Multiobjective Railway Alignment Optimization Using Ballastless Track and Reduced Cross-Section in Tunnel
Abstract
:1. Introduction
2. Aim of the Study
3. Case Study
3.1. Territorial Context Overview
3.2. Functioning HAO Application
3.3. Geometric Constraints Identification
3.4. Cost Parameters Inclusion
3.5. Optimal Alignment Detection
4. Solution Set Creation
4.1. Unconventional Superstructure
4.2. Reduced Cross-Section in Tunnel
- possibility to obtain an alignment that fits better in the territorial morphology. By reducing the speed, geometric constraints with smaller values can be considered, which allow for example the positioning of curves in the horizontal-vertical plan with a reduced radius value. Therefore, a more “angular” alignment can be obtained compared to the one with a higher design speed;
- possibility to reduce the tunnel tube section size since a smaller dynamic encumbrance of the railway wagon shape in bends is performed. Considering the high presence of mountains, and consequently of tunnels, even a slight reduction in the tunnel tube section size results in substantial cost savings.
5. Discussion
5.1. HAO for Unconventional Superstructure Solution
5.2. HAO for Reduced Cross-Section in Tunnel
6. Conclusions
- The combination of the optimization application and the use of an unconventional superstructure without ballast generates a solution with economic advantages related to the management and maintenance aspects, and not to the direct cost of the solution. However, this solution has relevant environmental advantages.
- Lower design speeds values generate substantial advantages in terms of immediate cost, but the optimization application does not respect the horizontal-vertical alignment expectation. Due to expected travel time increment, the investment per minute of saving time needs also to be considered.
7. Future Developments
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dell’Acqua, G.; de Oliveira, S.G.; Biancardo, S.A. Railway-BIM: Analytical review, data standard and overall perspective. Ing. Ferrov. 2018, 11, 901–923. [Google Scholar]
- Abbondati, F.; Biancardo, S.A.; Sicignano, G.; de Oliveira, S.G.; Tibaut, A.; Dell’Acqua, G. BIM parametric modelling of a railway underpass. Ing. Ferrov. 2020, 6, 443–459. [Google Scholar]
- De Luca, M.; Dell’Acqua, G.; Lamberti, R. High-Speed Rail Track Design using GIS and Multi-criteria Analysis. Procedia Soc. Behav. Sci. 2012, 54, 607–616. [Google Scholar] [CrossRef] [Green Version]
- Easa, S.M.; Mehmood, A. Optimizing design of highway horizontal alignments: New substantive safety approach. Comput. Aided Civ. Infrastruct. Eng. 2008, 23, 560–573. [Google Scholar] [CrossRef]
- Jong, J.C.; Jha, M.K.; Schonfeld, P. Preliminary highway design with genetic algorithms and geographic information systems. Comput. Aided Civ. Infrastruct. Eng. 2000, 15, 261–271. [Google Scholar] [CrossRef]
- Mondal, S.; Lucet, Y.; Hare, W. Optimizing horizontal alignment of roads in a specified corridor. Comput. Oper. Res. 2015, 64, 130–138. [Google Scholar] [CrossRef] [Green Version]
- Casal, G.; Santamarina, D.; Vázquez-Méndez, M.E. Optimization of horizontal alignment geometry in road design and reconstruction. Transp. Res. Part C Emerg. Technol. 2017, 74, 261–274. [Google Scholar] [CrossRef]
- Bababeik, M.; Monajjem, M.S. Optimizing longitudinal alignment in railway with regard to construction and operating costs. J. Transp. Eng. 2012, 138, 1388–1395. [Google Scholar] [CrossRef]
- Beiranvand, V.; Hare, W.; Lucet, Y.; Hossain, S. Multi-haul quasi network flow model for vertical alignment optimization. Eng. Optim. 2017, 49, 1777–1795. [Google Scholar] [CrossRef]
- Monnet, D.; Hare, W.; Lucet, Y. Fast feasibility check of the multi-material vertical alignment problem in road design. Comput. Optim. Appl. 2019, 75, 515–536. [Google Scholar] [CrossRef]
