Risk Assessment of Resources Exposed to Rainfall Induced Landslide with the Development of GIS and RS Based Ensemble Metaheuristic Machine Learning Algorithms
Abstract
:1. Introduction
- General: The work contributes to the robustness of knowledge by developing and utilizing methods to an unstudied area on the landslide susceptibility and spatiotemporal risk assessment.
- Regional: Increased knowledge of landslide susceptibility and spatiotemporal risk assessment in Aqabat Al-Sulbat, Asir region, Saudi Arabia. The outcome of this work would be a valuable basis for the earth scientists, government authorities, and stakeholders to improve land management and disaster management.
- Methodical: Proposed ensemble metaheuristic machine learning algorithms, such as PSO-ANN, PSO-RF, GW-ANN, and GW-RF for LS modeling. Developed ROC based sensitivity model at spatial scale first time. Constructed long-term landslide risk assessment using danger pixel.
2. Materials and Methodology
2.1. Study Area
2.2. Landslide Inventories
2.3. Landslide Conditioning Parameters
2.3.1. Elevation
2.3.2. Slope
2.3.3. Curvature
2.3.4. Aspect
2.3.5. Geology
2.3.6. Soil Texture
2.3.7. Lineament Density
2.3.8. Topographic Wetness Index (TWI)
2.3.9. Normalized Differentiation Vegetation Index (NDVI)
2.3.10. Land Use Land Cover (LULC) Mapping
2.3.11. Drainage Density
2.3.12. Distance to Road
2.4. Methods for Multicollinearity Analysis
2.5. Methods for Landslide Susceptibility Model
2.5.1. Optimization Algorithms
Grey Wolf Optimization (GWO)
Particle Swarm Optimization (PSO)
2.5.2. Machine Learning Algorithms
Artificial Neural Network (ANN)
Random Forest (RF)
2.5.3. Procedure for Optimization
2.6. Validation of the Landslide Susceptibility Models
2.7. Sensitivity Analysis of the Models
Parameters Removal and ROC Based Sensitivity Analysis
2.8. Spatiotemporal Landslide Hazards Mapping
2.9. Spatiotemporal Landslide Risk Assessment (LRA) Using the Concept of Danger Pixel
3. Results
3.1. Landslide Susceptibility Modeling
3.1.1. Multicollinearity Analysis
3.1.2. Configuration of the Machine Learning Algorithms
3.1.3. Metaheuristic Optimizations for Configured Machine Learning Algorithms
3.1.4. Model Validation and Comparisons
3.1.5. Generation of the Landslide Susceptibility Maps
3.1.6. Validation of LS Maps
3.1.7. Sensitivity Analysis of LS Model
3.2. Landslide Hazards Modeling
3.2.1. Estimation of Rainfall at Different Return Periods
3.2.2. Generation of Landslide Hazard Models
3.3. Landslide Risk Assessment Using the Theory of Danger Pixel
3.3.1. Identification of Danger Pixel
3.3.2. Risk Assessment by the Integration of Danger Pixel and Resource Map
4. Discussion
4.1. Landslide Susceptibility Modeling
4.2. Sensitivity Analysis
4.3. Landslide Risk Assessment Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Azimi, S.R.; Nikraz, H.; Yazdani-Chamzini, A. Landslide Risk Assessment by using a New Combination Model based on a Fuzzy Inference System Method. KSCE J. Civ. Eng. 2018, 22, 4263–4271. [Google Scholar] [CrossRef]
- Sarkar, S. Landslide Risk Assessment in Parts of the Darjeeling Himalayas, India. In Integrating Disaster Science and Management: Global Case Studies in Mitigation and Recovery; Elsevier: Amsterdam, The Netherlands, 2018; ISBN 9780128120576. [Google Scholar]
- Gheshlaghi, H.A.; Feizizadeh, B. An integrated approach of analytical network process and fuzzy based spatial decision making systems applied to landslide risk mapping. J. Afr. Earth Sci. 2017, 133, 15–24. [Google Scholar] [CrossRef]
