Adsorption of Toxic Zinc by Functionalized Lignocellulose Derived from Waste Biomass: Kinetics, Isotherms and Thermodynamics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Functionalized Cellulose
2.3. Characterizations
2.4. Sorption Experiments
3. Results and Discussion
3.1. Characterizations
3.2. Sorption Studies
3.2.1. Effect of Sorbent Dosage on Zn(II) Sorption
3.2.2. Effect of Solution Ph on Zn(II) Sorption
3.2.3. Effect of Sorption Time on Zn(II) Sorption
3.2.4. Effect of Initial Concentration on Zn(II) Sorption
3.3. Sorption Kinetics
3.4. Sorption Isotherms
3.5. Sorption Thermodynamics
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guo, J.; Kang, Y.; Feng, Y. Bioassessment of heavy metal toxicity and enhancement of heavy metal removal by sulfate-reducing bacteria in the presence of zero valent iron. J. Environ. Manag. 2017, 203, 278–285. [Google Scholar] [CrossRef]
- Shahid, M.; Dumat, C.; Khalid, S.; Schreck, E.; Xiong, T.; Niazi, N.K. Foliar heavy metal uptake, toxicity and detoxification in plants: A comparison of foliar and root metal uptake. J. Hazard. Mater. 2017, 325, 36–58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oulguidoum, A.; Bouyarmane, H.; Laghzizil, A.; Nunzi, J.M.; Saoiabi, A. Development of sulfonate-functionalized hydroxyapatite nanoparticles for cadmium removal from aqueous solutions. Colloid Interface Sci. Commun. 2019, 30, 100178. [Google Scholar] [CrossRef]
- Yu, G.; Wang, X.; Liu, J.; Jiang, P.; You, S.; Ding, N.; Lin, F. Applications of nanomaterials for heavy metal removal from water and soil: A review. Sustainability 2021, 13, 713. [Google Scholar] [CrossRef]
- Wang, C.; Wang, H. Pb(II) sorption from aqueous solution by novel biochar loaded with nano-particles. Chemosphere 2018, 192, 1–4. [Google Scholar] [CrossRef]
- Abbas, A.; Al-Amer, A.M.; Laoui, T.; Al-Marri, M.J.; Nasser, M.S.; Khraisheh, M.; Atieh, M.A. Heavy metal removal from aqueous solution by advanced carbon nanotubes: Critical review of adsorption applications. Sep. Purif. Technol. 2016, 157, 141–161. [Google Scholar]
- Sherlala, A.I.A.; Raman, A.A.A.; Bello, M.M.; Asghar, A. A review of the applications of organo-functionalized magnetic graphene oxide nanocomposites for heavy metal adsorption. Chemosphere 2018, 193, 1004–1017. [Google Scholar] [CrossRef]
- Kolbasov, A.; Sinha-Ray, S.; Yarin, A.L.; Pourdeyhimi, B. Heavy metal adsorption on solution-blown biopolymer nanofiber membranes. J. Membr. Sci. 2017, 530, 250–263. [Google Scholar] [CrossRef]
- Deliyanni, E.A.; Kyzas, G.Z.; Triantafyllidis, K.S.; Matis, K.A. Activated carbons for the removal of heavy metal ions: A systematic review of recent literature focused on lead and arsenic ions. Open Chem. 2015, 13, 699–708. [Google Scholar] [CrossRef]
- Karri, R.R.; Sahu, J.N.; Meikap, B.C. Improving efficacy of Cr (VI) adsorption process on sustainable adsorbent derived from waste biomass (sugarcane bagasse) with help of ant colony optimization. Ind. Crop. Prod. 2020, 143, 111927. [Google Scholar] [CrossRef]
- Saravanan, A.; Sundararaman, T.R.; Jeevanantham, S.; Karishma, S.; Kumar, P.S.; Yaashikaa, P.R. Effective adsorption of Cu(II) ions on sustainable adsorbent derived from mixed biomass (Aspergillus campestris and agro waste): Optimization, isotherm and kinetics study. Groundw. Sustain. Dev. 2020, 11, 100460. [Google Scholar] [CrossRef]
