Identification of Coupling and Influencing Factors between Urbanization and Ecosystem Services in Guanzhong, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methods
2.2.1. Evaluation of Ecosystem Service Values
2.2.2. Revision of Urbanization Level Index
2.2.3. The Coupling Coordination Degree Model (CCDM)
2.3. Data Resources and Processing
3. Results
3.1. Spatial Distribution Characteristics of Ecosystem Services Value
3.1.1. Ecosystem Services Value in Administrative Divisions
3.1.2. Ecosystem Services Value in Different LUCC Types
3.2. Spatial Pattern of Urbanization Degree
3.3. The interactive Relationship between Urbanization and ESV
4. Discussion
4.1. The Influencing Factors on Coupling Degree
4.1.1. Selection of Influencing Factors
4.1.2. Estimated Results and Analysis
4.1.3. Significant Factors and Robustness Test
4.2. Collaboratively Improving ESV and Urbanization Degree
4.3. Research Deficiencies and Prospects
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Costanza, R.; d’Arge, R.; de Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.V.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Liu, J.; Li, J.; Qin, K.; Zhou, Z.; Yang, X.; Li, T. Changes in land-uses and ecosystem services under multi-scenarios simulation. Sci. Total Environ. 2017, 586, 522–526. [Google Scholar] [CrossRef]
- Costanza, R.; De Groot, R.; Braat, L.; Kubiszewski, I.; Fioramonti, L.; Sutton, P.; Grasso, M. Twenty years of ecosystem services: How far have we come and how far do we still need to go? Ecosyst. Serv. 2017, 28, 1–16. [Google Scholar] [CrossRef]
- Alam, M.; Dupras, J.; Messier, C. A framework towards a composite indicator for urban ecosystem services. Ecol. Indic. 2016, 60, 38–44. [Google Scholar] [CrossRef]
- Estoque, R.C.; Murayama, Y. Landscape pattern and ecosystem service value changes: Implications for environmental sustainability planning for the rapidly urbanizing summer capital of the Philippines. Landsc. Urban. Plan. 2013, 116, 60–72. [Google Scholar] [CrossRef]
- Winkler, R. Valuation of ecosystem goods and services Part 1: An integrated dynamic approach. Ecol.Econ. 2006, 59, 82–93. [Google Scholar] [CrossRef]
- Cordier, M.; Agúndez, J.A.P.; Hecq, W.; Hamaide, B. A guiding framework for ecosystem services monetization in ecological-economic modeling. Ecosyst. Serv. 2013, 8, 86–96. [Google Scholar] [CrossRef] [Green Version]
- Limin, J. Urban land density function: A new method to characterize urban expansion. Landsc. Urban. Plan. 2015, 139, 26–39. [Google Scholar] [CrossRef]
- Li, B.; Chen, D.; Wu, S.; Zhou, S.; Wang, T.; Chen, H. Spatio-temporal assessment of urbanization impacts on ecosystem services: Case study of Nanjing City, China. Ecol. Indic. 2016, 71, 416–427. [Google Scholar] [CrossRef]
- Zhang, Z.; Gao, J.; Fan, X.; Lan, Y.; Zhao, M. Response of ecosystem services to socioeconomic development in the Yangtze River Basin, China. Ecol. Indic. 2017, 72, 481–493. [Google Scholar] [CrossRef]
- Wan, L.; Ye, X.; Lee, J.; Lu, X.; Zheng, L.; Wu, K. Effects of urbanization on ecosystem service values in a mineral resource-based city. Habitat Int. 2015, 46, 54–63. [Google Scholar] [CrossRef]
- Hou, L.; Wu, F.; Xie, X. The spatial characteristics and relationships between landscape pattern and ecosystem service value along an urban-rural gradient in Xi’an city, China. Ecol. Indic. 2020, 108, 105720.1–105720.10. [Google Scholar] [CrossRef]
- Song, Q.; Zhou, N.; Liu, T.; Siehr, S.A.; Qi, Y. Investigation of a “coupling model” of coordination between low-carbon development and urbanization in China. Energy Policy 2018, 121, 346–354. [Google Scholar] [CrossRef] [Green Version]
- Huang, G.; London, J. Mapping Cumulative Environmental Effects, Social Vulnerability, and Health in the San Joaquin Valley, California. Am. J. Public Health 2012, 102, 830–832. [Google Scholar] [CrossRef]