- Zare, M.; Pourghasemi, H.R.; Vafakhah, M.; Pradhan, B. Landslide susceptibility mapping at Vaz Watershed (Iran) using an artificial neural network model: A comparison between multilayer perceptron (MLP) and radial basic function (RBF) algo-rithms. Arab. J. Geosci. 2013, 6, 2873–2888. [Google Scholar] [CrossRef]
- Glade, T.; Nadim, F. Early warning systems for natural hazards and risks. Nat. Hazards 2014, 70, 1669–1671. [Google Scholar] [CrossRef] [Green Version]
- Basu, T.; Das, A.; Pal, S. Application of geographically weighted principal component analysis and fuzzy approach for un-supervised landslide susceptibility mapping on Gish River Basin, India. Geocarto Int. 2020. [Google Scholar] [CrossRef]
- Huang, F.; Yin, K.; Huang, J.; Gui, L.; Wang, P. Landslide susceptibility mapping based on self-organizing-map network and extreme learning machine. Eng. Geol. 2017, 223, 11–22. [Google Scholar] [CrossRef]
- He, Q.; Xu, Z.; Li, S.; Li, R.; Zhang, S.; Wang, N.; Pham, B.T.; Chen, W. Novel entropy and rotation forest-based credaldeci-sion tree classifier for landslide susceptibility modeling. Entropy 2019, 21, 106. [Google Scholar] [CrossRef] [Green Version]
- Nhu, V.H.; Shirzadi, A.; Shahabi, H.; Chen, W.; Clague, J.J.; Geertsema, M.; Jaafari, A.; Avand, M.; Miraki, S.; Asl, D.T.; et al. Shallow Landslide Susceptibility Mapping by Random Forest Base Classifier and Its Ensembles in a Semi-Arid Region of Iran. Forests 2020, 11, 421. [Google Scholar] [CrossRef] [Green Version]
- Lee, D.-H.; Kim, Y.-T.; Lee, S. Shallow Landslide Susceptibility Models Based on Artificial Neural Networks Considering the Factor Selection Method and Various Non-Linear Activation Functions. Remote Sens. 2020, 12, 1194. [Google Scholar] [CrossRef] [Green Version]
- Tien Bui, D.T.; Shahabi, H.; Shirzadi, A.; Chapi, K.; Alizadeh, M.; Chen, W.; Mohammadi, A.; Bin Ahmad, B.; Panahi, M.; Hong, H.; et al. Landslide Detection and Susceptibility Mapping by AIRSAR Data Using Support Vector Machine and Index of Entropy Models in Cameron Highlands, Malaysia. Remote Sens. 2018, 10, 1527. [Google Scholar] [CrossRef] [Green Version]
- Pandey, V.K.; Pourghasemi, H.R.; Sharma, M.C. Landslide susceptibility mapping using maximum entropy and support vector machine models along the highway corridor, Garhwal Himalaya. Geocarto Int. 2020, 35, 168–187. [Google Scholar] [CrossRef]
- Yu, C.; Chen, J. Landslide Susceptibility Mapping Using the Slope Unit for Southeastern Helong City, Jilin Province, China: A Comparison of ANN and SVM. Symmetry 2020, 12, 1047. [Google Scholar] [CrossRef]
- Sahin, E.K. Assessing the predictive capability of ensemble tree methods for landslide susceptibility mapping using XGBoost, gradient boosting machine, and random forest. SN Appl. Sci. 2020, 2, 1–17. [Google Scholar] [CrossRef]
- Achour, Y.; Pourghasemi, H.R. How do machine learning techniques help in increasing accuracy of landslide susceptibility maps? Geosci. Front. 2020, 11, 871–883. [Google Scholar] [CrossRef]
- Sahin, E.K.; Colkesen, I.; Kavzoglu, T. A comparative assessment of canonical correlation forest, random forest, rotation for-est and logistic regression methods for landslide susceptibility mapping. Geocarto Int. 2020, 35, 341–363. [Google Scholar] [CrossRef]
- Wu, Y.; Ke, Y.; Chen, Z.; Liang, S.; Zhao, H.; Hong, H. Application of alternating decision tree with AdaBoost and bagging ensembles for landslide susceptibility mapping. Catena 2020, 187, 104396. [Google Scholar] [CrossRef]
- Nhu, V.H.; Zandi, D.; Shahabi, H.; Chapi, K.; Shirzadi, A.; Al-Ansari, N.; Singh, S.K.; Dou, J.; Nguyen, H. Comparison of support vector machine, bayesian logistic regression, and alternating decision tree algorithms for shallow landslide suscepti-bility mapping along a mountainous road in the west of Iran. Appl. Sci. 2020, 10, 5047. [Google Scholar] [CrossRef]