- Lee, S.Y.; Choi, H.J. Persimmon leaf bio-waste for adsorptive removal of heavy metals from aqueous solution. J. Environ. Manag. 2018, 209, 382–392. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Li, Y.; Wang, X.; Daroch, M. Effective adsorption of aqueous Pb2+ by dried biomass of Landoltia punctata and Spirodela polyrhiza. J. Clean. Prod. 2017, 145, 25–34. [Google Scholar] [CrossRef]
- Wang, C.; Wang, H.; Gu, G.; Liu, Y. Sorption of Cd(II) ion by lignocellulose biomass from leaves of camphor tree. Desalination Water Treat. 2017, 68, 211–219. [Google Scholar] [CrossRef]
- Das, D.; Das, N. Optimization of parameters for praseodymium(III) biosorption onto biowaste materials using response surface methodology: Equilibrium, kinetic and regeneration studies. Ecol. Eng. 2015, 81, 321–327. [Google Scholar]
- Ngah, W.W.; Hanafiah, M.A.K.M. Removal of heavy metal ions from wastewater by chemically modified plant wastes as adsorbents: A review. Bioresour. Technol. 2008, 99, 3935–3948. [Google Scholar] [CrossRef]
- Zuo, X.; Balasubramanian, R.; Fu, D.; Li, H. Biosorption of copper, zinc and cadmium using sodium hydroxide immersed Cymbopogon schoenanthus L. Spreng (lemon grass). Ecol. Eng. 2012, 49, 186–189. [Google Scholar] [CrossRef]
- Ma, J.; Jia, Y.; Jing, Y.; Yao, Y.; Sun, J. Kinetics and thermodynamics of methylene blue adsorption by cobalt-hectorite composite. Dye. Pigment. 2012, 93, 1441–1446. [Google Scholar] [CrossRef]
- Ronda, A.; Calero, M.; Blázquez, G.; Pérez, A.; Martín-Lara, M.A. Optimization of the use of a biosorbent to remove heavy metals: Regeneration and reuse of exhausted biosorbent. J. Taiwan Inst. Chem. Eng. 2015, 51, 109–118. [Google Scholar] [CrossRef]
- Madala, S.; Mudumala, V.N.R.; Vudagandla, S.; Abburi, K. Modified leaf biomass for Pb(II) removal from aqueous solution: Application of response surface methodology. Ecol. Eng. 2015, 83, 218–226. [Google Scholar] [CrossRef]
- Du, Z.; Zheng, T.; Wang, P.; Hao, L.; Wang, Y. Fast microwave-assisted preparation of a low-cost and recyclable carboxyl modified lignocellulose-biomass jute fiber for enhanced heavy metal removal from water. Bioresour. Technol. 2016, 201, 41–49. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Wang, H.; Gu, G. Ultrasound-assisted xanthation of cellulose from lignocellulosic biomass optimized by response surface methodology for Pb(II) sorption. Carbohydr. Polym. 2018, 182, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Hojati, S.; Landi, A. Kinetic and Thermodynamic Studies of Zinc Removal from a Metal-Plating Wastewater Using Firouzkouh Zeolite. J. Environ. Stud. 2015, 40, 15–16. [Google Scholar]
- Demirbas, A. Heavy metal adsorption onto agro-based waste materials: A review. J. Hazard. Mater. 2008, 157, 220–229. [Google Scholar] [CrossRef]
- Gurgel, L.V.A.; Freitas, R.P.D.; Gil, L.F. Adsorption of Cu(II), Cd(II), and Pb(II) from aqueous single metal solutions by sugarcane bagasse and mercerized sugarcane bagasse chemically modified with succinic anhydride. Carbohydr. Polym. 2008, 74, 922–929. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Wang, H.; Liu, Y. Purification of Pb(II) ions from aqueous solution by camphor leaf modified with succinic anhydride. Colloids Surf. A Physicochem. Eng. Asp. 2016, 509, 80–85. [Google Scholar] [CrossRef]
- Wang, C.; Wang, H. Carboxyl functionalized Cinnamomum camphora for removal of heavy metals from synthetic wastewater-contribution to sustainability in agroforestry. J. Clean. Prod. 2018, 184, 921–928. [Google Scholar] [CrossRef]
