Hybrid Economic-Environment-Ecology Land Planning Model under Uncertainty—A Case Study in Mekong Delta
Abstract
:1. Introduction
2. Study Area
3. IPF-LUA for MD
3.1. Objective Function
3.2. Social-Economic Constraints
- (i)
- Government investment constraints:
- (ii)
- Grain input-output constraints:
- (iii)
- Water production input-output constraints:
- (iv)
- Wooden production input-output constraints:
- (v)
- Agricultural water consumption constraints:
- (vi)
- Available labor constraints:
3.3. Environmental Constraints
- (i)
- BOD5 emissions constraints:
- (ii)
- COD emissions constraints
- (iii)
- Wastewater treatment capacity constraints
- (iv)
- Solid-waste treatment capacity constraints
3.4. Ecological Constraints
- (i)
- Antibiotic consumption constraints
- (ii)
- Fertilizer consumption constraints
- (iii)
- Pesticide consumption constraints
3.5. Technical Constrains
- (i)
- Total land areas constraints:
- (ii)
- Non-negative constraints:
3.6. Data Collection
3.7. Model Solving
4. Result and Discussion
4.1. Optimized Land-Use Patterns under Different p Levels during Two Periods
4.2. Optimized Ecological/Environmental Pollutant Discharge and Eco-Environmental Policy Analysis under Different p Value Levels
4.3. Trade-Off between Economic Objective and Eco-Environmental Constraints
4.4. Trade-Off between System Benefit and Membership λ and Constraints
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Ethics Approval
Appendix A
References
- Arata, L.; Diluiso, F.; Guastella, G.; Pareglio, S.; Sckokai, P. Willingness to pay for alternative features of land-use policies: The case of the lake Garda region. Land Use Policy 2021, 100, 10. [Google Scholar] [CrossRef]
- Zheng, W.W.; Ke, X.L.; Xiao, B.Y.; Zhou, T. Optimising land use allocation to balance ecosystem services and economic benefits—A case study in Wuhan, China. J. Environ. Manag. 2019, 248, 10. [Google Scholar] [CrossRef]
- Masoomi, Z.; Mesgari, M.S.; Hamrah, M. Allocation of urban land uses by Multi-Objective Particle Swarm Optimization algorithm. Int. J. Geogr. Inf. Sci. 2013, 27, 542–566. [Google Scholar] [CrossRef]
- Hersperger, A.M.; Oliveira, E.; Pagliarin, S.; Palka, G.; Verburg, P.; Bolliger, J.; Gradinaru, S. Urban land-use change: The role of strategic spatial planning. Glob. Environ. Chang. Hum. Policy Dimens. 2018, 51, 32–42. [Google Scholar] [CrossRef]
- Liu, Y.S.; Zhang, Z.W.; Zhou, Y. Efficiency of construction land allocation in China: An econometric analysis of panel data. Land Use Policy 2018, 74, 261–272. [Google Scholar] [CrossRef]
- Jha, M.K.; Singh, L.K.; Nayak, G.K.; Chowdary, V.M. Optimization modeling for conjunctive use planning in Upper Damodar River basin, India. J. Clean Prod. 2020, 273, 16. [Google Scholar] [CrossRef]
- Medeiros, G.; Florindo, T.; Talamini, E.; Fett, A.; Ruviaro, C. Optimising Tree Plantation Land Use in Brazil by Analysing Trade-Offs between Economic and Environmental Factors Using Multi-Objective Programming. Forests 2020, 11, 22. [Google Scholar] [CrossRef]
- Bai, Y.; Wong, C.P.; Jiang, B.; Hughes, A.C.; Wang, M.; Wang, Q. Developing China's Ecological Redline Policy using ecosystem services assessments for land use planning. Nat. Commun. 2018, 9, 13. [Google Scholar] [CrossRef] [Green Version]