- Nhu, V.H.; Ngo, P.T.T.; Pham, T.D.; Dou, J.; Song, X.; Hoang, N.-D.; Tran, D.A.; Duong, P.C.; Aydilek, I.B.; Amiri, M.; et al. A New Hybrid Firefly–PSO Optimized Random Subspace Tree Intelligence for Torrential Rainfall-Induced Flash Flood Susceptible Mapping. Remote Sens. 2020, 12, 2688. [Google Scholar] [CrossRef]
- Pham, B.T.; Van Phong, T.; Nguyen-Thoi, T.; Parial, K.; Singh, S.K.; Ly, H.B.; Nguyen, K.T.; Ho, L.S.; Van Le, H.; Prakash, I. Ensemble modeling of landslide susceptibility using random subspace learner and different decision tree classifiers. Geocarto Int. 2020. [Google Scholar] [CrossRef]
- Pham, B.T.; Prakash, I.; Singh, S.K.; Shirzadi, A.; Shahabi, H.; Bui, D.T. Landslide susceptibility modeling using Reduced Error Pruning Trees and different ensemble techniques: Hybrid machine learning approaches. Catena 2019, 175, 203–218. [Google Scholar] [CrossRef]
- Park, S.; Hamm, S.Y.; Kim, J. Performance evaluation of the gis-based data-mining techniques decision tree, random forest, and rotation forest for landslide susceptibility modeling. Sustainability 2019, 11, 5659. [Google Scholar] [CrossRef] [Green Version]
- Wu, B.; Qiu, W.; Jia, J.; Liu, N. Landslide Susceptibility Modeling Using Bagging-Based Positive-Unlabeled Learning. IEEE Geosci. Remote Sens. Lett. 2020. [Google Scholar] [CrossRef]
- Dou, J.; Yunus, A.P.; Bui, D.T.; Merghadi, A.; Sahana, M.; Zhu, Z.; Chen, C.-W.; Han, Z.; Pham, B.T. Improved landslide assessment using support vector machine with bagging, boosting, and stacking ensemble machine learning framework in a mountainous watershed, Japan. Landslides 2020, 17, 641–658. [Google Scholar] [CrossRef]
- Pham, B.T.; Prakash, I. A novel hybrid model of Bagging-based Naïve Bayes Trees for landslide susceptibility assessment. Bull. Eng. Geol. Environ. 2019, 78, 1911–1925. [Google Scholar] [CrossRef]
- Chen, W.; Chen, X.; Peng, J.; Panahi, M.; Lee, S. Landslide susceptibility modeling based on ANFIS with teach-ing-learning-based optimization and Satin bowerbird optimizer. Geosci. Front. 2020, 12, 93–107. [Google Scholar] [CrossRef]
- Chen, W.; Hong, H.; Panahi, M.; Shahabi, H.; Wang, Y.; Shirzadi, A.; Pirasteh, S.; Alesheikh, A.A.; Khosravi, K.; Panahi, S.; et al. Spatial Prediction of Landslide Susceptibility Using GIS-Based Data Mining Techniques of ANFIS with Whale Optimization Algorithm (WOA) and Grey Wolf Optimizer (GWO). Appl. Sci. 2019, 9, 3755. [Google Scholar] [CrossRef] [Green Version]
- Polykretis, C.; Chalkias, C.; Ferentinou, M. Adaptive neuro-fuzzy inference system (ANFIS) modeling for landslide suscepti-bility assessment in a Mediterranean hilly area. Bull. Eng. Geol. Environ. 2019, 78, 1173–1187. [Google Scholar] [CrossRef]
- Wang, Y.; Hong, H.; Chen, W.; Li, S.; Panahi, M.; Khosravi, K.; Shirzadi, A.; Shahabi, H.; Panahi, S.; Costache, R. Flood sus-ceptibility mapping in Dingnan County (China) using adaptive neuro-fuzzy inference system with biogeography based opti-mization and imperialistic competitive algorithm. J. Environ. Manag. 2019, 247, 712–729. [Google Scholar] [CrossRef]
- Kim, J.C.; Lee, S.; Jung, H.S.; Lee, S. Landslide susceptibility mapping using random forest and boosted tree models in Pyeong-Chang, Korea. Geocarto Int. 2018, 33, 1000–1015. [Google Scholar] [CrossRef]
- Talukdar, S.; Ghose, B.; Salam, R.; Mahato, S.; Pham, Q.B.; Linh, N.T.T.; Costache, R.; Avand, M. Flood suscepti-bility modeling in Teesta River basin, Bangladesh using novel ensembles of bagging algorithms. Stoch. Environ. Res. Risk Assess 2020, 34, 2277–2300. [Google Scholar] [CrossRef]