- Wang, C.; Sun, R.; Huang, R. Highly dispersed iron-doped biochar derived from sawdust for Fenton-like degradation of toxic dyes. J. Clean. Prod. 2021, 297, 126681. [Google Scholar] [CrossRef]
- Zhu, H.X.; Cao, X.J.; He, Y.C.; Kong, Q.P.; He, H.; Wang, J. Removal of Cu2+ from aqueous solutions by the novel modified bagasse pulp cellulose: Kinetics, isotherm and mechanism. Carbohydr. Polym. 2015, 129, 115–126. [Google Scholar] [CrossRef]
- Cho, H.H.; Wepasnick, K.; Smith, B.A.; Bangash, F.K.; Fairbrother, D.H.; Ball, W.P. Sorption of aqueous Zn [II] and Cd [II] by multiwall carbon nanotubes: The relative roles of oxygen-containing functional groups and graphenic carbon. Langmuir 2009, 26, 967–981. [Google Scholar] [CrossRef]
- Nasernejad, B.; Zadeh, T.E.; Pour, B.B.; Bygi, M.E.; Zamani, A. Camparison for biosorption modeling of heavy metals (Cr(III), Cu(II), Zn(II)) adsorption from wastewater by carrot residues. Process. Biochem. 2005, 40, 1319–1322. [Google Scholar] [CrossRef]
- Zeng, G.; Liu, Y.; Tang, L.; Yang, G.; Pang, Y.; Zhang, Y.; He, X. Enhancement of Cd(II) adsorption by polyacrylic acid modified magnetic mesoporous carbon. Chem. Eng. J. 2015, 259, 153–160. [Google Scholar] [CrossRef]
- Kumar, Y.P.; King, P.; Prasad, V.S.R.K. Zinc biosorption on Tectona grandis Lf leaves biomass: Equilibrium and kinetic studies. Chem. Eng. J. 2006, 124, 63–70. [Google Scholar] [CrossRef]
- Meitei, M.D.; Prasad, M.N.V. Adsorption of Cu(II), Mn(II) and Zn(II) by Spirodela polyrhiza (L.) Schleiden: Equilibrium, kinetic and thermodynamic studies. Ecol. Eng. 2014, 71, 308–317. [Google Scholar] [CrossRef]
- Wang, C.; Wang, H.; Cao, Y. Pb(II) sorption by biochar derived from Cinnamomum camphora and its improvement with ultrasound-assisted alkali activation. Colloids Surf. A Physicochem. Eng. Asp. 2018, 556, 177–184. [Google Scholar] [CrossRef]
- Argun, M.E.; Dursun, S.; Ozdemir, C.; Karatas, M. Heavy metal adsorption by modified oak sawdust: Thermodynamics and kinetics. J. Hazard. Mater. 2007, 141, 77–85. [Google Scholar] [CrossRef]
- Simonin, J.P. On the comparison of pseudo-first order and pseudo-second order rate laws in the modeling of adsorption kinetics. Chem. Eng. J. 2016, 300, 254–263. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Wan, Y.; Zheng, Y.; He, F.; Yu, Z.; Huang, J.; Gao, B. Surface functional groups of carbon-based adsorbents and their roles in the removal of heavy metals from aqueous solutions: A critical review. Chem. Eng. J. 2019, 366, 608–621. [Google Scholar] [CrossRef]
- Langmuir, I. The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 1918, 40, 1361–1403. [Google Scholar] [CrossRef] [Green Version]
- Wadhawan, S.; Jain, A.; Nayyar, J.; Mehta, S.K. Role of nanomaterials as adsorbents in heavy metal ion removal from waste water: A review. J. Water Process. Eng. 2020, 33, 101038. [Google Scholar] [CrossRef]
- Gurgel, L.V.A.; Gil, L.F. Adsorption of Cu(II), Cd(II) and Pb(II) from aqueous single metal solutions by succinylated twice-mercerized sugarcane bagasse functionalized with triethylenetetramine. Water Res. 2009, 43, 4479–4488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, X.; Chen, G.; Chen, L.; Chen, Y.; Lehmann, J.; McBride, M.B.; Hay, A.G. Adsorption of copper and zinc by biochars produced from pyrolysis of hardwood and corn straw in aqueous solution. Bioresour. Technol. 2011, 102, 8877–8884. [Google Scholar] [CrossRef] [PubMed]