- Hu, M.M.; Wang, Y.F.; Xia, B.C.; Jiao, M.Y.; Huang, G.H. How to balance ecosystem services and economic benefits?—A case study in the Pearl River Delta, China. J. Environ. Manag. 2020, 271, 13. [Google Scholar] [CrossRef]
- Barton, H. Land use planning and health and well-being. Land Use Policy 2009, 26, S115–S123. [Google Scholar] [CrossRef]
- Navarrete-Hernandez, P.; Laffan, K. A greener urban environment: Designing green infrastructure interventions to promote citizens' subjective wellbeing. Landsc. Urban Plan. 2019, 191, 14. [Google Scholar] [CrossRef]
- Nieuwenhuijsen, M.J. Urban and transport planning pathways to carbon neutral, liveable and healthy cities; A review of the current evidence. Environ. Int. 2020, 140, 10. [Google Scholar] [CrossRef]
- Law, E.A.; Bryan, B.A.; Meijaard, E.; Mallawaarachchi, T.; Struebig, M.J.; Watts, M.E.; Wilson, K.A. Mixed policies give more options in multifunctional tropical forest landscapes. J. Appl. Ecol. 2017, 54, 51–60. [Google Scholar] [CrossRef]
- Karner, K.; Cord, A.F.; Hagemann, N.; Hernandez-Mora, N.; Holzkamper, A.; Jeangros, B.; Lienhoop, N.; Nitsch, H.; Rivas, D.; Schmid, E.; et al. Developing stakeholder-driven scenarios on land sharing and land sparing—Insights from five European case studies. J. Environ. Manag. 2019, 241, 488–500. [Google Scholar] [CrossRef]
- Maruna, M.; Crncevic, T.; Milojevic, M.P. The Institutional Structure of Land Use Planning for Urban Forest Protection in the Post-Socialist Transition Environment: Serbian Experiences. Forests 2019, 10, 28. [Google Scholar] [CrossRef] [Green Version]
- De Bisthoven, L.J.; Vanhove, M.P.M.; Rochette, A.J.; Huge, J.; Verbesselt, S.; Machunda, R.; Munishi, L.; Wynants, M.; Steensels, A.; Malan-Meerkotter, M.; et al. Social-ecological assessment of Lake Manyara basin, Tanzania: A mixed method approach. J. Environ. Manag. 2020, 267, 15. [Google Scholar] [CrossRef]
- Namatama, N. An assessment of stakeholders' participation in land use planning process of Luapula Province Planning Authority. Land Use Policy 2020, 97, 21. [Google Scholar] [CrossRef]
- Tao, T.; Tan, Z.; He, X. Integrating environment into land-use planning through strategic environmental assessment in China: Towards legal frameworks and operational procedures. Environ. Impact Assess. Rev. 2007, 27, 243–265. [Google Scholar] [CrossRef]
- Lichtenberg, E.; Ding, C.R. Assessing Farmland Protection Policy in China; Lincoln Inst Land Policy: Cambridge, MA, USA, 2007; p. 101. [Google Scholar]
- Abrantes, P.; Fontes, I.; Gomes, E.; Rocha, J. Compliance of land cover changes with municipal land use planning: Evidence from the Lisbon metropolitan region (1990–2007). Land Use Policy 2016, 51, 120–134. [Google Scholar] [CrossRef]
- Gaaff, A.; Reinhard, S. Incorporating the value of ecological networks into cost-benefit analysis to improve spatially explicit land-use planning. Ecol. Econ. 2012, 73, 66–74. [Google Scholar] [CrossRef]
- Ou, G.L.; Tan, S.K.; Zhou, M.; Lu, S.S.; Tao, Y.H.; Zhang, Z.; Zhang, L.; Yan, D.P.; Guan, X.L.; Wu, G. An interval chance-constrained fuzzy modeling approach for supporting land-use planning and eco-environment planning at a watershed level. J. Environ. Manag. 2017, 204, 651–666. [Google Scholar] [CrossRef]
