www.ramsar.org/ris/key_ris_index.htm (accessed on 4 June 2012).
- Abdel Wahed, M.S.M.; Mohamed, E.A.; Wolkersdorfer, C.; El-Sayed, M.I.; Adel M’nif, M.I.; Sillanpää, M. Geochemical modeling of evaporation process in Lake Qarun, Egypt. J. Afr. Earth Sci. 2014, 97, 322–333. [Google Scholar] [CrossRef]
- Saeed, S.M.; Shaker, I.M. Assessment of heavy metals pollution in water and sediments and their effect on Oreochromis niloticus in the northern delta lakes, Egypt. In Proceedings of the Eighth International Symposium on Tilapia in Aquaculture, Cairo, Egypt, 12–14 October 2008. [Google Scholar]
- Meshal, A.N.; Morcos, S. Evaporation from Lake Qaroun and its water budget. Bull. Natl. Inst. Oceanogr. Fish. 1981, 7, 474–483. [Google Scholar]
- Zhao, Y.; Xia, X.H.; Yang, Z.F.; Wang, F. Assessment of water quality in Baiyangdian Lake using multivariate statistical techniques. Procedia Environ. Sci. 2012, 13, 1213–1226. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.; Wang, X.; Chen, Y.; Cai, Y.; Deng, J. Assessing river water quality using water quality index in Lake Taihu Basin, China. Sci. Total Environ. 2018, 612, 914–922. [Google Scholar] [CrossRef]
- Parparov, A.; Hambright, K.D.; Hakanson, L.; Ostapenia, A. Water quality quantification: Basics and implementation. Hydrobiologia 2006, 560, 227–237. [Google Scholar] [CrossRef] [Green Version]
- Sargaonkar, A.; Deshpande, V. Development of an overall index of pollution for surface water based on a general classification scheme in Indian context. Environ. Monit. Assess. 2003, 89, 43–67. [Google Scholar] [CrossRef]
- Cooke, G.D.; Welch, E.B.; Peterson, S.A.; Newroth, P.R. Restoration and Management of Lakes and Reservoirs; Lewis Publishers: Boca Raton, FL, USA, 1993. [Google Scholar]
- Jones, R.A.; Lee, G.F. Eutrophication modeling for water quality management: An update of the Vollenweider-OECD model. World Health Org. Water Qual. Bull. 1986, 11, 67–74. [Google Scholar]
- Simeonov, V.; Einax, J.W.; Stanimirova, I.; Kraft, J. Environmetric modeling and interpretation of river water monitoring data. Anal. Bioanal. Chem. 2002, 374, 898–905. [Google Scholar] [PubMed]
- Zeng, X.; Rasmussen, T.C. Multivariate statistical characterization of water quality in Lake Lanier, Georgia, USA. J. Environ. Qual. 2005, 34, 1980–1991. [Google Scholar] [CrossRef] [Green Version]
- Boyacioglu, H. Surface water quality assessment using factor analysis. Water SA 2006, 32, 389–1394. [Google Scholar] [CrossRef] [Green Version]
- Varol, M.; Gökot, B.; Bekleyen, A.; ¸Sen, B. Spatial and temporal variations in surface water quality of the dam reservoirs in the Tigris River basin, Turkey. Catena 2012, 92, 11–21. [Google Scholar] [CrossRef]
- Bhateria, R.; Jain, D. Water quality assessment of lake water: A review. Sustain. Water Resour. Manag. 2016, 2, 161–173. [Google Scholar] [CrossRef] [Green Version]
- Pavelsky, T.M.; Smith, L.C. Remote sensing of suspended sediment concentration, flow velocity, and lake recharge in the Peace-Athabasca Delta, Canada. Water Resour. Res. 2009, 45, 369–375. [Google Scholar] [CrossRef]
- Corwin, D.L. GIS application of deterministic solute transport models for regional scale assessment on non-point source pollutants in the vadose zone. In Application of GIS to the modeling of non-point source of pollutants in the vadose zone. Soil Sci. Soc. Am. 1996, 48, 69–100. [Google Scholar]
