Prediction Models for Evaluating the Uptake of Heavy Metals by the Invasive Grass Vossia cuspidata (Roxb.) Griff. in the River Nile, Egypt: A Biomonitoring Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Plant Sampling and Analysis
2.3. Sediment Sampling and Analysis
2.4. Data Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chakravarty, P.; SenSarma, N.; Sarma, H.P. Biosorption of cadmium (II) from aqueous solution using heartwood powder of Areca catechu. Chem. Eng. J. 2010, 162, 949–955. [Google Scholar] [CrossRef]
- Oyuela Leguizamo, M.A.; Gómez, W.D.F.; Sarmiento, M.C.G. Native herbaceous plant species with potential use in phytoremediation of heavy metals, spotlight on wetlands: A review. Chemosphere 2017, 168, 1230–1247. [Google Scholar] [CrossRef]
- Chandra, R.; Yadav, S.; Yadav, S. Phytoextraction potential of heavy metals by native wetland plants growing on chlorolignin containing sludge of pulp and paper industry. Ecol. Eng. 2017, 98, 134–145. [Google Scholar] [CrossRef]
- Krishnamurti GS, R.; Huang, P.M.; Kozak, L.M. Sorption and desorption kinetics of cadmium from soils: Influence of phosphate. Soil Sci. 1999, 164, 888–898. [Google Scholar] [CrossRef]
- Usman AR, A.; Kuzyakov, Y.; Stahr, K. Sorption, Desorption, and Immobilization of Heavy Metals by Artificial Soil; University of Hohenhiem: Stuttgart, Germany, 2008. [Google Scholar]
- Novotná, M.; Mikeš, O.; Komprdová, K. Development and comparison of regression models for the uptake of metals into various field crops. Environ. Pollut. 2015, 207, 357–364. [Google Scholar] [CrossRef]
- Eid, E.M.; Alrumman, S.A.; Farahat, E.A.; El-Bebany, A.F. Prediction models for evaluating the uptake of heavy metals by cucumbers (Cucumis sativus L.) grown in agricultural soils amended with sewage sludge. Environ. Monit. Assess. 2018, 190, 501. [Google Scholar] [CrossRef] [PubMed]
- Eid, E.M.; Galal, T.M.; Shaltout, K.H.; El-Sheikh, M.A.; Asaeda, T.; Alatar, A.A.; Alfarhan, A.H.; Alharthi, A.; Alshehri, A.M.A.; Picó, Y.; et al. Biomonitoring potential of the native aquatic plant Typha domingensis by predicting trace metals accumulation in the Egyptian Lake Burullus. Sci. Total Environ. 2020, 714, 136603. [Google Scholar] [CrossRef] [PubMed]
- Eid, E.M.; Shaltout, K.H. Monthly variations of trace elements accumulation and distribution in above- and below-ground biomass of Phragmites australis (Cav.) Trin. Ex Steudel in Lake Burullus (Egypt): A biomonitoring application. Ecol. Eng. 2014, 73, 17–25. [Google Scholar] [CrossRef]
- Galal, T.M.; Farahat, E.A. The invasive macrophyte Pistia stratiotes L. as a bioindicator for water pollution in Lake Mariut, Egypt. Environ. Monit. Assess. 2015, 178, 701. [Google Scholar] [CrossRef] [PubMed]
- Farahat, E.A.; Galal, T.M. Trace metal accumulation by Ranunculus sceleratus: Implications for phytostabilization. Environ. Sci. Pollut. Res. 2018, 25, 4214–4222. [Google Scholar] [CrossRef]