- Hare, W.; Lucet, Y.; Rahman, F. A mixed-integer linear programming model to optimize the vertical alignment considering blocks and side-slopes in road construction. Eur. J. Oper. Res. 2015, 241, 631–664. [Google Scholar] [CrossRef]
- Xin, T.; Roberts, C.; He, J.; Hillmansen, S.; Zhao, N.; Chen, L.; Tian, Z.; Su, S. Railway vertical alignment optimization at stations to minimise energy. In Proceedings of the 17th International IEEE Conference on Intelligent Transportation Systems (ITSC), Qingdao, China, 8–11 October 2014. [Google Scholar]
- Chiou, S.; Yen, J. Precise railway alignment measurements of the horizontal circular curves and the vertical parabolic curves using the chord method. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit 2018, 233, 537–549. [Google Scholar] [CrossRef]
- De Smith, M.J. Determination of gradient and curvature constrained optimal paths. Comput. Aided Civ. Infrastruct. Eng. 2006, 21, 24–38. [Google Scholar] [CrossRef]
- Kang, M.W.; Schonfeld, P.; Yang, N. Prescreening and repairing in a genetic algorithm for highway alignment optimization. Comput. Aided Civ. Infrastruct. Eng. 2009, 24, 109–119. [Google Scholar] [CrossRef]
- Pushak, Y.; Hare, W.; Lucet, Y. Multiple-path selection for new highway alignments using discrete algorithms. Eur. J. Oper. Res. 2016, 248, 415–427. [Google Scholar] [CrossRef] [Green Version]
- Maji, A.; Jha, M.K. Multi-objective evolutionary algorithm framework for highway route planning. Adv. Transp. Stud. 2017, 41, 51–72. [Google Scholar]
- Um, J.H.; Choi, I.Y.; Yang, S.C. Optimization of alignment considering ride comfort for superimposition of vertical and horizontal curves. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit 2011, 225, 649–662. [Google Scholar] [CrossRef]
- Chen, X.; Li, Z.; Yang, Y.; Ke, R. High-Resolution Vehicle Trajectory Extraction and Denoising From Aerial Videos. IEEE Trans. Intell. Transp. Syst. 2020, 22, 3190–3202. [Google Scholar] [CrossRef]
- Chen, X.; Chen, H.; Yang, Y.; Wu, H.; Zhang, W.; Zhao, J.; Xiong, Y. Traffic flow prediction by an ensemble framework with data denoising and deep learning model. Phys. A Stat. Mech. Its Appl. 2021, 56, 125574. [Google Scholar] [CrossRef]
- Hickish, B.; Fletcher, D.I.; Harrison, R.F. Investigating Bayesian Optimization for rail network optimization. Int. J. Rail Trasp. 2020, 8, 307–323. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Pu, H.; Schonfeld, P.; Zhang, H.; Zheng, X. Methodology for optimizing constrained 3-dimensional railway alignments in mountainous terrain. Transp. Part C Emerg. Technol. 2016, 68, 549–565. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Pu, H.; Schonfeld, P.; Yang, J.; Zhang, H.; Wang, L.; Xiong, J. Mountain Railway Alignment Optimization with Bidirectional Distance Transform and Genetic Algorithm. Comput. Aided Civ. Infrastruct. Eng. 2017, 32, 691–709. [Google Scholar] [CrossRef]
- Shafahi, Y.; Bagherian, M. A customized particle swarm method to solve highway alignment optimization problem. Comput. Aided Civ. Infrastruct. Eng. 2013, 28, 52–67. [Google Scholar] [CrossRef]
- Jong, J.C. Optimizing Highway Alignments with Genetic Algorithms. Ph.D. Thesis, University of Maryland, College Park, MD, USA, 1998. [Google Scholar]
- Adeli, H.; Cheng, N.T. Augmented Lagrangian genetic algorithm for structural optimization. J. Aerosp. Eng. 1994, 7, 104–118. [Google Scholar] [CrossRef]
- Adeli, H.; Kumar, S. Distributed genetic algorithm for structural optimization. J. Aerosp. Eng. 1995, 8, 156–163. [Google Scholar] [CrossRef]
- Kociecki, M.; Adeli, H. Shape optimization of freeform steel space-frame roof structures with complex geometries using evolutionary computing. Eng. Appl. Artif. Intell. 2015, 38, 168–182. [Google Scholar] [CrossRef]