- Qiu, B.; Li, H.; Zhou, M.; Zhang, L. Vulnerability of ecosystem services provisioning to urbanization: A case of China. Ecol. Indic. 2015, 57, 505–513. [Google Scholar] [CrossRef]
- Lyu, R.; Clarke, K.C.; Zhang, J.; Jia, X.; Li, J. The impact of urbanization and climate change on ecosystem services: A case study of the city belt along the Yellow River in Ningxia, China. Comput. Environ. Urban. Syst. 2020, 77, 101351. [Google Scholar] [CrossRef] [Green Version]
- Zhou, H. The Modern Chinese Dictionary; Guangming Daily Press: Beijing, China, 2003; pp. 820–821. [Google Scholar]
- Xiong, J.X.; Chen, D.L.; Peng, B.F. Spatio-temporal Difference of Coupling Coordinative Degree of Ecological Carrying Capacity in the Dongting Lake Region. Sci. Geogr. Sin. 2014, 34, 1108–1116. (In Chinese) [Google Scholar]
- Wang, X.; Dong, Z.; Xu, W.; Luo, Y.; Wang, W. Study on Spatial and Temporal Distribution Characteristics of Coordinated Development Degree among Regional Water Resources, Social Economy, and Ecological Environment Systems. Int. J. Environ. Res. Public Health 2019, 16, 4213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rapport, D.J.; Friend, A.M. Towards a Comprehensive Framework for Environmental Statistics: A Stress-Response Approach; Office of the Senior Advisor on Integration: Ottawa, ON, Canada, 1979.
- Grossman, G.M.; Krueger, A.B. Environmental Impacts of a North American Free Trade Agreement. CEPR Discuss. Pap. 1992, 8, 223–250. [Google Scholar]
- Estoque, A.; Murayama, Y. Examining the potential impact of land use/cover changes on the ecosystem services of Baguio city, the Philippines: A scenario-based analysis. Appl. Geogr. 2012, 35, 316–326. [Google Scholar] [CrossRef]
- Buyantuyev, A.; Wu, J. Urbanization alters spatiotemporal patterns of ecosystem primary production: A case study of the Phoenix metropolitan region, USA. J. Arid. Environ. 2009, 73, 512–520. [Google Scholar] [CrossRef]
- Fang, C.L.; Huang, J.C.; Bu, W.N. Theoretical Study on Urbanization Process and Ecological Effect with the Restriction of Water Resource in Arid Area of Northwest China. Arid. Land Geogr. 2004, 27, 1–7. [Google Scholar]
- Ren, Z.; Qian, X.U.; Yang, R. On coordination development of agricultural ecological-environment and economy in Shaanxi Province based on coupling degree model. J. Arid. Land Resour. Environ. 2011, 25, 14–19. [Google Scholar]
- Xiao, R.; Lin, M.; Fei, X.; Li, Y.; Zhang, Z.; Meng, Q. Exploring the interactive coercing relationship between urbanization and ecosystem service value in the Shanghai–Hangzhou Bay Metropolitan Region. J. Clean. Prod. 2019, 253, 119803. [Google Scholar] [CrossRef]
- Li, W.; Wang, Y.; Xie, S.; Xian, C.B. Coupling coordination analysis and spatiotemporal heterogeneity between urbanization and ecosystem health in Chongqing municipality, China. Sci. Total Environ. 2021, 791, 148311. [Google Scholar] [CrossRef]
- Song, W.; Deng, X.; Yuan, Y.; Li, Z.H.; Song, W.; Wang, Z. Impacts of land-use change on valued ecosystem service in rapidly urbanized North China Plain. Ecol. Model. 2015, 318, 245–253. [Google Scholar] [CrossRef]
- Breuste, J.; Qureshi, S.; Li, J. Applied urban ecology for sustainable urban environment. Urban. Ecosyst. 2013, 16, 675–680. [Google Scholar] [CrossRef]
- Taylor, L.; Hochuli, D.F. Creating better cities: How biodiversity and ecosystem functioning enhance urban residents’ wellbeing. Urban. Ecosyst. 2015, 18, 747–762. [Google Scholar] [CrossRef]
- Qin, K.; Li, J.; Liu, J.; Yan, L.; Huang, H. Setting conservation priorities based on ecosystem services—A case study of the Guanzhong-Tianshui Economic Region. Sci. Total Environ. 2019, 650, 3062–3074. [Google Scholar] [CrossRef]
- Notice on the Issuance of the Guanzhong Plain City Cluster Development Plan. Available online: https://www.ndrc.gov.cn/xxgk/zcfb/ghwb/201802/t20180207_962246.html (accessed on 2 February 2018).