- Elbeih, S.F. An overview of integrated remote sensing and GIS for groundwater mapping in Egypt. Ain Shams Eng. J. 2015, 6, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Elbeih, S.F.; El-Zeiny, A.M. Qualitative assessment of groundwater quality based on land use spectral retrieved indices: Case study Sohag Governorate, Egypt. Remote Sens. Appl. Soc. Environ. 2018, 10, 82–92. [Google Scholar] [CrossRef]
- AbdelRahman, M.A.E.; Shalaby, A.; Mohamed, E.S. Comparison of two soil quality indices using two methods based on geographic information system. Egypt. J. Remote Sens. Space Sci. 2018, 22, 127–136. [Google Scholar] [CrossRef]
- De Bartolomeo, A.; Poletti, L.; Sanchini, G.; Sebastiani, B.; Morozzi, G. Relationship among parameters of lake polluted sediments evaluated by multivariate statistical analysis. Chemosphere 2004, 55, 1323–1329. [Google Scholar] [CrossRef] [PubMed]
- Kalamaras, N.; Michalopoulou, H.; Byun, H.R. Detection of drought events in Greece using daily precipitation. Hydrol. Res. 2010, 41, 126–133. [Google Scholar] [CrossRef]
- Wang, M.; Markert, B.; Chen, W.; Peng, C.; Ouyang, Z. Identification of heavy metal pollutants using multivariate analysis and effects of land uses on their accumulation in urban soils in Beijing, China. Environ. Monit. Assess. 2012, 184, 5889–5897. [Google Scholar] [CrossRef]
- Ahmad, T.; Gupta, G.; Sharma, A.; Kaur, B.; Alsahli, A.A.; Ahmad, P. Multivariate statistical approach to study spatiotemporal variations in water quality of a himalayan urban fresh water lake. Water 2020, 12, 2365. [Google Scholar] [CrossRef]
- Gitelson, A.; Garbuzov, G.; Szilagyi, F.; Mittenzwey, K.H.; Karnieli, A.; Kaiser, A. Quantitative remote-sensing methods for real-time monitoring of inland waters quality. Int. J. Remote Sens. 1993, 14, 1269–1295. [Google Scholar] [CrossRef]
- Santini, F.; Alberotanza, L.; Cavalli, R.M.; Pignatti, S. A two-step optimization procedure for assessing water constituent concentrations by hyperspectral remote sensing techniques: An application to the highly turbid venice lagoon waters. Remote Sens. Environ. 2010, 114, 887–898. [Google Scholar] [CrossRef]
- Gholizadeh, M.H.; Melesse, A.M.; Reddi, L.A. A Comprehensive review on water quality parameters estimation using remote sensing techniques. Sensors 2016, 16, 1298. [Google Scholar] [CrossRef] [Green Version]
- Xing, Z.; Chen, J.; Zhao, X.; Li, Y.; Li, X.; Zhang, Z.; Lao, C.; Wang, H. Quantitative estimation of wastewater quality parameters by hyperspectral band screening using GC, VIP and SPA. Peer J. 2019, 7, 8255. [Google Scholar] [CrossRef] [Green Version]
- Vincikova’, H.; Hanusˇ, J.; Pechar, L. Spectral reflectance is a reliable water-quality estimator for small, highly turbid wetlands. Wetlands Ecol. Manage. 2015, 23, 933–946. [Google Scholar] [CrossRef]
- Abd-Elrahman, A.; Croxton, M.; Pande-Chettri, R.; Toor, G.S.; Smith, S.; Hill, J. In situ estimation of water quality parameters in freshwater aquaculture ponds using hyperspectral imaging system. ISPRS J. Photogramm. Remote Sens. 2011, 66, 463–472. [Google Scholar] [CrossRef]
- Maliki, A.A.A.; Chabuk, A.; Sultan, M.A.; Hashim, B.M.; Hussain, H.M. Al-Ansari, N. Estimation of total dissolved solids in water bodies by spectral indices Case Study: Shatt al-Arab River. Water Air Soil Pollut. 2020, 231, 482. [Google Scholar] [CrossRef]