- Pennington, D.N.; Dalzell, B.; Nelson, E.; Mulla, D.; Taff, S.; Hawthorne, P.; Polasky, S. Cost-effective Land Use Planning: Optimizing Land Use and Land Management Patterns to Maximize Social Benefits. Ecol. Econ. 2017, 139, 75–90. [Google Scholar] [CrossRef]
- Kumar, P.; Rosenberger, J.M.; Iqbal, G.M.D. Mixed integer linear programming approaches for land use planning that limit urban sprawl. Comput. Ind. Eng. 2016, 102, 33–43. [Google Scholar] [CrossRef]
- Mic, P.; Koyuncu, M.; Hallak, J. Primary Health Care Center (PHCC) Location-Allocation with Multi-Objective Modelling: A Case Study in Idleb, Syria. Int. J. Environ. Res. Public Health 2019, 16, 23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Najafabadi, M.M.; Ziaee, S.; Nikouei, A.; Borazjani, M.A. Mathematical programming model (MMP) for optimization of regional cropping patterns decisions: A case study. Agric. Syst. 2019, 173, 218–232. [Google Scholar] [CrossRef]
- Turk, E.; Zwick, P.D. Optimization of land use decisions using binary integer programming: The case of Hillsborough County, Florida, USA. J. Environ. Manag. 2019, 235, 240–249. [Google Scholar] [CrossRef] [PubMed]
- Bacca, E.J.M.; Knight, A.; Trifkovic, M. Optimal land use and distributed generation technology selection via geographic-based multicriteria decision analysis and mixed-integer programming. Sust. Cities Soc. 2020, 55, 12. [Google Scholar]
- Gosling, E.; Reith, E.; Knoke, T.; Paul, C. A goal programming approach to evaluate agroforestry systems in Eastern Panama. J. Environ. Manag. 2020, 261, 13. [Google Scholar] [CrossRef]
- Mohammadi, M.; Nastaran, M.; Sahebgharani, A. Development, application, and comparison of hybrid meta-heuristics for urban land-use allocation optimization: Tabu search, genetic, GRASP, and simulated annealing algorithms. Comput. Environ. Urban Syst. 2016, 60, 23–36. [Google Scholar] [CrossRef]
- Sante, I.; Rivera, F.F.; Crecente, R.; Boullon, M.; Suarez, M.; Porta, J.; Parapar, J.; Doallo, R. A simulated annealing algorithm for zoning in planning using parallel computing. Comput. Environ. Urban Syst. 2016, 59, 95–106. [Google Scholar] [CrossRef]
- Li, X.; Ma, X.D. An improved simulated annealing algorithm for interactive multi-objective land resource spatial allocation. Ecol. Complex. 2018, 36, 184–195. [Google Scholar] [CrossRef]
- Rall, E.; Hansen, R.; Pauleit, S. The added value of public participation GIS (PPGIS) for urban green infrastructure planning. Urban For. Urban Green. 2019, 40, 264–274. [Google Scholar] [CrossRef]
- Ramya, S.; Devadas, V. Integration of GIS, AHP and TOPSIS in evaluating suitable locations for industrial development: A case of Tehri Garhwal district, Uttarakhand, India. J. Clean Prod. 2019, 238, 14. [Google Scholar] [CrossRef]
- Marzouk, M.; Othman, A. Planning utility infrastructure requirements for smart cities using the integration between BIM and GIS. Sust. Cities Soc. 2020, 57, 14. [Google Scholar] [CrossRef]
- ul Hussnain, M.Q.; Waheed, A.; Anjum, G.A.; Naeem, M.A.; Hussain, E.; Wakil, K.; Pettit, C.J. A framework to bridge digital planning tools' utilization gap in peri-urban spatial planning; lessons from Pakistan. Comput. Environ. Urban Syst. 2020, 80, 12. [Google Scholar] [CrossRef]