- Islam, A.R.M.T.; Talukdar, S.; Mahato, S.; Kundu, S.; Eibek, K.U.; Pham, Q.B.; Kuriqi, A.; Linh, N.T.T. Flood susceptibility modelling using advanced ensemble machine learning models. Geosci. Front. 2020. [Google Scholar] [CrossRef]
- Eshtay, M.; Faris, H.; Obeid, N. Improving Extreme Learning Machine by Competitive Swarm Optimization and its applica-tion for medical diagnosis problems. Expert Syst. Appl. 2018, 104, 134–152. [Google Scholar] [CrossRef]
- Taormina, R.; Chau, K.-W. Neural network river forecasting with multi-objective fully informed particle swarm optimization. J. Hydroinform. 2015, 17, 99–113. [Google Scholar] [CrossRef] [Green Version]
- Niu, W.J.; Feng, Z.K.; Cheng, C.T.; Wu, X.Y. A parallel multi-objective particle swarm optimization for cascade hy-dropower reservoir operation in southwest China. Appl. Soft Comput. J. 2018, 70, 562–575. [Google Scholar] [CrossRef]
- Tomer, T.; Katyal, D.; Joshi, V. Sensitivity analysis of groundwater vulnerability using DRASTIC method: A case study of National Capital Territory, Delhi, India. Groundw. Sustain. Dev. 2019, 9, 100271. [Google Scholar] [CrossRef]
- Corominas, J.; VanWesten, C.; Frattini, P.; Cascini, L.; Malet, J.-P.; Fotopoulou, S.D.; Catani, F.; Eeckhaut, M.V.D.; Mavrouli, O.C.; Agliardi, F.; et al. Recommendations for the quantitative analysis of landslide risk. Bull. Eng. Geol.Environ. 2013, 73, 209–263. [Google Scholar] [CrossRef]
- Abdulwahid, W.M.; Pradhan, B. Landslide vulnerability and risk assessment for multi-hazard scenarios using airborne laser scanning data (LiDAR). Landslides 2017, 14, 1057–1076. [Google Scholar] [CrossRef]
- Liu, C.-N.; Dong, J.; Chen, C.-J.; Lee, W.-F. Typical landslides and related mechanisms in Ali Mountain highway induced by typhoon Morakot: Perspectives from engineering geology. Landslides 2012, 9, 239–254. [Google Scholar] [CrossRef]
- Li, L.; Wang, Y. Identification of failure slip surfaces for landslide risk assessment using smoothed particle hydrodynamics. Georisk 2019, 14, 91–111. [Google Scholar] [CrossRef]
- Dikshit, A.; Sarkar, R.; Pradhan, B.; Acharya, S.; Alamri, A.M. Spatial Landslide Risk Assessment at Phuentsholing, Bhutan. Geosciences 2020, 10, 131. [Google Scholar] [CrossRef] [Green Version]
- Lu, M.; Zhang, J.; Zhang, L.; Zhang, L. Quantitative risk assessment of vehicles hit by landslides: Acase study. Nat. Hazards Earth Syst. Sci. 2020, 20, e2020-11. [Google Scholar]
- Guo, Z.; Chen, L.; Yin, K.; Shrestha, D.P.; Zhang, L. Quantitative risk assessment of slow-moving landslides from the view-point of decision-making: A case study of the Three Gorges Reservoir in China. Eng. Geol. 2020, 273, 105667. [Google Scholar] [CrossRef]
- Zhu, C.; Zhang, J.; Liu, Y.; Ma, D.; Li, M.; Xiang, B. Comparison of GA-BP and PSO-BP neural network models with initial BP model for rainfall-induced landslides risk assessment in regional scale: A case study in Sichuan, China. Nat. Hazards 2020, 100, 173–204. [Google Scholar] [CrossRef]
- Cardinali, M.; Reichenbach, P.; Guzzetti, F.; Ardizzone, F.; Antonini, G.; Galli, M.; Cacciano, M.; Castellani, M.; Salvati, P. A geomorphological approach to the estimation of landslide hazards and risks in Umbria, Central Italy. Nat. Hazards Earth Syst. Sci. 2002, 2, 57–72. [Google Scholar] [CrossRef] [Green Version]
- Hadmoko, D.S.; Lavigne, F.; Sartohadi, J.; Hadi, P. Landslide hazard and risk assessment and their application in risk management and landuse planning in eastern flank of Menoreh Mountains, Yogyakarta Province, Indonesia. Nat. Hazards 2010, 54, 623–642. [Google Scholar] [CrossRef]