- Shafique, N.A.; Fulk, F.; Autrey, B.C.; Flotemersch, J. Hyperspectral remote sensing of water quality parameters for large rivers in the Ohio River Basin. In Proceedings of the First Interagency Conference on Research in the Watersheds, Benson, AZ, USA, 27–30 October 2003. [Google Scholar]
- Osinska-Skotak, K.; Kruk, M.; Mróz, M. The Spatial Diversification of lake Water Quality Parameters in Mazurian Lakes in Summertime; Millpress: Rotterdam, The Netherlands, 2007. [Google Scholar]
- Wu, C.F.; Wu, J.P.; Qi, J.G.; Zhang, L.S.; Huang, H.Q.; Lou, L.P.; Chen, Y. Empirical estimation of total phosphorus concentration in the mainstream of the Qiantang River in China using Landsat TM data. Inter. J. Remote Sens. 2010, 31, 2309–2324. [Google Scholar] [CrossRef]
- Wei, L.; Huang, C.; Zhong, Y.; Wang, Z.; Hu, X.; Lin, L. Inland waters suspended solids concentration retrieval based on PSO-LSSVM for UAV-borne hyperspectral remote sensing imagery. Remote Sens. 2019, 11, 1455. [Google Scholar] [CrossRef] [Green Version]
- Garriga, M.; Romero-Bravo, S.; Estrada, F.; Escobar, A.; Matus, I.A.; del Pozo, A.; Astudillo, C.A.; Lobos, G.A. Assessing wheat traits by spectral reflectance: Do we really need to focus on predicted trait-values or directly identify the elite genotypes group? Front. Plant. Sci. 2017, 8, 280. [Google Scholar] [CrossRef] [Green Version]
- Elsayed, S.; Elhoweity, M.; Ibrahim, H.H.; Dewir, Y.H.; Migdadi, H.M.; Schmidhalter, U. Thermal imaging and passive reflectance sensing to estimate the water status and grain yield of wheat under different irrigation regimes. Agric. Water Manag. 2017, 189, 98–110. [Google Scholar] [CrossRef]
- Gad, M.; El-Hendawy, S.; Al-Suhaibani, N.; Tahir, M.U.; Mubushar, M.; Elsayed, S. Combining hydrogeochemical characterization and a hyperspectral reflectance tool for assessing quality and suitability of two groundwater resources for irrigation in Egypt. Water 2020, 12, 2169. [Google Scholar] [CrossRef]
- Eaton, A.D.; Clesceri, L.S.; Rice, E.W.; Greenberg, A.E.; Franson, M. Standard Methods for the Examination of Water and Wastewater, 21st ed.; American Public Health Association, American Waterworks Association, Water Environmental Federation: Washington, DC, USA, 2005; pp. 1–88. [Google Scholar]
- US-EPA. Methods for Chemical Analysis of Water and Wastes; Environmental Protection Agency: Washington, DC, USA, 1991.
- APHA. American Public Health Association; American Water Works Association and Water Environment Federation: Washington, DC, USA, 1999. [Google Scholar]
- Wetzel, R.G.; Likens, G.E. Limnological Analyses, 3rd ed.; Springer: New York, NY, USA, 2013. [Google Scholar]
- Burrough, P.A. Principles of Geographical Information Systems for Land Resources Assessment; Clarendon Press: Oxford, UK, 1986. [Google Scholar]
- Watson, D.F. Contouring: A Guide to the Analysis and Display of Spatial Data; Pergamon: Oxford, UK, 1992. [Google Scholar]
- Rawat, K.S.; Jacintha, T.G.A.; Singh, S.K. Hydro-chemical survey and quantifying spatial variations in groundwater quality in coastal region of Chennai, Tamilnadu, India—A case study. Indones. J. Geog. 2018, 50, 57–69. [Google Scholar] [CrossRef]
- Singh, S.K.; Srivastava, P.K.; Pandey, A.C.; Gautam, S.K. Integrated assessment of groundwater influenced by a confluence river system: Concurrence with remote sensing and geochemical modelling. Water Resour. Manag. 2013, 27, 4291–4313. [Google Scholar] [CrossRef]
- Gordon, H.R.; Morel, A. Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery: A Review; Springer: New York, NY, USA, 1983. [Google Scholar]
