The Optimization of Canola Crop Production through Wheat Residue Management within a Western Canadian Context—A Case Study of Saint-Front, Saskatchewan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Area of Interest
2.2. Experimental Design and Wheat Harvest
2.3. Sampling and Residue Organic Weight
2.4. Residue Degradation Analyses by ATR-FTIR
2.5. Imaging Degraded Residue Samples through FTIR Spectromicroscopy
2.6. Imaging Elemental Distribution through SR-XFI
2.7. Statistical Analysis
3. Results
3.1. Canola Yield and Significance Analyses
3.2. Organic Weight of Wheat Residue
3.3. FTIR Analysis of Residue Decomposition
3.4. XFI Analyses of Elemental Distribution
4. Discussion
4.1. Fundamental Knowledge of Applied Crop Residue Management Techniques
4.2. Optimal Management Techniques for One-Year Data
4.3. Mechanism of Crop Residue Decomposition
4.4. Element Usage during Crop Residue Decomposition
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- United States Department of Agriculture. Conservation Effects Assessment Project (CEAP)—Crop Residue Management; United States Department of Agriculture: Washington, DC, USA, 2013.
- Liu, J.; Zhong, F.; Niu, W.; Zhao, Y.; Su, J.; Feng, Y.; Meng, H. Effects of temperature and catalytic methods on the physicochemical properties of microwave-assisted hydrothermal products of crop residues. J. Clean. Prod. 2021, 279, 123512. [Google Scholar] [CrossRef]
- Bentsen, N.S.; Jørgensen, J.R.; Stupak, I.; Jørgensen, U.; Taghizadeh-Toosi, A. Dynamic sustainability assessment of heat and electricity production based on agricultural crop residues in Denmark. J. Clean. Prod. 2019, 213, 491–507. [Google Scholar] [CrossRef]
- Raza, M.H.; Abid, M.; Yan, T.; Naqvi, S.A.A.; Akhtar, S.; Faisal, M. Understanding farmers’ intentions to adopt sustainable crop residue management practices: A structural equation modeling approach. J. Clean. Prod. 2019, 227, 613–623. [Google Scholar] [CrossRef]
- Prasad, R.; Power, J. Crop residue management. In Advances in Soil Science; Springer: Berlin/Heidelberg, Germany, 1991; pp. 205–251. [Google Scholar]
- Sharma, A. Performance evaluation of cultivator and its influence on various soil physical properties. J. Pharmacog. Phytochem. 2019, 8, 1688–1691. [Google Scholar]
- Wikipedia. Tillage. 2020. Available online: https://en.wikipedia.org/wiki/Tillage (accessed on 25 July 2021).
- Brennan, J.; Hackett, R.; McCabe, T.; Grant, J.; Fortune, R.; Forristal, P. The effect of tillage system and residue management on grain yield and nitrogen use efficiency in winter wheat in a cool Atlantic climate. Eur. J. Agron. 2014, 54, 61–69. [Google Scholar] [CrossRef]
- Jabro, J.D.; Stevens, W.B.; Evans, R.G.; Iversen, W.M. Tillage effects on physical properties in two soils of the Northern Great Plains. Appl. Eng. Agric. 2009, 25, 337. [Google Scholar] [CrossRef]
- Hillel, D.; Hatfield, J.L. Encyclopedia of Soils in the Environment; Elsevier: Amsterdam, The Netherlands, 2005; Volume 3. [Google Scholar]