- Shrestha, S.; Son, G.; Lee, S.H.; Lee, T.G. Isotherm and thermodynamic studies of Zn(II) adsorption on lignite and coconut shell-based activated carbon fiber. Chemosphere 2013, 92, 1053–1061. [Google Scholar] [CrossRef]
- Ünlü, N.; Ersoz, M. Adsorption characteristics of heavy metal ions onto a low cost biopolymeric sorbent from aqueous solutions. J. Hazard. Mater. 2006, 136, 272–280. [Google Scholar] [CrossRef] [PubMed]
Sorbents | PFO Model | PSO Model | IPD Model | ||||||
---|---|---|---|---|---|---|---|---|---|
Qe (mg/g) | k1 (min−1) | R2 | Qe (mg/g) | k2 (g/(mg min)) | R2 | C | ki | R2 | |
AC | 0.0566 | 0.0596 | 0.8982 | 8.4947 | 3.5262 | 1.0 | 8.4083 | 0.0109 | 0.4656 |
XC | 0.7183 | 0.0861 | 0.8923 | 18.4060 | 0.2934 | 1.0 | 17.2527 | 0.1486 | 0.4151 |
CC | 0.5192 | 0.0553 | 0.9580 | 21.2811 | 0.4029 | 1.0 | 20.6397 | 0.0795 | 0.6050 |
Sorbents | Langmuir Model | Freundlich Model | Qm,exp (mg/g) | ||||
---|---|---|---|---|---|---|---|
Qm (mg/g) | b (L/mg) | R2 | KF (mg/g)/(mg/L)1/n | n | R2 | ||
AC | 20.1248 | 0.1544 | 0.9990 | 5.4587 | 4.2439 | 0.9445 | 20.04 |
XC | 36.5898 | 0.2979 | 0.9998 | 14.3757 | 6.0890 | 0.9491 | 36.54 |
CC | 46.4912 | 0.1030 | 0.9960 | 15.9181 | 5.8889 | 0.8988 | 47.10 |
Sorbents | References | Capacity (mg/g) | Solution pH | Sorption Time (min) | Initial Concentration (mg/L) | Temperature (°C) |
---|---|---|---|---|---|---|
Lemon grass | [17] | 15.87 | 6.0 | 180 | 10 | 25 |
Carrot residues | [31] | 29.61 | 4.5 | 1440 | 20–500 | 25 |
Tectona grandis | [33] | 16.42 | 5.0 | 180 | 20 | 30 |
Spirodela polyrhiza | [34] | 28.50 | 6.0 | 120 | 5–35 | 30 |
Corn straw biochar | [42] | 11.00 | 5.0 | 1440 | 6–260 | 22 |
Hardwood biochar | [42] | 4.54 | 5.0 | 1440 | 6–260 | 22 |
Coconut shell-based activated carbon | [43] | 9.43 | 7.0 | 1200 | 5–50 | 32 |
Fallen leaves | This study | 12.39 | 6.0 | 30 | 50–1000 | 30 |
AC | This study | 20.12 | 6.0 | 30 | 50–1000 | 30 |
XC | This study | 36.59 | 6.0 | 30 | 50–1000 | 30 |
CC | This study | 46.49 | 6.0 | 30 | 50–1000 | 30 |
Sorbents | ΔG (kJ/mol) | ΔS (J/(molK)) | ΔH (kJ/mol) | R2 | ||
---|---|---|---|---|---|---|
303 K | 313 K | 323 K | ||||
AC | −3.5171 | −3.3848 | −3.2856 | −11.6121 | −7.0304 | 0.9964 |
XC | −5.6069 | −6.0788 | −6.4772 | 43.5929 | 7.5903 | 0.9849 |
CC | −5.5008 | −4.3984 | −3.6653 | −92.1694 | −33.3705 | 0.9802 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dang, J.; Wang, H.; Wang, C. Adsorption of Toxic Zinc by Functionalized Lignocellulose Derived from Waste Biomass: Kinetics, Isotherms and Thermodynamics. Sustainability 2021, 13, 10673. https://doi.org/10.3390/su131910673
Dang J, Wang H, Wang C. Adsorption of Toxic Zinc by Functionalized Lignocellulose Derived from Waste Biomass: Kinetics, Isotherms and Thermodynamics. Sustainability. 2021; 13(19):10673. https://doi.org/10.3390/su131910673
Chicago/Turabian StyleDang, Jiatao, Hui Wang, and Chongqing Wang. 2021. "Adsorption of Toxic Zinc by Functionalized Lignocellulose Derived from Waste Biomass: Kinetics, Isotherms and Thermodynamics" Sustainability 13, no. 19: 10673. https://doi.org/10.3390/su131910673
APA StyleDang, J., Wang, H., & Wang, C. (2021). Adsorption of Toxic Zinc by Functionalized Lignocellulose Derived from Waste Biomass: Kinetics, Isotherms and Thermodynamics. Sustainability, 13(19), 10673. https://doi.org/10.3390/su131910673