- Kirchner, M.; Schmidt, J.; Kindermann, G.; Kulmer, V.; Mitter, H.; Prettenthaler, F.; Schauppenlehner, T. Ecosystem services and economic development in Austrian agricultural landscapes—the impact of policy and climate change scenarios on trade-offs and synergies. Ecol. Econ. 2015, 109, 161–174. [Google Scholar] [CrossRef]
- Xie, G.D.; Lu, C.X.; Leng, Y.F.; Zheng, D.; Li, S.C. Ecological assets valuation of the Tibetan Plateau. J. Nat. Resour. 2003, 18, 189–196. [Google Scholar]
- Xie, G.D.; Zhang, C.X.; Zhen, L.; Zhang, L.M. Dynamic changes in the value of China’s ecosystem services—ScienceDirect. Ecosyst. Serv. 2017, 26, 146–154. [Google Scholar] [CrossRef]
- Xu, X.G.; Cui, C.W.; Xu, L.F.; Ma, L.Y. Method study on relative assessment for ecosystem service: A case of green space in Beijing, China. Environ. Earth Sci. 2013, 68, 1913–1924. [Google Scholar] [CrossRef]
- Wang, F.L.; Liu, Y.G. Correction of urbanization level indicators based on scale effects. Trop. Geogr. 2011, 31, 403–408. (In Chinese) [Google Scholar]
- Yang, Y.; Na, H. The spatial and temporal evolution of coordinated ecological and socioeconomic development in the provinces along the Silk Road Economic Belt in China. Sustain. Cities Soc. 2019, 47, 101466. [Google Scholar] [CrossRef]
- Gan, L.; Shi, H.; Hu, Y.; Lev, B.; Lan, H. Coupling coordination degree for urbanization city-industry integration level: Sichuan case. Sustain. Cities Soc. 2020, 58, 102136. [Google Scholar] [CrossRef]
- Wang, R.S. Efficient and Harmonious—Principles and Methods of Urban Ecological Regulation; Hunan Education Publishing House: Changsha, China, 1988. [Google Scholar]
- Li, T.; Lu, Y.; Fu, B.; Hu, W.; Comber, A.J. Bundling ecosystem services for detecting their interactions driven by large-scale vegetation restoration: Enhanced services while depressed synergies. Ecol. Indic. 2019, 99, 332–342. [Google Scholar] [CrossRef] [Green Version]
- Salvati, L.; Zambon, I.; Chelli, F.M.; Serra, P. Do spatial patterns of urbanization and land consumption reflect different socioeconomic contexts in Europe? Sci. Total Environ. 2018, 625, 722–730. [Google Scholar] [CrossRef]
- Fang, C.; Zhou, C.; Gu, C.; Chen, L.; Li, S. Theoretical analysis of interactive coupled effects between urbanization and eco-environment in mega-urban agglomerations. Acta Geogr. Sin. 2016, 71, 531–550. [Google Scholar] [CrossRef]
- Chaolin, G. Urban. Geography of China; The Commercial Press: Beijing, China, 1999. [Google Scholar]
- Vitousek, P.M.; Mooney, H.A.; Lubchenco, J.; Melillo, J.M. Human domination of Earth’s ecosystems. Science 1997, 277, 494–499. [Google Scholar] [CrossRef] [Green Version]
- Grimm, N.B.; Faeth, S.H.; Golubiewski, N.E.; Redman, C.L.; Wu, J.; Bai, X.; Briggs, J.M. Global change and the ecology of cities. Science 2008, 319, 756–760. [Google Scholar] [CrossRef] [Green Version]
- Dadao, L.U.; Chen, M. Several viewpoints on the background of compiling the “National New Urbanization Planning (2014–2020)”. Acta Geogr.Sin. 2015, 70, 179–185. [Google Scholar] [CrossRef]
- Zhou, D.; Tian, Y.; Jiang, G. Spatio-temporal investigation of the interactive relationship between urbanization and ecosystem services: Case study of the Jingjinji urban agglomeration, China. Ecol. Indic. 2018, 95, 152–164. [Google Scholar] [CrossRef]