- Menken, K.D.; Brezonik, P.L.; Bauer, M.E. Influence of chlorophyll and colored dissolved organic matter (CDOM) on Lake Reflectance Spectra: Implications for Measuring Lake Properties by Remote Sensing. Lake Reserv. Manag. 2006, 22, 179–190. [Google Scholar] [CrossRef] [Green Version]
- Arenz, R.F.; Lewis, W.M.; Saunders, J.F. Determination of chlorophyll and dissolved organic carbon from reflectance data for Colorado reservoirs. Int. J. Remote Sens. 1996, 17, 1547–1565. [Google Scholar] [CrossRef]
- Zimba, P.V.; Gitelson, A. Remote estimation of chlorophyll concentration in hyper-eutrophic aquatic systems: Model tuning and accuracy optimization. Aquaculture 2006, 256, 272–286. [Google Scholar] [CrossRef]
- Doxaran, D.; Cherukuru, R.C.N.; Lavender, S.J. Use of reflectance band ratios to estimate suspended and dissolved matter concentrations in estuarine waters. Int. J. Remote Sens. 2005, 2, 1763–1769. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Merzlyak, M.N. Remote estimation of chlorophyll content in higher plant leaves. Int. J. Remote Sens. 1997, 17, 2691–2697. [Google Scholar] [CrossRef]
- Wold, S.; Sjöström, M.; Eriksson, L. PLS-regression: A basic tool of chemometrics. Chemom. Intell. Lab. Syst. 2001, 58, 109–130. [Google Scholar] [CrossRef]
- CCME (Canadian Council of Ministers of the Environment). For the protection of aquatic life. In Canadian Environmental Quality Guidelines; Canadian Council of Ministers of the Environment: Winnipeg, MB, Canada, 2002. [Google Scholar]
- El-Otify, A.M.; Iskaros, I.A. Water quality and potamoplankton evaluation of the Nile River in Upper Egypt. Acta Limnol. Bras. 2015, 27, 171–190. [Google Scholar] [CrossRef]
- Sugie, K.; Fujiwara, A.; Nishino, S.; Kameyama, S.; Harada, N. Impacts of temperature, CO2, and salinity on phytoplankton community composition in the western Arctic Ocean. Front. Mar. Sci. 2020, 6, 821. [Google Scholar] [CrossRef] [Green Version]
- Fishar, M.R.; El-Mageed, A.A.; Elwa, S.E.; Al-Ebiary, A.S.; Bendary, R.E. Environmental factors affecting life cycle of benthic invertebrates in Lake Qaroun. Egypt. J. Egypt. Acad. Soc. Environ. Dev. 2005, 6, 9–32. [Google Scholar]
- Fishar, M.R.; Abdel-Regal, R.M. Macrobenthic invertebrates in relation to sediment properties in some fish farms. Egypt. J. Aquat. Biol. Fish. 1998, 2, 87–100. [Google Scholar] [CrossRef] [Green Version]
- Slavevska-Stamenkovic′, V.; Smiljkov, S.; Prelic′, D.; Paunovic′, M.; Atanackovic′, A.; Rimcheska, B. Structural characteristic of benthic macroinvertebrate in the Mantovo Reservoir (South-East Part of the R. Macedonia). In Proceedings of the Fourth International Scientific Conference BALWOIS, Ohrid, Republic of Macedonia, 25–29 May 2010. [Google Scholar]
- Wissa, J.B. Ecological Studies on Benthic Invertebrates as Indicators of Organic Pollution in El-Rahawey Region, Giza, at River Nile, Egypt. Ph.D. Thesis, Faculty of Science, Ain Shams University, Cairo, Egypt, 2012; p. 249. [Google Scholar]
- Goher, M.E.; Mahdy, E.M.; Abdo, M.H.; El Dars, F.M.; Korium, M.A.; Elsherif, A.S. Water quality status and pollution indices of Wadi El-Rayan lakes, El-Fayoum, Egypt. Sustain. Water Resour. Manag. 2019, 5, 387–400. [Google Scholar] [CrossRef]
- Harding, W.R. Living with eutrophication in South Africa: A review of realities and challenges. Trans. R. Soc. S. Afr. 2015, 70, 155–171. [Google Scholar] [CrossRef]