- Ghosh, S.; van Westen, C.J.; Carranza, E.J.M.; Jetten, V.G. Integrating spatial, temporal, and magnitude probabilities for me-dium-scale landslide risk analysis in Darjeeling Himalayas, India. Landslides 2012, 9, 371–384. [Google Scholar] [CrossRef]
- Kanungo, D.; Arora, M.K.; Gupta, R.P.; Sarkar, S. Landslide risk assessment using concepts of danger pixels and fuzzy set theory in Darjeeling Himalayas. Landslides 2008, 5, 407–416. [Google Scholar] [CrossRef]
- Tang, X.; Li, J.; Liu, M.; Liu, W.; Hong, H. Flood susceptibility assessment based on a novel random Naïve Bayes method: A comparison between different factor discretization methods. Catena 2020, 190, 104536. [Google Scholar] [CrossRef]
- Pourghasemi, H.R.; Kornejady, A.; Kerle, N.; Shabani, F. Investigating the effects of different landslide positioning techniques, landslide partitioning approaches, and presence-absence balances on landslide susceptibility mapping. Catena 2020, 187, 104364. [Google Scholar] [CrossRef]
- Wang, L.-J.; Sawada, K.; Moriguchi, S. Landslide susceptibility analysis with logistic regression model based on FCM sampling strategy. Comput. Geosci. 2013, 57, 81–92. [Google Scholar] [CrossRef]
- Remondo, J.; Bonachea, J.; Cendrero, A. Quantitative landslide risk assessment and mapping on the basis of recent occurrences. Geomorphology 2008, 94, 496–507. [Google Scholar] [CrossRef]
- Leonardi, G.; Palamara, R.; Suraci, F. A fuzzy methodology to evaluate the landslide risk in road lifelines. Transp. Res. Procedia 2020, 45, 732–739. [Google Scholar] [CrossRef]
- Lee, S.; Min, K. Statistical analysis of landslide susceptibility at Yongin, Korea. Environ. Geol. 2001, 40, 1095–1113. [Google Scholar] [CrossRef]
- Sidle, R.; Ochiai, H. Processes, prediction, and land use. In Water Resources Monograph; American Geophysical Union: Washington, DC, USA, 2006. [Google Scholar]
- Mukherjee, I.; Singh, U.K. Delineation of groundwater potential zones in a drought-prone semi-arid region of east India using GIS and analytical hierarchical process techniques. Catena 2020, 194, 104681. [Google Scholar] [CrossRef]
- Talukdar, S.; Pal, S.; Singha, P. Proposing artificial intelligence based livelihood vulnerability index in river islands. J. Clean. Prod. 2020. [Google Scholar] [CrossRef]
- Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey Wolf Optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [Google Scholar] [CrossRef] [Green Version]
- Faris, H.; Aljarah, I.; Al-Betar, M.A.; Mirjalili, S. Grey wolf optimizer: A review of recent variants and applications. Neural Comput. Appl. 2018, 30, 413–435. [Google Scholar] [CrossRef]
- Devi, R.L.; Jayashree, L.S. Grey Wolf Optimization-Based Big Data Analytics for Dengue Outbreak Prediction. In Advances in Intelligent Systems and Computing; Springer: New York, NY, USA, 2018. [Google Scholar]
- Wong, L.; Sulaiman, M.; Mohamed, M.; Hong, M. Grey Wolf Optimizer for solving economic dispatch problems. In Proceedings of the 2014 IEEE International Conference on Power and Energy (PECon), Kuching, Malaysia, 1–3 December 2014. [Google Scholar]
- Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95-International Conference on Neural Networks, Perth, WA, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948. [Google Scholar] [CrossRef]
- Roshanravan, B.; Aghajani, H.; Yousefi, M.; Kreuzer, O. Particle Swarm Optimization Algorithm for Neuro-Fuzzy Prospec-tivity Analysis Using Continuously Weighted Spatial Exploration Data. Nat. Resour. Res. 2019, 28, 309–325. [Google Scholar] [CrossRef]