- Fu, X.; Wang, X.H.; Yang, Y.J. Deriving suitability factors for CA-Markov land use simulation model based on local historical data. J. Environ. Manag. 2018, 206, 10–19. [Google Scholar] [CrossRef]
- Liang, X.; Liu, X.P.; Li, D.; Zhao, H.; Chen, G.Z. Urban growth simulation by incorporating planning policies into a CA-based future land-use simulation model. Int. J. Geogr. Inf. Sci. 2018, 32, 2294–2316. [Google Scholar] [CrossRef]
- Liu, X.P.; Liang, X.; Li, X.; Xu, X.C.; Ou, J.P.; Chen, Y.M.; Li, S.Y.; Wang, S.J.; Pei, F.S. A future land use simulation model (FLUS) for simulating multiple land use scenarios by coupling human and natural effects. Landsc. Urban Plan. 2017, 168, 94–116. [Google Scholar] [CrossRef]
- Mondal, B.; Das, D.N.; Bhatta, B. Integrating cellular automata and Markov techniques to generate urban development potential surface: A study on Kolkata agglomeration. Geocarto Int. 2017, 32, 401–419. [Google Scholar] [CrossRef]
- Wang, L.Z.; Pijanowski, B.; Yang, W.S.; Zhai, R.X.; Omrani, H.; Li, K. Predicting multiple land use transitions under rapid urbanization and implications for land management and urban planning: The case of Zhanggong District in central China. Habitat Int. 2018, 82, 48–61. [Google Scholar] [CrossRef]
- Xu, T.T.; Gao, J.; Coco, G. Simulation of urban expansion via integrating artificial neural network with Markov chain—cellular automata. Int. J. Geogr. Inf. Sci. 2019, 33, 1960–1983. [Google Scholar] [CrossRef]
- Mi, N.; Hou, J.W.; Mi, W.B.; Song, N.P. Optimal spatial land-use allocation for limited development ecological zones based on the geographic information system and a genetic ant colony algorithm. Int. J. Geogr. Inf. Sci. 2015, 29, 2174–2193. [Google Scholar] [CrossRef]
- Yang, L.N.; Sun, X.; Peng, L.; Shao, J.; Chi, T.H. An improved artificial bee colony algorithm for optimal land-use allocation. Int. J. Geogr. Inf. Sci. 2015, 29, 1470–1489. [Google Scholar] [CrossRef]
- Li, X.; Parrott, L. An improved Genetic Algorithm for spatial optimization of multi-objective and multi-site land use allocation. Comput. Environ. Urban Syst. 2016, 59, 184–194. [Google Scholar] [CrossRef]
- Hakli, H.; Uguz, H. A novel approach for automated land partitioning using genetic algorithm. Expert Syst. Appl. 2017, 82, 10–18. [Google Scholar] [CrossRef]
- Huang, Q.; Song, W. A land-use spatial optimum allocation model coupling a multi-agent system with the shuffled frog leaping algorithm. Comput. Environ. Urban Syst. 2019, 77, 19. [Google Scholar] [CrossRef]
- Zhou, M. An interval fuzzy chance-constrained programming model for sustainable urban land-use planning and land use policy analysis. Land Use Policy 2015, 42, 479–491. [Google Scholar] [CrossRef]
- Ma, S.H.; Wen, Z.Z. Optimization of land use structure to balance economic benefits and ecosystem services under uncertainties: A case study in Wuhan, China. J. Clean Prod. 2021, 311, 16. [Google Scholar] [CrossRef]
- Rao, Y.X.; Zhou, M.; Ou, G.L.; Dai, D.Y.; Zhang, L.; Zhang, Z.; Nie, X.; Yang, C. Integrating ecosystem services value for sustainable land-use management in semi-arid region. J. Clean Prod. 2018, 186, 662–672. [Google Scholar] [CrossRef]