- Sharip, Z.; Suratman, S. Formulating specific water quality criteria for lakes: A Malaysian perspective. In Water Quality; Tutu, H., Ed.; IntechOpen: Rijeka, Croatia, 2017; pp. 293–313. [Google Scholar]
- Elhag, M.; Gitas, I.; Othman, A.; Bahrawi, J.; Gikas, P. Assessment of water quality parameters using temporal remote sensing spectral reflectance in arid environments, Saudi Arabia. Water 2019, 11, 556. [Google Scholar] [CrossRef] [Green Version]
- Gitelson, A. The peak near 700 nm on radiance spectra of algae and water: Relationships of its magnitude and position with chlorophyll concentration. Int. J. Remote Sens. 1992, 13, 3367–3373. [Google Scholar] [CrossRef]
- Han, L.; Jordan, K.J. Estimating and mapping chlorophyll-a concentration in Pensacola Bay, Florida using Landsat ETM+ data. Int. J. Remote Sens. 2005, 26, 5245–5254. [Google Scholar] [CrossRef]
- Seyhan, E.; Dekker, A. Application of remote sensing techniques for water quality monitoring. Hydrol. Biol. Bull. 1986, 20, 41–50. [Google Scholar] [CrossRef]
- Wang, Z.; Kawamura, K.; Sakuno, Y.; Fan, X.; Gong, Z.; Lim, J. Retrieval of chlorophyll-a and total suspended solids using iterative stepwise elimination partial least squares (ISE-PLS) regression based on field hyperspectral measurements in irrigation ponds in Higashihiroshima, Japan. Remote Sens. 2017, 9, 264. [Google Scholar] [CrossRef] [Green Version]
- Khadr, M.; Gad, M.; El-Hendawy, S.; Al-Suhaibani, N.; Dewir, Y.H.; Tahir, M.U.; Mubushar, M.; Elsayed, S. The integration of multivariate statistical approaches, hyperspectral reflectance, and data-driven modeling for assessing the quality and suitability of groundwater for irrigation. Water 2021, 13, 35. [Google Scholar] [CrossRef]
SRIs No. | Spectral Reflectance Indices | Formula | References |
---|---|---|---|
Commonly used SRIs | |||
SRI-1 | Ratio spectral index (RSI440,550) | R440/R550 | [64] |
SRI-2 | Ratio spectral index (RSI700,670) | R700/R670 | [65] |
SRI-3 | Ratio spectral index (RSI806,571) | R806/R571 | [66] |
SRI-4 | Ratio spectral index (RSI714,650) | R714/R650 | [67] |
SRI-5 | Ratio spectral index (RSI850,550) | R850/R550 | [68] |
SRI-6 | Green normalized difference vegetation index (GNDVI) | (NIR —Green)/(NIR –Green) | [69] |
NSRIs-2b | |||
SRI-7 | Ratio spectral index (RSI620,608) | R620/R608 | This work |
SRI-8 | Ratio spectral index (RSI688,648) | R688/R648 | This work |
SRI-9 | Ratio spectral index (RSI700,650) | R700/R650 | This work |
SRI-10 | Ratio spectral index (RSI670,470) | R670/R470 | This work |
SRI-11 | Ratio spectral index (RSI1130,470) | R1130/R470 | This work |
SRI-12 | Ratio spectral index (RSI1130,488) | R1130/R480 | This work |
NSRIs-3b | |||
SRI-13 | Normalized difference spectral index (NDSI648,712,696) | (R648−R712−R696)/(R648+R712+R696) | This work |
SRI-14 | Normalized difference spectral index (NDSI694,646,710) | (R694−R646−R710)/(R694+R646+R710) | This work |
SRI-15 | Normalized difference spectral index (NDSI618,646,488) | (R618−R646−R448)/(R618+R646+R448) | This work |
SRI-16 | Normalized difference spectral index (NDSI618,646,490) | (R618−R646−R490)/(R618+R646+R490) | This work |
SRI-17 | Normalized difference spectral index (NDSI610,614,608) | (R610−R614−R608)/(R610+R614+R608) | This work |
SRI-18 | Normalized difference spectral index (NDSI620,610,622) | (R620−R610−R622)/(R620+R610+R622) | This work |
SRI-19 | Normalized difference spectral index (NDSI696,650,712) | (R696−R650−R712)/(R696+R650+R712) | This work |