- Tian, Y.; Zhou, D.; Jiang, G. Conflict or Coordination? Multiscale assessment of the spatio-temporal coupling relationship between urbanization and ecosystem services: The case of the Jingjinji Region, China. Ecol. Indic. 2020, 117, 106543. [Google Scholar] [CrossRef]
- Wang, J.; Zhou, W.; Pickett, S.T.A.; Yu, W.; Li, W. A multiscale analysis of urbanization effects on ecosystem services supply in an urban megaregion. Sci. Total Environ. 2019, 662, 824–833. [Google Scholar] [CrossRef]
- Chuai, X.; Huang, X.; Wu, C.; Li, J.; Lu, Q.; Qi, X.; Zhang, M.; Zuo, T.; Lu, J. Land use and ecosystems services value changes and ecological land management in coastal Jiangsu, China. Habitat Int. 2016, 57, 164–174. [Google Scholar] [CrossRef]
- Fu, Q.; Li, B.; Hou, Y.; Bi, X.; Zhang, X. Effects of land use and climate change on ecosystem services in Central Asia’s arid regions: A case study in Altay Prefecture, China. Sci. Total Environ. 2017, 607–608, 633–646. [Google Scholar] [CrossRef]
- Cao, Y.; Kong, L.; Zhang, L.; Ouyang, Z. The balance between economic development and ecosystem service value in the process of land urbanization: A case study of China’s land urbanization from 2000 to 2015. Land Use Policy 2021, 108, 105536. [Google Scholar] [CrossRef]
- Zhang, P.; Yuan, H.; Xin, T. Sustainable development in China: Trends, patterns, and determinants of the “Five Modernizations” in Chinese cities. J. Clean.Prod. 2019, 214, 685–695. [Google Scholar] [CrossRef]
- Bai, Y.; Deng, X.; Jiang, S.; Zhang, Q.; Wang, Z. Exploring the relationship between urbanization and urban eco-efficiency: Evidence from prefecture-level cities in China. J. Clean. Prod. 2018, 195, 487–1496. [Google Scholar] [CrossRef]
- Deng, X.; Huang, J.; Rozelle, S.; Zhang, J.; Li, Z. Impact of urbanization on cultivated land changes in China. Land Use Policy 2015, 45, 1–7. [Google Scholar] [CrossRef]
- Shi, Z.H.; Cai, C.F.; Ding, S.W.; Wang, T.W.; Chow, T.L. Soil conservation planning at the small watershed level using RUSLE with GIS: A case study in the Three Gorge Area of China. Catena 2004, 55, 33–48. [Google Scholar] [CrossRef]
- Kosoy, N.; Corbera, E. Payments for ecosystem services as commodity fetishism. Ecol. Econ. 2010, 69, 1228–1236. [Google Scholar] [CrossRef]
- An, G.; Huang, H.; Liu, Z.; Kong, F.B.; Liu, K.; Xu, Y.T. Progress of land use and ecosystem service valuation in China. J. Jinan Univ. (Nat. Sci. Ed.) 2022, 1–11. (In Chinese) [Google Scholar] [CrossRef]
- Wu, Q.; Ma, H.Y.; Zhang, H.P.; Liu, Y.R. The value of forest ecosystem services and its compensation calibration—an example of Horsetail pine forest. J. Ecol. 2019, 39, 117–130. (In Chinese) [Google Scholar]
- Lou, P.; Fu, B.; Liu, H.; Gao, E.; Fan, D.; Tang, T.; Lin, X. Dynamic estimation of ecosystem service function value of grassland in Xilin Gol league. J. Ecol. 2019, 39, 3837–3849. (In Chinese) [Google Scholar]
- Yang, W.; Jin, Y.W.; Sun, L.X.; Sun, T.; Shao, D.D. Trade-off intensity of ecosystem services in the Yellow River Delta wetlands based on production possibility boundary. J. Nat. Resour. 2019, 34, 2516–2528. (In Chinese) [Google Scholar]
- Chen, H. Complementing conventional environmental impact assessments of tourism with ecosystem service valuation: A case study of the Wulingyuan Scenic Area, China. Ecosyst. Serv. 2020, 43, 101100. [Google Scholar] [CrossRef]
Types of LUCC | Farmland | Forestland | Grassland | Waterbody | Construction Land | Unused Land | |
---|---|---|---|---|---|---|---|
Types of ESV (Million) | |||||||