- Lee, H.G.; Yi, C.Y.; Lee, D.E.; Arditi, D. An advanced stochastic time-cost tradeoff analysis based on a CPM-guided genetic algorithm. Comput. Aided Civ. Infrastruct. Eng. 2015, 30, 824–842. [Google Scholar] [CrossRef]
- Park, K.; Oh, B.K.; Park, H.S.; Choi, S.W. GA-based multi-objective optimization for retrofit design on a multi-core PC cluster. Comput. Aided Civ. Infrastruct. Eng. 2015, 30, 965–980. [Google Scholar] [CrossRef]
- Koo, C.; Hong, T.; Yoon, J.; Jeong, K. Zoning-based vertical transportation optimization for workers at peak time in a skyscraper construction. Comput. Aided Civ. Infrastruct. Eng. 2016, 31, 826–845. [Google Scholar] [CrossRef]
- Lin, D.; Ku, Y. An implicit enumeration algorithm for the passenger service planning problem: Application to the Taiwan Railways Administration line. Eur. J. Oper. Res. 2014, 238, 863–875. [Google Scholar] [CrossRef]
- Jong, J.C.; Schonfeld, P. An evolutionary model for simultaneously optimizing three-dimensional highway alignments. Transp. Res. Part B Methodol. 2003, 37, 107–128. [Google Scholar] [CrossRef]
- Jha, M.K.; McCall, C.; Schonfeld, P. Using GIS, genetic algorithms, and visualization in highway development. Comput. Aided Civ. Infrastruct. Eng. 2001, 16, 399–414. [Google Scholar] [CrossRef]
- Kim, E.; Jha, M.K.; Schonfeld, P.; Hong, S.K. Highway alignment optimization incorporating bridges and tunnels. J. Transp. Eng. 2007, 133, 71–81. [Google Scholar] [CrossRef]
- Kim, E.; Jha, M.K.; Son, B. Improving the computational efficiency of highway alignment optimization models through a stepwise genetic algorithms approach. Transp. Res. Part B Methodol. 2005, 39, 339–360. [Google Scholar] [CrossRef]
- Kang, M.W.; Jha, M.K.; Schonfeld, P. Applicability of highway alignment optimization models. Transp. Res. Part C Emerg. Technol. 2012, 21, 257–286. [Google Scholar] [CrossRef]
- Kang, M.W.; Yang, N.; Schonfeld, P.; Jha, M.K. Bilevel highway route optimization. Transp. Res. Rec. J. Transp. Res. Board 2010, 2197, 107–117. [Google Scholar] [CrossRef]
- Yang, N.; Kang, M.W.; Schonfeld, P.; Jha, M.K. Multiobjective highway alignment optimization incorporating preference information. Transp. Res. Part C Emerg. Technol. 2014, 40, 36–48. [Google Scholar] [CrossRef]
- Lai, X.; Schonfeld, P. Concurrent optimization of rail transit alignments and station locations. Urban Rail Transit 2016, 2, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Lai, X.; Schonfeld, P. Optimization of rail transit alignments considering vehicle dynamics. Transp. Res. Rec. J. Transp. Res. Rec. 2012, 2275, 77–87. [Google Scholar] [CrossRef]
- Zhang, H.; Pu, H.; Schonfeld, P.; Song, T.; Li, W.; Wang, J.; Peng, X.; Jianping, H. Multi-objective railway alignment optimization considering costs and environmental impacts. Appl. Soft Comput. 2020, 89, 106105. [Google Scholar] [CrossRef]
- Song, T.; Pu, H.; Schonfeld, P.; Zhang, H.; Li, W.; Jianping, H.; Wang, J. Mountain railway alignment optimization considering geological impacts: A cost-hazard bi-objective model. Comput. Aided Civ. Infrastruct. Eng. 2020, 35, 1365–1386. [Google Scholar] [CrossRef]
- Rete Ferroviaria Italiana (RFI). Norme Tecniche per la Progettazione dei Tracciati Ferroviari; Rete Ferroviaria Italiana: Rome, Italy, 2006. [Google Scholar]
- Giunta Regionale della Campania. Delibera Della Giunta Regionale n. 102 del 16.03.2021 ad Oggetto “D.lgs. Aprile 2016, n.50—L.R. 27 Febbraio 2007, n. 3. Approvazione Prezzario Regionale dei Lavori Pubblici Anno 2021”. 2021. Available online: http://www.lavoripubblici.regione.campania.it/index.php?option=com_content&view=article&id=1700:approvazione-prezzario-regionale-dei-lavori-pubblici-anno-2021&catid=43&Itemid=131 (accessed on 18 September 2021).