SRI-20 | Normalized difference spectral index (NDSI696,712,648) | (R696−R712−R648)/(R696+R712+R648) | This work |
SRI-21 | Normalized difference spectral index (NDSI588,576,598) | (R588−R576−R598)/(R588+R576+R598) | This work |
SRI-22 | Normalized difference spectral index (NDSI618,646,526) | (R618−R646−R526)/(R618+R646+R526) | This work |
Water Quality Indicators | |||||||
---|---|---|---|---|---|---|---|
TDS | pH | Temp. | Transparency | TSS | Chl-a | TP | |
First year 2018 (n = 16) | |||||||
Min | 27,704.74 | 7.70 | 28.80 | 30.00 | 12.64 | 0.012 | 0.1147 |
Max | 38,797.87 | 8.30 | 32.30 | 125.00 | 53.72 | 0.146 | 0.5947 |
Mean | 35,616.34 | 8.09 | 30.94 | 70.00 | 35.39 | 0.086 | 0.3423 |
SD | 2627.97 | 0.14 | 0.85 | 31.03 | 16.54 | 0.049 | 0.1995 |
Second year 2019 (n = 16) | |||||||
Min | 27,704.74 | 7.70 | 28.80 | 30.00 | 12.64 | 0.012 | 0.1175 |
Max | 38,797.87 | 8.30 | 32.30 | 125.00 | 53.72 | 0.146 | 0.6453 |
Mean | 35,616.34 | 8.09 | 30.94 | 70.00 | 35.39 | 0.086 | 0.3601 |
SD | 2627.97 | 0.14 | 0.85 | 31.03 | 16.54 | 0.049 | 0.2194 |
Data across two years (n = 32) | |||||||
Min | 27,652.27 | 7.70 | 28.80 | 25.00 | 11.21 | 0.012 | 0.1147 |
Max | 39,056.09 | 8.40 | 34.20 | 125.00 | 62.34 | 0.166 | 0.6453 |
Mean | 35,679.37 | 8.16 | 31.15 | 65.93 | 36.41 | 0.091 | 0.3513 |
SD | 2500.70 | 0.15 | 1.02 | 29.85 | 17.16 | 0.050 | 0.2065 |
Stations No. | TDS | Transparency | TSS | Chl-a | TP |
---|---|---|---|---|---|
1 | 28,246g | 37.5fg | 51.99ab | 0.141ab | 0.451c |
2 | 34,283f | 42.5e–h | 53.20ab | 0.147ab | 0.501bc |
3 | 34,471ef | 47.5e–h | 49.59ab | 0.133ab | 0.620a |
4 | 34,495ef | 32.5gh | 45.72b | 0.145ab | 0.530b |
5 | 34,500ef | 27.5h | 55.98a | 0.152a | 0.505bc |
6 | 34,590ef | 40e–g | 55.465a | 0.141ab | 0.604a |
7 | 34,938de | 50d–g | 47.67b | 0.122b | 0.612a |
8 | 35,261d | 52.5d–f | 46.51b | 0.121b | 0.529b |
9 | 36,762c | 57.5de | 46.28b | 0.085c | 0.322d |
10 | 36,801c | 85c | 22.43d | 0.045de | 0.154e |
11 | 36,804c | 67.5d | 35.42c | 0.067cd | 0.163e |
12 | 36,899c | 112.5ab | 13.43e | 0.024ef | 0.136e |
13 | 36,914c | 92.5c | 17.23de | 0.036ef | 0.128e |
14 | 38,256ab | 92.5c | 14.91e | 0.053de | 0.120e |
15 | 38,806a | 97.5bc | 14.76e | 0.039d-f | 0.116e |
16 | 38,842a | 120a | 11.93e | 0.015f | 0.128e |
Water Quality Indicators | Water Quality Class | Number of Samples (%) | |||
---|---|---|---|---|---|
Aquatic Life Standard [71] | First Year | Second Year | Across Two Years | ||
TDS | <500 | Suitable | 0% | 0% | 0% |
>500 | Unsuitable | 16 (100.0%) | 16 (100.0%) | 32 (100.0%) | |
Transparency | - | - | - | - | - |
- | - | - | - | - | |
TSS | <25 | Suitable | 6 (37.50%) | 6 (37.50%) | 12 (37.50%) |
>25 | Unsuitable | 10 (62.50%) | 10 (62.50%) | 20 (62.50%) | |
Chl-a | <0.01 | Suitable | 0% | 0% | 0% |
>0.01 | Unsuitable | 16 (100.0%) | 16 (100.0%) | 32 (100.0%) | |
TP | <0.3 | Suitable | 10 (62.50%) | 9 (56.25%) | 19 (59.3%) |
>0.3 | Unsuitable | 6 (37.50%) | 7 (43.75%) | 13(40.7%) |
Station NO. | SRI-1 | SRI-2 | SRI-3 | SRI-4 | SRI-5 | SRI-6 | SRI-7 | SRI-8 | SRI-9 | SRI-10 | SRI-11 |
1 | 0.755de | 0.976a–c | 0.746a | 0.928ab | 0.580a | −0.307a | 0.999a–e | 0.992a–c | 0.972a–c | 1.129a–c | 1.208a–c |
2 | 0.694d | 0.988a | 0.745ab | 0.936a | 0.566ab | −0.312a–c | 1.007a | 0.993ab | 0.979a | 1.222ab | 1.262ab |
3 | 0.808b–e | 0.970b–d | 0.709a–e | 0.912b–e | 0.532a–e | −0.326a–c | 1.001a–c | 0.984a–e | 0.962c–e | 1.121a–c | 1.167a–d |