Food Supply | 616.51 | 203.45 | 265.1 | 12.33 | 326.75 | 12.33 | |
Raw Material Production | 240.44 | 1837.19 | 221.94 | 24.66 | 215.78 | 24.66 | |
Gas Regulation | 443.89 | 2663.31 | 924.76 | 36.99 | 314.42 | 36.99 | |
Climate Regulation | 598.01 | 2509.18 | 961.75 | 80.15 | 1270 | 80.15 | |
Hydrologic Regulation | 474.71 | 2521.51 | 937.09 | 43.16 | 11571.84 | 43.16 | |
Waste Treatment | 856.95 | 1060.39 | 813.79 | 160.29 | 9155.13 | 160.29 | |
Soil Retention | 906.27 | 2478.36 | 1380.98 | 104.81 | 252.77 | 104.81 | |
Biodiversity | 628.84 | 2780.45 | 1152.87 | 246.6 | 2114.62 | 246.6 | |
Aesthetic Landscape | 104.81 | 1282.33 | 536.36 | 147.96 | 2737.29 | 147.96 | |
Total | 4870.41 | 17336.18 | 7194.64 | 856.95 | 27958.6 | 856.95 |
Primary Division of Development Stages | Secondary Division of Development Stages | Tertiary Division of Development Stages | ||
---|---|---|---|---|
Balanced development (acceptable interval) | 0.7 < D ≤1.0 | Superiorly balanced development | g(E) − f(U) > 0.1 | Superiorly balanced development with a lagging urbanization (Level IA) |
f(U) − g(E) > 0.1 | Superiorly balanced development with a lagging environment (Level IB) | |||
0 < |f(U) − g(E)| ≤ 0.1 | Superiorly balanced development of urbanization and the environment (Level IC) | |||
Transitional development (transitional interval) | 0.6 < D ≤ 0.7 | Moderately balanced development | g(E) − f(U) > 0.1 | Moderately balanced development with a lagging urbanization (Level IIA) |
f(U) − g(E) > 0.1 | Moderately balanced development with a lagging environment (Level IIB) | |||
0 < |f(U) − g(E)| ≤ 0.1 | Moderately balanced development of urbanization and the environment (Level IIC) | |||
0.5 < D ≤ 0.6 | Barely balanced development | g(E) − f(U) > 0.1 | Barely balanced development with a lagging urbanization (Level IIIA) | |
f(U) − g(E) > 0.1 | Barely balanced development with a lagging environment (Level IIIB) | |||
0 < |f(U) − g(E)| ≤ 0.1 | Barely balanced development of urbanization and the environment (Level IIIC) | |||
Unbalanced development (unacceptable interval) | 0.3 < D ≤ 0.5 | Slightly unbalanced development | g(E) − f(U) > 0.1 | Slightly unbalanced development with a lagging urbanization (Level IVA) |
f(U) − g(E) > 0.1 | Slightly unbalanced development with a lagging environment (Level IVB) | |||
0 < |f(U) − g(E)| ≤ 0.1 | Slightly unbalanced development of urbanization and the environment (Level IVC) | |||
0 < D ≤ 0.3 | Seriously unbalanced development | g(E) − f(U) > 0.1 | Seriously unbalanced development with a lagging urbanization (Level VA) | |
f(U) − g(E) > 0.1 | Seriously unbalanced development with a lagging environment (Level VB) | |||
0 < |f(U) − g(E)| ≤ 0.1 | Seriously unbalanced development of urbanization and the environment (Level VC) |
Regulating Services | Supporting Services | Provisioning Services | Cultural Services | Total | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Gas Regulation | Climate Regulation | Hydrologic Regulation | Waste Treatment | Soil Retention | Biodiversity | Food Production | Raw Material | Aesthetic Landscape | Total | |
Farmland | 1101.64 | 1484.15 | 1178.14 | 2126.78 | 2249.18 | 1560.66 | 1530.05 | 596.72 | 260.11 | 12,087.43 |
Forestland | 3555.80 | 3350.02 | 3366.49 | 1415.74 | 3308.87 | 3712.19 | 271.62 | 2452.84 | 1712.05 | 23,145.62 |
Grassland | 1236.20 | 1285.64 | 1252.68 | 1087.85 | 1846.05 | 1541.12 | 354.38 | 296.69 | 716.99 | 9617.60 |