- Eid, E.M.; Shaltout, K.H.; Moghanm, F.S.; Youssef, M.S.; El-Mohsnawy, E.; Haroun, S.A. Bioaccumulation and translocation of nine heavy metals by Eichhornia crassipes in Nile Delta, Egypt: Perspectives for phytoremediation. Int. J. Phytoremediat. 2019, 21, 821–830. [Google Scholar] [CrossRef] [PubMed]
- Odoh, C.K.; Zabbey, N.; Sam, K.; Eze, C.N. Status, progress and challenges of phytoremediation—An African scenario. J. Environ. Manag. 2019, 237, 365–378. [Google Scholar] [CrossRef] [PubMed]
- Augustsson, A.L.; Uddh-Soderberg, T.E.; Hogmalm, K.J.; Filipsson, M.E. Metal uptake by homegrown vegetables—The relative importance in human health risk assessments at contaminated sites. Environ. Res. 2015, 138, 181–190. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Song, J.; Gao, H.; Zhang, Q.; Lv, M.; Wang, S.; Liu, G. Improving prediction of metal uptake by Chinese cabbage (Brassica pekinensis L.) based on a soil-plant stepwise analysis. Sci. Total Environ. 2016, 569, 1595–1605. [Google Scholar] [CrossRef] [PubMed]
- Boulos, L. Flora of Egypt: Vol. 4 (Alismataceae—Orchidaceae); Al Hadara Publishing: Cairo, Egypt, 2005; p. 617. [Google Scholar]
- Shehata, M.N. Ecological Studies on Vossia cuspidate, Roxb Griff in the Nile Delta of Egypt. Egypt. J. Bot. 1996, 36, 37–51. [Google Scholar]
- Galal, T.M.; Gharib, F.A.; Ghazi, S.M.; Mansour, K.H. Phytostabilization of heavy metals by the emergent macrophyte Vossia cuspidata (Roxb.) Griff.: A phytoremediation approach. Int. J. Phytoremediat. 2017, 19, 992–999. [Google Scholar] [CrossRef]
- Boulos, L. Flora of Egypt. Checklist; Al Hadara Publishing: Cairo, Egypt, 1995. [Google Scholar]
- Raphael, E.; Momoh, S.; Kayode, D.; Gideon, A.; Friday, E.T. The phytochemical constituents of Vossia cuspidata and Synedrella nodiflora. Int. J. Curr. Res. Biosci. Plant Biol. 2016, 3, 53–57. [Google Scholar] [CrossRef]
- Mahmoud, W.F.; Farahat, E.A.; Fahmy, G.M.; Farrag, H.F.; Awad, H.E. Monthly and seasonal variations of biomass partitioning and macronutrients in the invasive grass Vossia cuspidata (Roxb.) Griff. Aquat. Bot. 2021, 172, 103399. [Google Scholar] [CrossRef]
- Mahmoud, W.F.; Farahat, E.A.; Fahmy, G.M.; Farrag, H.F.; Awad, H.E. Impact of the invasive species Vossia cuspidata (Roxb.) Griff. on the diversity and temporal changes of the native flora of the River Nile in Egypt. Taeckholmia 2021, 41, 1–17. [Google Scholar]
- Farahat, E.A.; Mahmoud, W.F.; Fahmy, G.M. Seasonal variations of heavy metals in water, sediment, and organs of Vossia cuspidata (Roxb.) Griff. in River Nile ecosystem: Implication for phytoremediation. Environ. Sci. Pollut. Res. 2021, 28, 32626–32633. [Google Scholar] [CrossRef]
- Chapman, H.D.; Pratt, R.E. Methods of Analysis for Soil, Plants and Water; Department of Soil, Plant Nutrition, University of California: Los Angeles, CA, USA, 1961; p. 309. [Google Scholar]