- Yuen, K.W.; Hanh, T.T.; Quynh, V.D.; Switzer, A.D.; Teng, P.; Lee, J.S.H. Interacting effects of land-use change and natural hazards on rice agriculture in the Mekong and Red River deltas in Vietnam. Nat. Hazards Earth Syst. Sci. 2021, 21, 1473–1493. [Google Scholar] [CrossRef]
- Luo, D.; Liang, L.W.; Wang, Z.B.; Chen, L.K.; Zhang, F.M. Exploration of coupling effects in the Economy-Society-Environment system in urban areas: Case study of the Yangtze River Delta Urban Agglomeration. Ecol. Indic. 2021, 128, 14. [Google Scholar]
- Dou, P.F.; Zuo, S.D.; Ren, Y.; Rodriguez, M.J.; Dai, S.Q. Refined water security assessment for sustainable water management: A case study of 15 key cities in the Yangtze River Delta, China. J. Environ. Manag. 2021, 290, 13. [Google Scholar] [CrossRef]
- Zhou, M.; Wang, X.; Lin, X.T.; Yang, S.; Zhang, J.; Chen, J. Automobile exhaust particles retention capacity assessment of two common garden plants in different seasons in the Yangtze River Delta using open-top chambers. Environ. Pollut. 2020, 263, 9. [Google Scholar]
- Zhou, M.; Chen, Q.; Cai, Y.L. Optimizing the industrial structure of a watershed in association with economic-environmental consideration: An inexact fuzzy multi-objective programming model. J. Clean Prod. 2013, 42, 116–131. [Google Scholar] [CrossRef]
Land-Use Type | Symbol | Period | |||
---|---|---|---|---|---|
t = 1 | t = 2 | ||||
Lower | Upper | Lower | Upper | ||
Benefits of land use | CLBi=1,j=1 (103) | 4.74 | 6.42 | 4.89 | 6.61 |
CLBi=2,j=1 (103) | 3.69 | 4.99 | 3.80 | 5.14 | |
CLBi=3,j=1 (103) | 2.87 | 3.88 | 2.95 | 3.99 | |
FLBi=1,j=2 (103) | 3.02 | 4.09 | 3.12 | 4.21 | |
FLBi=2,j=2 (103) | 6.76 | 9.15 | 6.96 | 9.42 | |
FLBi=3,j=2 (103) | 2.16 | 2.93 | 2.23 | 3.01 | |
ALBi=1,j=3 (103) | 9.83 | 13.30 | 10.13 | 13.70 | |
ALBi=2,j=3 (103) | 10.73 | 14.51 | 11.05 | 14.95 | |
ALBi=3,j=3 (103) | 8.94 | 12.10 | 9.21 | 12.46 | |
CLPi=1,j=4 (103) | 14.85 | 20.09 | 15.89 | 21.50 | |
CLPi=2,j=4 (103) | 25.68 | 34.75 | 27.48 | 37.18 | |
CLPi=3,j=4 (103) | 12.70 | 17.19 | 13.59 | 18.39 | |
Costs of land use | UWTCi=1,j=1 | 0.76 | 1.14 | 0.93 | 1.29 |
USTCi=1,j=1 | 95.71 | 103.05 | 104.03 | 117.25 | |
UWTCi=1,j=3 | 1.02 | 1.51 | 1.24 | 1.71 | |
UWTCi=1,j=4 | 77.68 | 83.99 | 86.00 | 93.81 | |
USTCi=1,j=4 | 707.60 | 747.47 | 877.03 | 956.76 | |
UWMCi=1,j=5 | 398.65 | 428.55 | 508.28 | 538.18 | |
UUDCi=1,j=6 | 847.13 | 896.96 | 976.69 | 1245.78 |
Symbol | Period | |||
---|---|---|---|---|
t = 1 | t = 2 | |||
Lower | Upper | Lower | Upper | |
MGIt (106USD) | 23.9 | 32.3 | 28.0 | 37.8 |
UGPi=1 (ton/ha) | 9.84 | 13.32 | 9.76 | 13.20 |
GD (106ton) | 1.50 | 2.03 | 1.51 | 2.05 |
UWPi=1 (ton/ha) | 57.54 | 77.84 | 59.14 | 80.02 |
WD (103ton) | 494.52 | 669.05 | 499.46 | 675.74 |
UWOPi=1 (m3/ha) | 4.70 | 6.36 | 4.68 | 6.34 |
WOD (103m3) | 872.78 | 1180.82 | 898.96 | 1216.25 |
WCCi=1 (103/ha) | 1.79 | 2.42 | 1.89 | 2.56 |
WCAi=1 (103m3/ha) | 8.50 | 11.50 | 9.01 | 12.19 |
RWSA (109m3) | 0.45 | 0.61 | 0.48 | 0.65 |
LCi=1 (people/ha) | 2.29 | 3.09 | 2.29 | 3.09 |
AL (106people) | 8.65 | 11.71 | 8.64 | 11.69 |
DBi=1,j=3 (ton/ha) | 0.23 | 0.31 | 0.24 | 0.33 |