- Schomberg, H.H.; Ford, P.B.; Hargrove, W.L. Influence of crop residues on nutrient cycling and soil chemical properties. In Managing Agricultural Residues; Lewis Publishers, Inc.: Boca Raton, FL, USA, 1994; pp. 99–122. [Google Scholar]
- Chen, X.; Ye, X.; Chu, W.; Olk, D.C.; Cao, X.; Schmidt-Rohr, K.; Zhang, L.; Thompson, M.L.; Mao, J.; Gao, H. Formation of Char-Like, Fused-Ring Aromatic Structures from a Nonpyrogenic Pathway during Decomposition of Wheat Straw. J. Agric. Food Chem. 2020, 68, 2607–2614. [Google Scholar] [CrossRef] [PubMed]
- Roldán, A.; Caravaca, F.; Hernández, M.; Garcıa, C.; Sánchez-Brito, C.; Velásquez, M.; Tiscareno, M. No-tillage, crop residue additions, and legume cover cropping effects on soil quality characteristics under maize in Patzcuaro watershed (Mexico). Soil Tillage Res. 2003, 72, 65–73. [Google Scholar] [CrossRef]
- Chávez-Romero, Y.; Navarro-Noya, Y.E.; Reynoso-Martínez, S.C.; Sarria-Guzmán, Y.; Govaerts, B.; Verhulst, N.; Dendooven, L.; Luna-Guido, M. 16S metagenomics reveals changes in the soil bacterial community driven by soil organic C, N-fertilizer and tillage-crop residue management. Soil Tillage Res. 2016, 159, 1–8. [Google Scholar] [CrossRef]
- Bodirlau, R.; Teaca, C. Fourier transform infrared spectroscopy and thermal analysis of lignocellulose fillers treated with organic anhydrides. Rom. J. Phys 2009, 54, 93–104. [Google Scholar]
- Khatami, S.; Deng, Y.; Tien, M.; Hatcher, P.G. Lignin contribution to aliphatic constituents of humic acids through fungal degradation. J. Environ. Qual. 2019, 48, 1565–1570. [Google Scholar] [CrossRef]
- Li, K.; Xing, R.; Liu, S.; Qin, Y.; Meng, X.; Li, P. Microwave-assisted degradation of chitosan for a possible use in inhibiting crop pathogenic fungi. Int. J. Biol. Macromol. 2012, 51, 767–773. [Google Scholar] [CrossRef]
- Liang, S.; McDonald, A.G. Chemical and thermal characterization of potato peel waste and its fermentation residue as potential resources for biofuel and bioproducts production. J. Agric. Food Chem. 2014, 62, 8421–8429. [Google Scholar] [CrossRef] [PubMed]
- Cao, Q.; Zhu, S.; Pan, N.; Zhu, Y.; Tu, H. Characterization of archaeological cotton (G. herbaceum) fibers from Yingpan. Tech. Briefs Hist. Archaeol. 2009, 4, 18–28. [Google Scholar]
- Łojewska, J.; Miśkowiec, P.; Łojewski, T.; Proniewicz, L. Cellulose oxidative and hydrolytic degradation: In situ FTIR approach. Polym. Degrad. Stabil. 2005, 88, 512–520. [Google Scholar] [CrossRef]
- Kavkler, K.; Demsar, A. Application of FTIR and Raman spectroscopy to qualitative analysis of structural changes in cellulosic fibres. Tekstilec 2012, 55, 19–31. [Google Scholar]
- Bonnin, S.; Besson, F.; Gelhausen, M.; Chierici, S.; Roux, B. A FTIR spectroscopy evidence of the interactions between wheat germ agglutinin and N-acetylglucosamine residues. FEBS Lett. 1999, 456, 361–364. [Google Scholar] [CrossRef] [Green Version]
- Canola Council of Canada. Industry Overview—Canola production. Available online: https://www.canolacouncil.org/about-canola/industry/ (accessed on December 2020).