- Allen, S.E. Chemical Analysis of Ecological Materials; Black Well Science Pub. Osney: Oxford, UK, 1989. [Google Scholar]
- Xiao, R.; Bai, J.; Zhang, H.; Gao, H.; Liu, X.; Wilkes, A. Changes of P, Ca, Al and Fe contents in fringe marshes along a pedogenic chronosequence in the Pearl River estuary, South China. Cont. Shelf Res. 2011, 31, 739–747. [Google Scholar] [CrossRef]
- Gupta, S.; Nayek, S.; Saha, R.N.; Satpati, S. Assessment of heavy metal accumulation in macrophyte, agricultural soil, and crop plants adjacent to discharge zone of sponge iron factory. Environ. Geol. 2008, 55, 731–739. [Google Scholar] [CrossRef]
- Eid, E.M.; Shaltout, K.H.; Al-Sodany, Y.M.; Haroun, S.A.; Galal, T.M.; Ayed, H.; Khedher, K.M.; Jensen, K. Common reed (Phragmites australis (Cav.) Trin. ex Steudel) as a candidate for predicting heavy metal contamination in Lake Burullus, Egypt: A biomonitoring approach. Ecol. Eng. 2020, 148, 105787. [Google Scholar] [CrossRef]
- SPSS IBM. IBM SPSS Statistics software for Windows; 2013. [Google Scholar]
- Liu, Z.L.; He, X.Y.; Chen, W.; Yuan, F.H.; Yan, K.; Tao, D.L. Accumulation and tolerance characteristics of cadmium in a potential hyperaccumulator-Lonicera japonica Thunb. J. Hazard. Mater. 2009, 169, 170–175. [Google Scholar] [CrossRef] [PubMed]
- Chaudri, A.; McGrath, S.; Gibbs, P.; Chambers, B.; Carlton-Smith, C.; Godley, A.; Bacon, J.; Campbell, C.; Aitken, M. Cadmium availability to wheat grain in soils treated with sewage sludge or metal salts. Chemosphere 2007, 66, 1415–1423. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Shafy, H.I.; Aly, R.O. Water issue in Egypt: Resources, pollution and protection endeavors. Cent. Eur. J. Occup. Environ. Med. 2002, 8, 3–21. [Google Scholar]
- Ma, H.; Gao, F.; Fan, X.; Cui, B.; Liu, C.; Cui, E.; Zhang, Z.; Hu, C.; Mo, Y. Vinasse affects the formation of iron plaque on roots of Acorus calamus and immobilization of lead, cadmium, copper, zinc by this plant. J. Water Process. Eng. 2020, 38, 101587. [Google Scholar] [CrossRef]
- St-Cyr, L.; Campbell, P.G.C. Metals (Fe, Mn, Zn) in the root plaque of submerged aquatic plants collected in situ: Relations with metal concentrations in the adjacent sediments and in the root tissue. Biogeochemistry 1996, 33, 45–76. [Google Scholar] [CrossRef]
- Bonanno, G.; Borg, J.A.; DiMartino, V. Levels of heavy metals in wetland and marine vascular plants and their biomonitoring potential: A comparative assessment. Sci. Total Environ. 2017, 576, 796–806. [Google Scholar] [CrossRef]
- Christou, A.; Theologides, C.P.; Costa, C.; Kalavrouziotis, I.K.; Varnavas, S.P. Assessment of toxic heavy metals concentrations in soils and wild and cultivated plant species in Limni abandoned copper mining site, Cyprus. J. Geochem. Explor. 2017, 178, 16–22. [Google Scholar] [CrossRef]