4 | 0.742de | 0.980ab | 0.738a–c | 0.937a | 0.572a | −0.313a–c | 1.002a–c | 0.994a | 0.978ab | 1.141a–c | 1.191a–c |
5 | 0.723de | 0.971b–d | 0.721a–d | 0.914b–d | 0.542a–e | −0.312a–c | 1.004ab | 0.986a–d | 0.964b–d | 1.230a | 1.277a |
6 | 0.796c–e | 0.973a–d | 0.726a–d | 0.918a–c | 0.552a–c | −0.306a | 1.002a–c | 0.984a–e | 0.965b–d | 1.123a–c | 1.152a–d |
7 | 0.777de | 0.970b–d | 0.724a–d | 0.910b–e | 0.547a–d | −0.311ab | 1.000a–d | 0.981b–f | 0.960c–f | 1.158a–c | 1.192a–c |
8 | 0.827a–e | 0.963b–d | 0.660c–e | 0.903c–f | 0.485b–e | −0.358a–c | 0.996b–f | 0.977d–g | 0.954d–g | 1.005cd | 1.106c–e |
9 | 0.884a–e | 0.962cd | 0.680a–e | 0.904c–f | 0.506a–e | −0.334a–c | 0.997b–f | 0.979c–g | 0.955d–g | 1.032b–d | 1.119b–e |
10 | 1.023a | 0.957d | 0.631e | 0.894d–f | 0.456e | −0.370c | 0.992d–f | 0.972e–g | 0.946fg | 0.850d | 0.994e |
11 | 0.994a–c | 0.964b–d | 0.665b–e | 0.898c–f | 0.484b–e | −0.361a–c | 0.996b–f | 0.972e–g | 0.949e–g | 0.895d | 0.991e |
12 | 0.907a–d | 0.969b–d | 0.690a–e | 0.901c–f | 0.508a–e | −0.351a–c | 0.991ef | 0.969fg | 0.950e–g | 0.982cd | 1.025de |
13 | 0.899a–d | 0.965b–d | 0.682a–e | 0.904c–f | 0.510a–e | −0.342a–c | 0.995c–f | 0.975d–g | 0.953d–g | 0.991cd | 1.064c–e |
14 | 0.977a–c | 0.962cd | 0.653de | 0.896d–f | 0.477c–e | −0.360a–c | 0.989fg | 0.969fg | 0.947fg | 0.882d | 0.974e |
15 | 0.991a–c | 0.961cd | 0.642e | 0.893ef | 0.464de | −0.362a–c | 0.990f | 0.968fg | 0.945g | 0.871d | 0.971e |
16 | 1.001ab | 0.957d | 0.631e | 0.889f | 0.455e | −0.367bc | 0.988g | 0.967e | 0.943g | 0.860d | 0.987e |
Station NO. | SRI-12 | SRI-13 | SRI-14 | SRI-15 | SRI-16 | SRI-17 | SRI-18 | SRI-19 | SRI-20 | SRI-21 | SRI-22 |
1 | 1.177a–c | −0.328ab | −0.328a | −0.306a–c | −0.307a–c | −0.334d–f | −0.333a–c | −0.328ab | −0.329ab | −0.33b–d | −0.321ab |
2 | 1.219ab | −0.327a | −0.328a | −0.292a | −0.293a | −0.3337f | −0.332a | −0.327a | −0.327a | −0.332ab | −0.314a |
3 | 1.146a–c | −0.329a–c | −0.329ab | −0.306a–c | −0.306a–c | −0.3335ef | −0.333a–c | −0.328a–c | −0.329a–c | −0.332a–c | −0.320ab |
4 | 1.157a–c | −0.328ab | −0.328a | −0.303ab | −0.304ab | −0.3335ef | −0.333ab | −0.327ab | −0.328ab | −0.33b–d | −0.320ab |
5 | 1.242a | −0.328ab | −0.328a | −0.291a | −0.292a | −0.3335ef | −0.333ab | −0.327ab | −0.329ab | −0.3314a | −0.311a |
6 | 1.129a–d | −0.329a–c | −0.329a–c | −0.306a–c | −0.306a–c | −0.333d–f | −0.333ab | −0.329a–d | −0.329a–c | −0.332a–c | −0.319ab |
7 | 1.167a–c | −0.329a–d | −0.330a–d | −0.302ab | −0.303ab | −0.333c–f | −0.333a–c | −0.329a–d | −0.329a–d | −0.33b–d | −0.317ab |
8 | 1.0842c–f | −0.30b–e | −0.330a–e | −0.32b–d | −0.322b–e | −0.333c–f | −0.33b–d | −0.330b–e | −0.330b–e | −0.333c–f | −0.33b–d |
9 | 1.106b–e | −0.330a–e | −0.330a–e | −0.319a–d | −0.319a–d | −0.333b–e | −0.334b–e | −0.329a–e | −0.330a–e | −0.332b–e | −0.327a–c |
10 | 0.998ef | −0.332de | −0.332c–e | −0.346d | −0.345de | −0.333a–d | −0.335c–f | −0.331de | −0.332de | −0.3331ef | −0.344cd |
11 | 0.990ef | −0.331c–e | −0.331b–e | −0.342d | −0.342de | −0.333c–e | −0.334b–f | −0.331c–e | −0.331c–e | −0.3328ef | −0.342cd |
12 | 1.014d–f | −0.332e | −0.332c–e | −0.332c | −0.333c–e | −0.333a–c | −0.335d–f | −0.331e | −0.3317e | −0.3328ef | −0.338c–d |
13 | 1.053c–f | −0.331c–e | −0.331b–e | −0.33b–d | −0.326b–e | −0.333a–e | −0.334b–f | −0.331c–e | −0.331c–e | −0.333d–f | −0.333b–d |
14 | 0.972f | −0.332e | −0.332de | −0.346d | −0.346de | −0.332ab | −0.335df | −0.331e | −0.332e | −0.3332e | −0.346d |