- Gilani, S.-O.; Sattarvand, J.; Hajihassani, M.; Abdullah, S.S. A stochastic particle swarm based model for long term production planning of open pit mines considering the geological uncertainty. Resour. Policy 2020, 68, 101738. [Google Scholar] [CrossRef]
- Yasin, Q.; Sohail, G.M.; Ding, Y.; Ismail, A.; Du, Q. Estimation of Petrophysical Parameters from Seismic Inversion by Com-bining Particle Swarm Optimization and Multilayer Linear Calculator. Nat. Resour. Res. 2020, 29, 3291–3317. [Google Scholar] [CrossRef]
- Bui, Q.; Nguyen, Q.-H.; Nguyen, X.L.; Pham, V.; Nguyen, H.D.; Pham, V. Verification of novel integrations of swarm intelligence algorithms into deep learning neural network for flood susceptibility mapping. J. Hydrol. 2020, 581, 124379. [Google Scholar] [CrossRef]
- Pourghasemi, H.R.; Razavi-Termeh, S.V.; Kariminejad, N.; Hong, H.; Chen, W. An assessment of metaheuristic approaches for flood assessment. J. Hydrol. 2020, 582, 124536. [Google Scholar] [CrossRef]
- Mehrabi, M.; Pradhan, B.; Moayedi, H.; Alamri, A. Optimizing an adaptive neuro-fuzzy inference system for spatial predic-tion of landslide susceptibility using four state-of-the-art metaheuristic techniques. Sensors 2020, 20, 1723. [Google Scholar] [CrossRef] [Green Version]
- Sun, D.; Wen, H.; Wang, D.; Xu, J. A random forest model of landslide susceptibility mapping based on hyperparameterop-timization using Bayes algorithm. Geomorphology 2020, 362, 107201. [Google Scholar] [CrossRef]
- Gafar, M.G.; Elhoseny, M.; Gunasekaran, M. Modeling neutrosophic variables based on particle swarm optimization and information theory measures for forest fires. J. Supercomput. 2020, 76, 2339–2356. [Google Scholar] [CrossRef]
- Zhang, H.; Liang, Z.; Liu, H.; Wang, R.; Liu, Y. Ensemble framework by using nature inspired algorithms for the early-stage forest fire rescue—A case study of dynamic optimization problems. Eng. Appl. Artif. Intell. 2020, 90. [Google Scholar] [CrossRef]
- Xi, W.; Li, G.; Moayedi, H.; Nguyen, H. A particle-based optimization of artificial neural network for earthquake-induced landslide assessment in Ludiancounty, China. Geomat. Nat. Hazards Risk 2019, 10, 1750–1771. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, V.V.; Pham, B.T.; Vu, B.T.; Prakash, I.; Jha, S.; Shahabi, H.; Shirzadi, A.; Ba, D.N.; Kumar, R.; Chatterjee, J.M.; et al. Hybrid Machine Learning Approaches for Landslide Susceptibility Modeling. Forests 2019, 10, 157. [Google Scholar] [CrossRef] [Green Version]
- Pradhan, B.; Lee, S. Landslide susceptibility assessment and factor effect analysis: Backpropagation artificial neural networks and their comparison with frequency ratio and bivariate logistic regression modelling. Environ. Model. Softw. 2010, 25, 747–759. [Google Scholar] [CrossRef]
- Friedel, M.J. Modeling hydrologic and geomorphic hazards across post-fire landscapes using a self-organizing map approach. Environ. Model. Softw. 2011, 26, 1660–1674. [Google Scholar] [CrossRef]
- Arnone, E.; Francipane, A.; Noto, L.V.; Scarbaci, A.; La Loggia, G. Strategies investigation in using artificial neural network for landslide susceptibility mapping: Application to a Sicilian catchment. J. Hydroinform. 2014, 16, 502–515. [Google Scholar] [CrossRef]
- Genuer, R.; Poggi, J.M.; Tuleau-Malot, C. Variable selection using random forests. Pattern Recognit. Lett. 2010, 31, 2225–2236. [Google Scholar] [CrossRef] [Green Version]
- Beven, K.J.; Kirkby, M.J. A physically based, variable contributing area model of basin hydrology. Hydrol. Sci. Bull. 1979, 24, 43–69. [Google Scholar] [CrossRef] [Green Version]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Stumpf, A.; Kerle, N. Object-oriented mapping of landslides using Random Forests. Remote Sens. Environ. 2011, 115, 2564–2577. [Google Scholar] [CrossRef]