- Rezania, S.; Park, J.; Rupani, P.F.; Darajeh, N.; Xu, X. Phytoremediation potential and control of Phragmites australis as a green phytomass: An overview. Environ. Sci. Pollut. Res. 2019, 26, 7428–7441. [Google Scholar] [CrossRef]
- Lago-Vila, M.; Arenas-Lago, D.; Rodríguez-Seijo, A.; Andrade, M.L.; Vega, F.A. Ability of Cytisus scoparius for phytoremediation of soils from a Pb/Zn mine: Assessment of metal bioavailability and bioaccumulation. J. Environ. Manag. 2019, 235, 152–160. [Google Scholar] [CrossRef] [PubMed]
- Eid, E.M.; Shaltout, K.H.; El-Sheikh, M.A.; Asaeda, T. Seasonal courses of nutrients and heavy metals in water, sediment and above- and below-ground Typha domingensis biomass in Lake Burullus (Egypt): Perspective for phytoremediation. Flora 2012, 207, 783–794. [Google Scholar] [CrossRef]
- Lopes, C.; Herva, M.; Franco-Uría, A.; Roca, E. Multicorrelation models and uptake factors to estimate extractable metal concentrations from soil and metal in plants in pasturelands fertilized with manure. Environ. Pollut. 2012, 166, 17–22. [Google Scholar] [CrossRef] [PubMed]
Value | pH | OM (%) | Silt (%) | Clay (%) | Heavy Metal Concentrations (mg/kg) | |||||
---|---|---|---|---|---|---|---|---|---|---|
Fe | Mn | Zn | Cu | Ni | Pb | |||||
Mean (n = 48) | 7.41 | 0.44 | 33.24 | 3.91 | 4.45 | 0.61 | 0.37 | 0.09 | 0.40 | 0.45 |
Minimum | 6.74 | 0.03 | 14.70 | 3.20 | 2.59 | 0.25 | 0.22 | 0.03 | 0.10 | 0.16 |
Maximum | 7.97 | 1.14 | 39.00 | 5.00 | 6.84 | 1.04 | 0.66 | 0.20 | 0.97 | 1.02 |
CV (%) | 4.0 | 87.7 | 17.2 | 12.3 | 30.6 | 35.8 | 33.7 | 49.5 | 62.8 | 56.1 |
Organ | Value | Heavy Metal Content (mg/kg) | |||||
---|---|---|---|---|---|---|---|
Fe | Mn | Zn | Cu | Ni | Pb | ||
Root | Mean (n = 48) | 2527.4 a | 409.2 a | 20.6 a | 11.4 a | 15.2 a | 13.9 a |
Minimum | 130.3 | 121.9 | 6.8 | 1.9 | 2.6 | 0.6 | |
Maximum | 5888.6 | 788.2 | 43.8 | 24.4 | 46.0 | 43.6 | |
CV (%) | 75.2 | 56.4 | 52.2 | 57.1 | 92.2 | 99.2 | |
Rhizome | Mean (n = 48) | 445.3 b | 36.4 b | 20.9 a | 9.5 a | 15.6 a | 14.4 a |
Minimum | 224.7 | 17.1 | 9.1 | 1.1 | 1.7 | 0.2 | |
Maximum | 975.8 | 57.7 | 35.3 | 28.5 | 53.3 | 52.5 | |
CV (%) | 50.7 | 36.5 | 39.4 | 77.5 | 104.6 | 116.0 | |
Leaf | Mean (n = 48) | 772.3 b | 54.9 b | 13.5 a | 8.1 a | 17.6 a | 17.6 a |
Minimum | 263.7 | 29.8 | 5.8 | 1.2 | 2.6 | 1.3 | |
Maximum | 5021.9 | 117.1 | 36.7 | 17.5 | 71.1 | 66.7 | |
CV (%) | 148.1 | 44.5 | 58.3 | 65.9 | 120.6 | 112.6 | |
Stem | Mean (n = 48) | 700.1 b | 25.0 b | 21.5 a | 14.0 a | 17.6 a | 16.3 a |
Minimum | 105.4 | 12.5 | 2.8 | 0.6 | 2.6 | 0.7 | |
Maximum | 2877.6 | 44.4 | 75.6 | 85.4 | 50.9 | 50.1 | |
CV (%) | 91.3 | 37.9 | 85.0 | 142.4 | 84.9 | 92.3 | |
F-value | 10.7 *** | 40.8 *** | 1.6 ns | 0.8 ns | 0.1 ns | 0.2 ns | |
Phytotoxic range | >1000 | 400–1000 | 100–500 | 20–100 | 40–246 | 30–300 |
Element | BCF | TFrhizome | TFstem | TFleaf |