15 | 0.970f | −0.332e | −0.332c–e | −0.346d | −0.346de | −0.333a–c | −0.334d–f | −0.331e | −0.332e | −0.3331ef | −0.346d |
16 | 0.988ef | −0.332e | −0.333e | −0.347d | −0.347e | −0.3328a | −0.3354f | −0.331e | −0.332e | −0.3331ef | −0.346d |
SRIs types | ONLFs | Measured Variables | Calibration | Validation | ||||
---|---|---|---|---|---|---|---|---|
Equation | R2cal | RMSEC | Equation | R2val | RMSEV | |||
Commonly used SRIs | 1 | TDS | y = 0.2267x + 2759 | 0.23 ** | 2164.49 | y = 0.1765x + 2940 | 0.21 ** | 2312.28 |
3 | Transparency | y = 0.6203x + 25.039 | 0.62 *** | 18.11 | y = 0.5458x + 29.617 | 0.49 *** | 21.75 | |
3 | TSS | y = 0.6063x + 14.331 | 0.61 *** | 10.60 | y = 0.5616x + 16.894 | 0.55 *** | 12.24 | |
6 | Chl-a | y = 0.7847x + 0.020 | 0.79 *** | 0.02 | y = 0.7847x + 0.020 | 0.73 *** | 0.03 | |
3 | TP | y = 0.6311x + 0.130 | 0.63 *** | 0.12 | y = 0.6x + 0.143 | 0.55 *** | 0.14 | |
NSRIs-2b | 5 | TDS | y = 0.4756x + 1871 | 0.47 *** | 1782.39 | y = 0.3446x + 233 | 0.25 ** | 2078.55 |
3 | Transparency | y = 0.7218x + 18.657 | 0.75 *** | 15.11 | y = 0.6658x + 21.062 | 0.69 *** | 17.78 | |
4 | TSS | y = 0.7254x + 9.998 | 0.73 *** | 8.85 | y = 0.6731x + 11.749 | 0.60 *** | 10.76 | |
6 | Chl-a | y = 0.8153x + 0.017 | 0.82 *** | 0.02 | y = 0.7692x + 0.021 | 0.76 *** | 0.03 | |
3 | TP | y = 0.6892x + 0.106 | 0.73 *** | 0.10 | y = 0.6781x + 0.120 | 0.66 *** | 0.12 | |
NSRIs-3b | 2 | TDS | y = 0.2839x + 256 | 0.28 ** | 2012.82 | y = 0.1914x + 28,834 | 0.17 * | 2392.33 |
4 | Transparency | y = 0.7514x + 17.142 | 0.82 *** | 13.23 | y = 0.7109x + 21.13 | 0.78 *** | 15.69 | |
4 | TSS | y = 0.7464x + 9.731 | 0.78 *** | 8.05 | y = 0.7119x + 9.957 | 0.76 *** | 8.46 | |
5 | Chl-a | y = 0.8305x + 0.016 | 0.85 *** | 0.02 | y = 0.8161x + 0.016 | 0.81 *** | 0.02 | |
3 | TP | y = 0.7189x + 0.086 | 0.75 *** | 0.10 | y = 0.704x + 0.091 | 0.72 *** | 0.11 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elsayed, S.; Gad, M.; Farouk, M.; Saleh, A.H.; Hussein, H.; Elmetwalli, A.H.; Elsherbiny, O.; Moghanm, F.S.; Moustapha, M.E.; Taher, M.A.; et al. Using Optimized Two and Three-Band Spectral Indices and Multivariate Models to Assess Some Water Quality Indicators of Qaroun Lake in Egypt. Sustainability 2021, 13, 10408. https://doi.org/10.3390/su131810408
Elsayed S, Gad M, Farouk M, Saleh AH, Hussein H, Elmetwalli AH, Elsherbiny O, Moghanm FS, Moustapha ME, Taher MA, et al. Using Optimized Two and Three-Band Spectral Indices and Multivariate Models to Assess Some Water Quality Indicators of Qaroun Lake in Egypt. Sustainability. 2021; 13(18):10408. https://doi.org/10.3390/su131810408
Chicago/Turabian StyleElsayed, Salah, Mohamed Gad, Mohamed Farouk, Ali H. Saleh, Hend Hussein, Adel H. Elmetwalli, Osama Elsherbiny, Farahat S. Moghanm, Moustapha E. Moustapha, Mostafa A. Taher, and et al. 2021. "Using Optimized Two and Three-Band Spectral Indices and Multivariate Models to Assess Some Water Quality Indicators of Qaroun Lake in Egypt" Sustainability 13, no. 18: 10408. https://doi.org/10.3390/su131810408
APA StyleElsayed, S., Gad, M., Farouk, M., Saleh, A. H., Hussein, H., Elmetwalli, A. H., Elsherbiny, O., Moghanm, F. S., Moustapha, M. E., Taher, M. A., Eid, E. M., & Abou El-Safa, M. M. (2021). Using Optimized Two and Three-Band Spectral Indices and Multivariate Models to Assess Some Water Quality Indicators of Qaroun Lake in Egypt. Sustainability, 13(18), 10408. https://doi.org/10.3390/su131810408