- Zhai, W.; Liu, P.; Lin, J.; Wang, K. Experimental investigation on vibration behavior of a CRH train at speed of 350 km/h. Int. J. Rail Trasp. 2012, 3, 1–16. [Google Scholar]
- Thompson, D.J.; Iglesias, E.L.; Liu, X.; Zhu, J.; Hu, Z. Recent developments in the prediction and control of aerodynamic noise from high-speed trains. Int. J. Rail Trasp. 2015, 3, 119–150. [Google Scholar] [CrossRef]
- Meghoe, A.; Loendersloot, R.; Tinga, T. Rail wear and remaining life prediction using meta-models. Int. J. Rail Trasp. 2020, 8, 1–26. [Google Scholar] [CrossRef]
- Shi, Y.; Xiang, Y.; Xiao, H.; Xing, L. Joint optimization of budget allocation and maintenance planning of multi-facility transportation infrastructure systems. Eur. J. Oper. Res. 2021, 288, 382–393. [Google Scholar] [CrossRef]
- Vansteenwegen, P.; Dewilde, T.; Burggraeve, S.; Cattrysse, D. An iterative approach for reducing the impact of infrastructure maintenance on the performance of railway systems. Eur. J. Oper. Res. 2016, 252, 39–53. [Google Scholar] [CrossRef]
Geometric Constraint | 300 km/h | ||
---|---|---|---|
R | (2) | 5460 m | |
LT and LR | (c) | (3) | 200 m |
RV | (d) | (4) | 15,750 m |
Li (e) | (5) | 167 m |
CL—Linear Cost | |||
Superstructure | Ballast | 75 | €/m |
Rail | 500 | €/m | |
Sub Ballast | 174 | €/m | |
Super-Compacted Layer | 25 | €/m | |
Signaling system | SCC Type | 40 | €/m |
Electrification lines | Primary Overhead Lines | 130 | €/m |
Feeder Contact Lines | 26 | €/m | |
Tunnel Safety | Safety System | 3000 | €/m |
CR—Right of Way | |||
Expropriation Costs | - | 1300 | €/m2 |
CE—Earthwork Cost | |||
Cost for Earthworks | Dump | 12 | €/m3 |
Borrow | 15 | €/m3 | |
Fill | 6.9 | €/m3 | |
Cs—Structure Cost | |||
Bridge | Civil Works | 1750 | €/m |
Tunnel | Portal Cost | 3333 | €/m2 |
Civil Works | 12,000 | €/m | |
CEN—Environmental Cost | |||
Cost of Environmental Impact | N/A | N/A | N/A |
CP—Penalty Cost | |||
Restricted Area | Community Interest Site Fixed | 1,000,000,000 | € |
Community Interest Site Linear | 1,000,000,000 | €/m |
S | R | LT and LR | RV | Li |
---|---|---|---|---|
250 km/h | 3750 m | 166 m | 10,937 m | 139 m |
300 km/h | 5460 m | 200 m | 15,750 m | 167 m |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Biancardo, S.A.; Avella, F.; Di Lisa, E.; Chen, X.; Abbondati, F.; Dell’Acqua, G. Multiobjective Railway Alignment Optimization Using Ballastless Track and Reduced Cross-Section in Tunnel. Sustainability 2021, 13, 10672. https://doi.org/10.3390/su131910672
Biancardo SA, Avella F, Di Lisa E, Chen X, Abbondati F, Dell’Acqua G. Multiobjective Railway Alignment Optimization Using Ballastless Track and Reduced Cross-Section in Tunnel. Sustainability. 2021; 13(19):10672. https://doi.org/10.3390/su131910672
Chicago/Turabian StyleBiancardo, Salvatore Antonio, Francesco Avella, Ernesto Di Lisa, Xinqiang Chen, Francesco Abbondati, and Gianluca Dell’Acqua. 2021. "Multiobjective Railway Alignment Optimization Using Ballastless Track and Reduced Cross-Section in Tunnel" Sustainability 13, no. 19: 10672. https://doi.org/10.3390/su131910672
APA StyleBiancardo, S. A., Avella, F., Di Lisa, E., Chen, X., Abbondati, F., & Dell’Acqua, G. (2021). Multiobjective Railway Alignment Optimization Using Ballastless Track and Reduced Cross-Section in Tunnel. Sustainability, 13(19), 10672. https://doi.org/10.3390/su131910672