---|---|---|---|---|
Fe | 573.0 ± 115.0 a | 0.54 ± 0.1 a | 0.82 ± 0.2 a | 0.73 ± 0.1 a |
Mn | 766.6 ± 111.2 a | 0.81 ± 0.3 a | 0.56 ± 0.2 a | 1.11 ± 0.4 a |
Zn | 57.6 ± 8.1 b | 1.14 ± 0.1 a | 1.21 ± 0.3 a | 0.72 ± 0.1 a |
Cu | 147.9 ± 24.6 b | 1.02 ± 0.4 a | 1.28 ± 0.4 a | 0.79 ± 0.2 a |
Ni | 60.1 ± 25.3 b | 0.98 ± 0.5 a | 1.12 ± 0.3 a | 1.15 ± 0.7 a |
Pb | 41.9 ± 15.8 b | 0.97 ± 0.5 a | 1.16 ± 0.3 a | 1.21 ± 0.7 a |
F-value | 26.2 *** | 0.3 ns | 0.9 ns | 0.2 ns |
Equation | R2 | ME | MNAE | MNB | Student’s t-Test | |
---|---|---|---|---|---|---|
t-Value | p | |||||
Roots | ||||||
Cu = −103.826 + (42.112 × Cusoil) + (0.657 × OM) + (11.677 × pH) + (0.178 × Silt) + (4.882 × Clay) | 0.332 ** | 0.604 | 0.284 | 0.072 | 0.771 | 0.457 |
Fe = −24977.674 + (479.263 × Fesoil) − (953.986 × OM) + (2069.725 × pH) + (156.277 × Silt) + (1349.333 × Clay) | 0.325 ** | 0.581 | 0.302 | 0.079 | 0.798 | 0.442 |
Mn = 5767.464 + (303.339 × Mnsoil) + (148.907 × OM) − (593.591 × pH) − (22.251 × Silt) − (120.727 × Clay) | 0.558 *** | 0.842 | 0.146 | 0.024 | 0.288 | 0.779 |
Ni = 283.880 − (22.644 × Nisoil) + (21.063 × OM) − (28.277 × pH) + (0.419 × Silt) − (18.777 × Clay) | 0.320 ** | 0.565 | 0.338 | 0.088 | 0.841 | 0.418 |
Pb = 287.031 − (26.505 × Pbsoil) + (24.511 × OM) − (28.310 × pH) + (0.422 × Silt) − (19.545 × Clay) | 0.349 ** | 0.623 | 0.246 | 0.071 | 0.642 | 0.534 |
Zn = 192.147 + (9.272 × Znsoil) + (5.322 × OM) − (20.812 × pH) + (0.289 × Silt) − (8.481 × Clay) | 0.360 ** | 0.663 | 0.237 | 0.066 | 0.618 | 0.549 |
Rhizomes | ||||||
Cu = −35.775 + (26.287 × Cusoil) − (4.728 × OM) + (6.582 × pH) − (0.080 × Silt) − (0.315 × Clay) | 0.196 | 0.355 | 0.468 | 0.159 | 2.611 | 0.024 |
Fe = −339.958 + (40.843 × Fesoil) + (312.337 × OM) + (50.835 × pH) + (2.193 × Silt) + (4.202 × Clay) | 0.260 * | 0.464 | 0.362 | 0.113 | 1.323 | 0.213 |
Mn = −56.183 − (6.640 × Mnsoil) + (14.654 × OM) + (7.736 × pH) + (1.109 × Silt) − (1.021 × Clay) | 0.413 *** | 0.785 | 0.218 | 0.048 | 0.515 | 0.617 |
Ni = −144.065 + (15.105 × Nisoil) + (1.163 × OM) + (17.499 × pH) + (0.308 × Silt) + (3.349 × Clay) | 0.098 | 0.228 | 0.530 | 0.226 | 3.080 | 0.010 |
Pb = −143.622 + (15.696 × Pbsoil) + (0.370 × OM) + (17.568 × pH) + (0.282 × Silt) + (2.868 × Clay) | 0.091 | 0.112 | 0.817 | 0.295 | 3.739 | 0.003 |
Zn = −87.860 + (0.076 × Znsoil) − (2.994 × OM) + (8.907 × pH) + (0.405 × Silt) + (7.822 × Clay) | 0.198 | 0.423 | 0.421 | 0.129 | 2.453 | 0.032 |
Leaves | ||||||
Cu = −108.796 + (6.862 × Cusoil) − (3.108 × OM) + (11.248 × pH) + (0.248 × Silt) + (6.660 × Clay) | 0.378 ** | 0.695 | 0.223 | 0.065 | 0.593 | 0.565 |
Fe = 16156.157 − (323.433 × Fesoil) + (1374.681 × OM) − (1217.499 × pH) − (18.437 × Silt) − (1256.146 × Clay) | 0.396 ** | 0.785 | 0.219 | 0.051 | 0.520 | 0.613 |
Mn = −16.556 + (7.443 × Mnsoil) − (21.895 × OM) + (5.149 × pH) + (1.009 × Silt) + (1.241 × Clay) | 0.213 | 0.442 | 0.368 | 0.118 | 1.457 | 0.173 |