- Abedini, M.; Ghasemian, B.; Shirzadi, A.; Bui, D.T. A comparative study of support vector machine and logistic model tree classifiers for shallow landslide susceptibility modeling. Environ. Earth Sci. 2019, 78, 560. [Google Scholar] [CrossRef]
- Pal, S.; Talukdar, S.; Ghosh, R. Damming effect on habitat quality of riparian corridor. Ecol. Indic. 2020, 114, 106300. [Google Scholar] [CrossRef]
- Singha, P.; Das, P.; Talukdar, S.; Pal, S. Modeling livelihood vulnerability in erosion and flooding induced river island in Ganges riparian corridor, India. Ecol. Indic. 2020, 119, 106825. [Google Scholar] [CrossRef]
- Talukdar, S.; Pal, S. Modeling flood plain wetland transformation in consequences of flow alteration in Punarbhabariver in India and Bangladesh. J. Clean. Prod. 2020, 261, 120767. [Google Scholar] [CrossRef]
- Baeza, C.; Lantada, N.; Amorim, S. Statistical and spatial analysis of landslide susceptibility maps with different classification systems. Environ. Earth Sci. 2016, 75, 1318. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Li, Z.; Zhao, W.; Wang, Y. Probability modeling of precipitation extremes over two river basins in northwest of China. Adv. Meteorol. 2015, 2015, 374127. [Google Scholar] [CrossRef]
- Oh, H.J.; Pradhan, B. Application of a neuro-fuzzy model to landslide-susceptibility mapping for shallow landslides in a tropical hilly area. Comput. Geosci. 2011, 37, 1264–1276. [Google Scholar] [CrossRef]
- Moayedi, H.; Nguyen, H.; Foong, L.K. Nonlinear evolutionary swarm intelligence of grasshopper optimization algorithm and gray wolf optimization for weight adjustment of neural network. Eng. Comput. 2019, 1–11. [Google Scholar] [CrossRef]
- Jaafari, A.; Panahi, M.; Pham, B.T.; Shahabi, H.; Bui, D.T.; Rezaie, F.; Lee, S. Meta optimization of an adaptive neuro-fuzzy inference system with grey wolf optimizer and biogeography-based optimization algorithms for spatial prediction of landslide susceptibility. Catena 2019, 175, 430–445. [Google Scholar] [CrossRef]
- Li, D.; Huang, F.; Yan, L.; Cao, Z.; Chen, J.; Ye, Z. Landslide susceptibility prediction using particle-swarm-optimized multi-layer perceptron: Comparisons with multilayer-perceptron-only, BP neural network, and information value models. Appl. Sci. 2019, 9, 3664. [Google Scholar] [CrossRef] [Green Version]
- Moayedi, H.; Mehrabi, M.; Mosallanezhad, M.; Rashid, A.S.A.; Pradhan, B. Modification of landslide susceptibility mapping using optimized PSO-ANN technique. Eng. Comput. 2019, 35, 967–984. [Google Scholar] [CrossRef]
- Pham, B.T.; Qi, C.; Ho, L.S.; Nguyen-Thoi, T.; Al-Ansari, N.; Nguyen, M.D.; Nguyen, H.D.; Ly, H.-B.; Van Le, H.; Prakash, I. A Novel Hybrid Soft Computing Model Using Random Forest and Particle Swarm Optimization for Estimation of Undrained Shear Strength of Soil. Sustainability 2020, 12, 2218. [Google Scholar] [CrossRef] [Green Version]
- Pal, S.; Paul, S. Assessingwetland habitat vulnerability in moribund Ganges delta using bivariate models and machine learn-ing algorithms. Ecol. Indic. 2020, 119, 106866. [Google Scholar] [CrossRef]
- Ilia, I.; Tsangaratos, P. Applying weight of evidence method and sensitivity analysis to produce a landslide susceptibility map. Landslides 2016, 13, 379–397. [Google Scholar] [CrossRef]
- Svalova, V.B.; Zaalishvili, V.B.; Ganapathy, G.P.; Nikolaev, A.V.; Melkov, D.A. Landslide risk in mountain areas. Гeология и гeоφизикaЮгaPоccии 2019, 9, 109–126. [Google Scholar]