DCi=1,j=3 (ton/ha) | 0.41 | 0.56 | 0.43 | 0.59 |
WDAi=1,j=3 (103ton/ha) | 5.15 | 6.97 | 5.41 | 7.32 |
WDBi=1,j=4 (103ton/ha) | 0.14 | 0.19 | 0.15 | 0.20 |
SDCi=1,j=1 (ton/ha) | 9.86 | 13.34 | 9.73 | 13.16 |
SDBi=1,j=4 (ton/ha) | 8.14 | 11.01 | 8.95 | 12.11 |
ACi=1 (kg/ha) | 13.02 | 17.62 | 13.28 | 17.97 |
FCi=1 (kg/ha) | 663.00 | 897.00 | 595.00 | 805.00 |
PCi=1 (kg/ha) | 5.60 | 7.60 | 5.10 | 6.90 |
Symbol | Period | |||||||
---|---|---|---|---|---|---|---|---|
t = 1 | t = 2 | |||||||
p = 0.01 | p = 0.05 | p = 0.10 | p = 0.15 | p = 0.01 | p = 0.05 | p = 0.10 | p = 0.15 | |
MTDB (103 ton) | 296.92 | 304.72 | 314.48 | 324.24 | 306.76 | 314.96 | 325.21 | 335.45 |
MTDC (103 ton) | 365.03 | 379.50 | 397.59 | 415.67 | 383.28 | 398.47 | 417.47 | 436.46 |
WTPC (109 ton) | 4.90 | 5.09 | 5.33 | 5.58 | 5.14 | 5.35 | 5.60 | 5.86 |
STPC (106 ton) | 4.52 | 4.70 | 4.92 | 5.15 | 4.97 | 5.17 | 5.42 | 5.66 |
MAC (103 ton) | 8.04 | 8.36 | 8.76 | 9.16 | 8.20 | 8.53 | 8.93 | 9.34 |
MFC (106 ton) | 2.06 | 2.14 | 2.24 | 2.34 | 2.06 | 2.14 | 2.24 | 2.34 |
MPC (103 ton) | 174.42 | 181.33 | 189.93 | 198.52 | 174.56 | 181.47 | 190.06 | 198.78 |
Variable | x (j = 1) | x (j = 2) | x (j = 3) | x (j = 4) | x (j = 5) | x (j = 6) | |
---|---|---|---|---|---|---|---|
t = 1 | p = 0.01 | [721,709, 976,430] | [44,985, 60,862] | [20,594, 27,862] | [127,872, 173,003] | [49,930, 67,552] | [899, 1216] |
p = 0.05 | [721,114, 975,625] | [45,155, 61,092] | [20,849, 28,207] | [128,042, 173,233] | [50,015, 67,667] | [814, 1101] | |
p = 0.10 | [720,604, 974,935] | [45,325, 61,322] | [21,104, 28,552] | [128,212, 173,463] | [50,100, 67,782] | [729, 986] | |
p = 0.15 | [720,179, 974,360] | [45,495, 61,552] | [21,274, 28,782] | [128,297, 173578] | [50,185, 67,897] | [644, 871] | |
t = 2 | p = 0.01 | [721,284, 975,855] | [45,070, 60,977] | [20,764, 28,092] | [128,042, 173,233] | [50,015, 67,667] | [814, 1101] |
p = 0.05 | [720,774, 975,165] | [45,240, 61,207] | [21,019, 28,437] | [128,127, 173,348] | [50,100, 67,782] | [729, 986] | |
p = 0.10 | [720,349, 974,590] | [45,410, 61,437] | [21,189, 28,667] | [128,297, 173,578] | [50,185, 67,897] | [644, 871] | |
p = 0.15 | [719,924, 974,015] | [45,580, 61,667] | [21,359, 28,897] | [128,382, 173,693] | [50,270, 68,012] | [559, 756] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, Y.; Zhou, M.; Ma, C.; Wang, M.; Tu, J. Hybrid Economic-Environment-Ecology Land Planning Model under Uncertainty—A Case Study in Mekong Delta. Sustainability 2021, 13, 10978. https://doi.org/10.3390/su131910978
Ma Y, Zhou M, Ma C, Wang M, Tu J. Hybrid Economic-Environment-Ecology Land Planning Model under Uncertainty—A Case Study in Mekong Delta. Sustainability. 2021; 13(19):10978. https://doi.org/10.3390/su131910978
Chicago/Turabian StyleMa, Yuxiang, Min Zhou, Chaonan Ma, Mengcheng Wang, and Jiating Tu. 2021. "Hybrid Economic-Environment-Ecology Land Planning Model under Uncertainty—A Case Study in Mekong Delta" Sustainability 13, no. 19: 10978. https://doi.org/10.3390/su131910978
APA StyleMa, Y., Zhou, M., Ma, C., Wang, M., & Tu, J. (2021). Hybrid Economic-Environment-Ecology Land Planning Model under Uncertainty—A Case Study in Mekong Delta. Sustainability, 13(19), 10978. https://doi.org/10.3390/su131910978