Ni = 281.695 + (51.451 × Nisoil) − (0.513 × OM) − (30.920 × pH) + (0.264 × Silt) − (16.449 × Clay) | 0.663 *** | 0.873 | 0.058 | 0.003 | 0.041 | 0.968 |
Pb = 233.578 + (42.096 × Pbsoil) + (2.603 × OM) − (27.027 × pH) + (0.250 × Silt) − (11.302 × Clay) | 0.578 *** | 0.849 | 0.106 | 0.022 | 0.147 | 0.886 |
Zn = 151.569 − (4.207 × Znsoil) + (11.465 × OM) − (15.815 × pH) − (0.056 × Silt) − (5.768 × Clay) | 0.497 *** | 0.812 | 0.187 | 0.039 | 0.423 | 0.681 |
Stems | ||||||
Cu = 60.375 − (83.621 × Cusoil) + (25.657 × OM) − (0.459 × pH) − (0.432 × Silt) − (8.238 × Clay) | 0.279 * | 0.483 | 0.341 | 0.103 | 0.860 | 0.408 |
Fe = 1048.276 + (214.361 × Fesoil) + (491.823 × OM) − (224.471 × pH) + (14.344 × Silt) − (85.061 × Clay) | 0.208 | 0.425 | 0.401 | 0.124 | 1.878 | 0.087 |
Mn = −80.752 − (1.617 × Mnsoil) − (4.740 × OM) + (11.067 × pH) + (0.344 × Silt) + (3.921 × Clay) | 0.113 | 0.293 | 0.527 | 0.225 | 3.022 | 0.012 |
Ni = −227.257 + (67.746 × Nisoil) − (24.093 × OM) + (27.663 × pH) + (0.497 × Silt) + (1.298 × Clay) | 0.539 *** | 0.840 | 0.163 | 0.036 | 0.349 | 0.734 |
Pb = −238.447 + (68.242 × Pbsoil) − (25.226 × OM) + (27.505 × pH) + (0.589 × Silt) + (2.955 × Clay) | 0.536 *** | 0.817 | 0.171 | 0.037 | 0.368 | 0.720 |
Zn = −71.786 + (33.922 × Znsoil) + (7.227 × OM) + (10.965 × pH) + (0.903 × Silt) − (8.627 × Clay) | 0.162 | 0.297 | 0.508 | 0.212 | 2.801 | 0.017 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Farahat, E.A.; Mahmoud, W.F.; Awad, H.E.A.; Farrag, H.F.; Arshad, M.; Eid, E.M.; Fahmy, G.M. Prediction Models for Evaluating the Uptake of Heavy Metals by the Invasive Grass Vossia cuspidata (Roxb.) Griff. in the River Nile, Egypt: A Biomonitoring Approach. Sustainability 2021, 13, 10558. https://doi.org/10.3390/su131910558
Farahat EA, Mahmoud WF, Awad HEA, Farrag HF, Arshad M, Eid EM, Fahmy GM. Prediction Models for Evaluating the Uptake of Heavy Metals by the Invasive Grass Vossia cuspidata (Roxb.) Griff. in the River Nile, Egypt: A Biomonitoring Approach. Sustainability. 2021; 13(19):10558. https://doi.org/10.3390/su131910558
Chicago/Turabian StyleFarahat, Emad A., Waleed F. Mahmoud, Hossam E. A. Awad, Hussein F. Farrag, Muhammad Arshad, Ebrahem M. Eid, and Gamal M. Fahmy. 2021. "Prediction Models for Evaluating the Uptake of Heavy Metals by the Invasive Grass Vossia cuspidata (Roxb.) Griff. in the River Nile, Egypt: A Biomonitoring Approach" Sustainability 13, no. 19: 10558. https://doi.org/10.3390/su131910558
APA StyleFarahat, E. A., Mahmoud, W. F., Awad, H. E. A., Farrag, H. F., Arshad, M., Eid, E. M., & Fahmy, G. M. (2021). Prediction Models for Evaluating the Uptake of Heavy Metals by the Invasive Grass Vossia cuspidata (Roxb.) Griff. in the River Nile, Egypt: A Biomonitoring Approach. Sustainability, 13(19), 10558. https://doi.org/10.3390/su131910558