- Sadik-Zada, E.R.; Loewenstein, W.; Hasanli, Y. Commodity revenues, agricultural sector and the magnitude of deindustrialization: A novel multisector perspective. Economies 2019, 7, 113. [Google Scholar] [CrossRef] [Green Version]
- Sadik-Zada, E.R. Natural resources, technological progress, and economic modernization. Rev. Dev. Econ. 2021, 25, 381–404. [Google Scholar] [CrossRef]
- Song, P.; Huang, G.; An, C.; Shen, J.; Zhang, P.; Chen, X.; Shen, J.; Yao, Y.; Zheng, R.; Sun, C. Treatment of rural domestic wastewater using multi-soil-layering systems: Performance evaluation, factorial analysis and numerical modeling. Sci. Total Environ. 2018, 644, 536–546. [Google Scholar] [CrossRef]
- Xin, X.; Huang, G.; An, C.; Weger, H.; Cheng, G.; Shen, J.; Rosendahl, S. Analyzing the biochemical alteration of green algae during chronic exposure to triclosan based on synchrotron-based Fourier transform infrared Spectromicroscopy. Anal. Chem. 2019, 91, 7798–7806. [Google Scholar] [CrossRef] [PubMed]
- Xin, X.; Huang, G.; An, C.; Feng, R. Interactive Toxicity of Triclosan and Nano-TiO2 to Green Alga Eremosphaera viridis in Lake Erie: A New Perspective Based on Fourier Transform Infrared Spectromicroscopy and Synchrotron-Based X-ray Fluorescence Imaging. Environ. Sci. Technol. 2019, 53, 9884–9894. [Google Scholar] [CrossRef] [PubMed]
- Xin, X.; Huang, G.; An, C.; Raina-Fulton, R.; Weger, H. Insights into long-term toxicity of triclosan to freshwater green algae in lake erie. Environ. Sci. Technol. 2019, 53, 2189–2198. [Google Scholar] [CrossRef]
- Xin, X.; Huang, G.; An, C.; Lu, C.; Xiong, W. Exploring the biophysicochemical alteration of green alga Asterococcus superbus interactively affected by nanoparticles, triclosan and illumination. J. Hazard. Mater. 2020, 398, 122855. [Google Scholar] [CrossRef]
- Swanston, T.; Varney, T.; Coulthard, I.; Feng, R.; Bewer, B.; Murphy, R.; Hennig, C.; Cooper, D. Element localization in archaeological bone using synchrotron radiation X-ray fluorescence: Identification of biogenic uptake. J. Archaeol. Sci. 2012, 39, 2409–2413. [Google Scholar] [CrossRef]
- Mohapatra, H.; Malik, R. Effect of microorganism on flax and linen. J. Textile Sci. Eng. 2015, 6, 1–6. [Google Scholar]
- Wang, C.; Zheng, N.; Wan, S.; Wang, J. Assessment of the modes of occurrence of trace elements in agricultural crop residues and their enrichments and bioavailability in bio-chars. Biomass Convers. Biorefinery 2020, 11, 1–13. [Google Scholar] [CrossRef]
- Liu, X.; Herbert, S.; Hashemi, A.; Zhang, X.; Ding, G. Effects of agricultural management on soil organic matter and carbon transformation-a review. Plant Soil Environ. 2006, 52, 531. [Google Scholar] [CrossRef] [Green Version]
- Blanco-Canqui, H.; Lal, R. Crop residue removal impacts on soil productivity and environmental quality. Crit. Rev. Plant Sci. 2009, 28, 139–163. [Google Scholar] [CrossRef]
- Alliaume, F.; Rossing, W.; Tittonell, P.; Jorge, G.; Dogliotti, S. Reduced tillage and cover crops improve water capture and reduce erosion of fine textured soils in raised bed tomato systems. Agric. Ecosyst. Environ. 2014, 183, 127–137. [Google Scholar] [CrossRef]
- Smil, V. Crop Residues: Agriculture’s Largest Harvest: Crop residues incorporate more than half of the world’s agricultural phytomass. Bioscience 1999, 49, 299–308. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Wu, H.; Dai, K.; Zhang, D.; Feng, Z.; Zhao, Q.; Wu, X.; Jin, K.; Cai, D.; Oenema, O. Tillage and crop residue effects on rainfed wheat and maize production in northern China. Field Crops Res. 2012, 132, 106–116. [Google Scholar] [CrossRef]
- Verhulst, N.; Nelissen, V.; Jespers, N.; Haven, H.; Sayre, K.D.; Raes, D.; Deckers, J.; Govaerts, B. Soil water content, maize yield and its stability as affected by tillage and crop residue management in rainfed semi-arid highlands. Plant Soil 2011, 344, 73–85. [Google Scholar] [CrossRef]