Waterbody | 24.49 | 98.93 | 901.42 | 713.17 | 19.69 | 164.72 | 25.45 | 16.81 | 213.23 | 2177.92 |
Construction Land | 12.34 | 26.73 | 14.39 | 53.46 | 34.96 | 82.25 | 4.11 | 8.22 | 49.35 | 285.81 |
Unused Land | 0.22 | 0.48 | 0.26 | 0.96 | 0.63 | 1.47 | 0.07 | 0.15 | 0.88 | 5.11 |
Total | 5930.69 | 6245.96 | 6713.38 | 5397.95 | 7459.37 | 7062.41 | 2185.69 | 3371.43 | 2952.62 | 47319.50 |
Variable | Number | Mean | Minimum | Maximum |
---|---|---|---|---|
Coupling Degree | 54 | 0.38 | 0.1 | 0.65 |
Per capita GDP (yuan) | 54 | 35,967.09 | 16,093 | 136,842 |
Per capita investment in fixed assets (yuan) | 54 | 43,663.09 | 13,473 | 154,734 |
Per capita retail sales of consumer goods (yuan) | 54 | 7669.14 | 4794 | 15,182 |
Proportion of added value of non-agricultural industries (%) | 54 | 0.81 | 0.57 | 1.06 |
Disposable income of urban population (yuan) | 54 | 28,290.14 | 23,907 | 33,600 |
Disposable income of rural residents (yuan) | 54 | 9697.66 | 7620 | 13,615 |
Number of employees in the tertiary industry | 54 | 49,977.29 | 5113 | 205,341 |
Resident population (ten thousand) | 54 | 62.21 | 5.13 | 119.29 |
Human capital | 54 | 14,497.8 | 1946 | 34,076 |
Common cultivated land area (hm2) | 54 | 33,144 | 6460 | 93,352 |
Explanatory Variables | Coefficient | Standard Deviation |
---|---|---|
Per GDP | −1.63 × 10−6 | 1.69 × 10−6 |
Per investment | −1.23 × 10−6 | 9.92 × 10−7 |
Per consumption | 9.19 × 10−6 | 9.12 × 10−6 |
Non-agricultural | −0.109 | 0.137 |
Urban income | 2.27 × 10−5 *** | 4.83 × 10−6 |
Rural income | 2.62 × 10−5 | 1.73 × 10−5 |
Third employees | 3.03 × 10−6 *** | 3.90 × 10−7 |
population | −0.005 ** | 0.002 |
Human capital | 6.02 × 10−6 ** | 2.50 × 10−6 |
Arable area | −6.71 × 10−7 | 1.70 × 10−6 |
Constant | −0.588 *** | 0.135 |
Observations | 54 | |
R2 | 0.848 |
Explanatory Variables | Coefficient | Standard Deviation |
---|---|---|
Per GDP | −1.52 × 10−5 | 4.14 × 10−5 |
Per investment | −6.42 × 10−5 ** | 3.26 × 10−5 |
Per consumption | 0.15 × 10−3 | 0.24 × 10−3 |
Non-agricultural | −6.26 | 4.8 |
Urban income | 0.674 × 10−3 ** | 0.32 × 10−3 |
Rural income | 0.96 × 10−3 * | 0.57 × 10−3 |
Third employees | 7.16 × 10−5 ** | 2.83 × 10−5 |
population | −0.121 | 0.074 |
Human capital | 0.15 × 10−3 | 9.44 × 10−5 |
Arable area | −5.00 × 10−5 | 4.86 × 10−5 |
Observations | 54 | |
R2 | 0.629 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Li, Z.; Li, P.; Zhang, Z.; Zhang, Y. Identification of Coupling and Influencing Factors between Urbanization and Ecosystem Services in Guanzhong, China. Sustainability 2021, 13, 10637. https://doi.org/10.3390/su131910637
Chen Y, Li Z, Li P, Zhang Z, Zhang Y. Identification of Coupling and Influencing Factors between Urbanization and Ecosystem Services in Guanzhong, China. Sustainability. 2021; 13(19):10637. https://doi.org/10.3390/su131910637
Chicago/Turabian StyleChen, Yiting, Zhanbin Li, Peng Li, Zipei Zhang, and Yixin Zhang. 2021. "Identification of Coupling and Influencing Factors between Urbanization and Ecosystem Services in Guanzhong, China" Sustainability 13, no. 19: 10637. https://doi.org/10.3390/su131910637
APA StyleChen, Y., Li, Z., Li, P., Zhang, Z., & Zhang, Y. (2021). Identification of Coupling and Influencing Factors between Urbanization and Ecosystem Services in Guanzhong, China. Sustainability, 13(19), 10637. https://doi.org/10.3390/su131910637