- Chaudhary, A.; Chhokar, R.S.; Dhanda, S.; Kaushik, P.; Kaur, S.; Poonia, T.M.; Khedwal, R.S.; Kumar, S.; Punia, S.S. Herbicide Resistance to Metsulfuron-Methyl in Rumex dentatus L. in North-West India and Its Management Perspectives for Sustainable Wheat Production. Sustainability 2021, 13, 6947. [Google Scholar] [CrossRef]
- Harvanová, J. Selected aspects of integrated environmental management. Ann. Agric. Environ. Med. 2018, 25, 403–408. [Google Scholar]
- Sun, X.; Xu, F.; Sun, R.; Fowler, P.; Baird, M. Characteristics of degraded cellulose obtained from steam-exploded wheat straw. Carbohydr. Res. 2005, 340, 97–106. [Google Scholar] [CrossRef]
- Dignac, M.-F.; Bahri, H.; Rumpel, C.; Rasse, D.; Bardoux, G.; Balesdent, J.; Girardin, C.; Chenu, C.; Mariotti, A. Carbon-13 natural abundance as a tool to study the dynamics of lignin monomers in soil: An appraisal at the Closeaux experimental field (France). Geoderma 2005, 128, 3–17. [Google Scholar] [CrossRef]
- Kögel-Knabner, I. The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter. Soil Biol. Biochem. 2002, 34, 139–162. [Google Scholar] [CrossRef]
- Gul, S.; Yanni, S.F.; Whalen, J.K. Lignin controls on soil ecosystem services: Implications for biotechnological advances in biofuel crops. In Biochemistry Research Trends; Nova Science Publishers: New York, NY, USA, 2014; pp. 375–416. [Google Scholar]
- Tuomela, M.; Vikman, M.; Hatakka, A.; Itävaara, M. Biodegradation of lignin in a compost environment: A review. Bioresour. Technol. 2000, 72, 169–183. [Google Scholar] [CrossRef]
- Szijártó, N.; Siika-Aho, M.; Tenkanen, M.; Alapuranen, M.; Vehmaanperä, J.; Réczey, K.; Viikari, L. Hydrolysis of amorphous and crystalline cellulose by heterologously produced cellulases of Melanocarpus albomyces. J. Biotechnol. 2008, 136, 140–147. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Balkcom, K.S. Nutrient cycling and soil biology in row crop systems under intensive tillage. In Soil Health and Intensification of Agroecosytems; Elsevier: Amsterdam, The Netherlands, 2017; pp. 231–255. [Google Scholar]
- Parr, J.; Papendick, R. Factors affecting the decomposition of crop residues by microorganisms. Crop Residue Manag. Syst. ASA Spec. Publ. 1978, 31, 101–129. [Google Scholar]
- Demirel, B.; Scherer, P. Trace element requirements of agricultural biogas digesters during biological conversion of renewable biomass to methane. Biomass Bioenergy 2011, 35, 992–998. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xin, X.; Huang, G.; Halstead, D.; Gaetz, K.; Benmerrouche, L.; Huang, J.; Wu, Y.; Zhang, J.; Fu, Y.; Wang, N. The Optimization of Canola Crop Production through Wheat Residue Management within a Western Canadian Context—A Case Study of Saint-Front, Saskatchewan. Sustainability 2021, 13, 10459. https://doi.org/10.3390/su131810459
Xin X, Huang G, Halstead D, Gaetz K, Benmerrouche L, Huang J, Wu Y, Zhang J, Fu Y, Wang N. The Optimization of Canola Crop Production through Wheat Residue Management within a Western Canadian Context—A Case Study of Saint-Front, Saskatchewan. Sustainability. 2021; 13(18):10459. https://doi.org/10.3390/su131810459
Chicago/Turabian StyleXin, Xiaying, Guohe Huang, David Halstead, Katelyn Gaetz, Leila Benmerrouche, Jing Huang, Yuwei Wu, Jinbo Zhang, Yupeng Fu, and Nan Wang. 2021. "The Optimization of Canola Crop Production through Wheat Residue Management within a Western Canadian Context—A Case Study of Saint-Front, Saskatchewan" Sustainability 13, no. 18: 10459. https://doi.org/10.3390/su131810459
APA StyleXin, X., Huang, G., Halstead, D., Gaetz, K., Benmerrouche, L., Huang, J., Wu, Y., Zhang, J., Fu, Y., & Wang, N. (2021). The Optimization of Canola Crop Production through Wheat Residue Management within a Western Canadian Context—A Case Study of Saint-Front, Saskatchewan. Sustainability, 13(18), 10459. https://doi.org/10.3390/su131810459