- Terzi, S.; Torresan, S.; Schneiderbauer, S.; Critto, A.; Zebisch, M.; Marcomini, A. Multi-risk assessment in mountain regions: A review of modelling approaches for climate change adaptation. J. Environ. Manag. 2019, 232, 759–771. [Google Scholar] [CrossRef] [PubMed]
- Maes, J.; Mertens, K.; Jacobs, L.; Bwambale, B.; Vranken, L.; Dewitte, O.; Poesen, J.; Kervyn, M. Social multi-criteria evalua-tion to identify appropriate disaster risk reduction measures: Application to landslides in the Rwenzori Mountains, Uganda. Landslides 2019, 16, 1793–1807. [Google Scholar] [CrossRef]
- Han, L.; Ma, Q.; Zhang, F.; Zhang, Y.; Zhang, J.; Bao, Y.; Zhao, J. Risk assessment of an earthquake-collapse-landslide disas-ter chain by bayesian network and newmark models. Int. J. Environ. Res. Public Health 2019, 16, 3330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qiu, H.; Cui, Y.; Hu, S.; Yang, D.; Pei, Y.; Yang, W. Temporal and spatial distributions of landslides in the Qinba Mountains, Shaanxi Province, China. Geomat. Nat. Hazards Risk 2019, 10, 599–621. [Google Scholar] [CrossRef]
- Marin, R.J.; Mattos, Á.J. Physically-based landslide susceptibility analysis using Monte Carlo simulation in a tropical moun-tain basin. Georisk 2020, 14, 192–205. [Google Scholar]
- Mineo, S. Comparingrockfall hazard and risk assessment procedures along roads for different planning purposes. J. Mt. Sci. 2020, 17, 653–669. [Google Scholar] [CrossRef]
- Mavrouli, O.; Corominas, J.; Ibarbia, I.; Alonso, N.; Jugo, I.; Ruiz, J.; Luzuriaga, S.; Navarro, J.A. Integrated risk assessment due to slope instabilities in the roadway network of Gipuzkoa, Basque Country. Nat. Hazards Earth Syst. Sci. 2019, 19, 399–419. [Google Scholar] [CrossRef] [Green Version]
- Winter, M.G.; Wong, J.C.F. The assessment of quantitative risk to road users from debris flow. Geoenviron. Disasters 2020, 7, 4. [Google Scholar] [CrossRef]
- Althuwaynee, O.F.; Pradhan, B. Semi-quantitative landslide risk assessment using GIS-based exposure analysis in Kuala Lumpur City. Geomat. Nat. Hazards Risk 2017, 8, 706–732. [Google Scholar] [CrossRef] [Green Version]
- Dikshit, A.; Sarkar, R.; Pradhan, B.; Jena, R.; Drukpa, D.; Alamri, A.M. Temporal probability assessment and its use in land-slide susceptibility mapping for Eastern Bhutan. Water 2020, 12, 267. [Google Scholar] [CrossRef] [Green Version]
Parameters | Sig. | Collinearity Statistics | |
---|---|---|---|
Tolerance | VIF | ||
TWI | 0.172 | 0.543 | 10.843 |
Geology | 0.577 | 0.687 | 10.455 |
Distance to road | 0.253 | 0.543 | 10.840 |
Curvature | 0.722 | 0.500 | 20.000 |
Aspect | 0.438 | 0.841 | 10.189 |
Lineament density | 0.258 | 0.549 | 10.823 |
LULC | 0.402 | 0.704 | 10.420 |
NDVI | 0.354 | 0.761 | 10.314 |
Drainage density | 0.415 | 0.523 | 10.913 |
Slope | 0.000 | 0.217 | 40.617 |
Soil texture | 0.000 | 0.455 | 20.197 |
Elevation | 0.000 | 0.472 | 20.119 |
Optimization Algorithms | Optimized Model Parameters |
---|---|
PSO | Swarm size—30; iteration—1000; mutation type-bit-flip, mutation probability—0.01; inertia weight—0.33; social weight—0.33; individual weight—0.34; report frequency—20; seed—−5 |
GWO | Number of population— 50 (for ANN) and 45 (for RF); absorption coefficient of the firefly members—0.001; accelerate type-normal, iteration—1000; seed-6, escape probability—0.8, mutation probability—0.01; chaotic coefficient—4.0 |
Landslide Susceptibility Zones | Area (km2) | |||
---|---|---|---|---|
GW-ANN | GW-RF | PSO-ANN | PSO-RF | |
Very low | 57.07 | 40.40 | 18.40 | 40.31 |
Low | 59.97 | 54.25 | 61.33 | 54.76 |
Moderate | 47.86 | 53.60 | 61.45 | 52.61 |
High | 27.27 | 35.06 | 41.32 | 35.73 |
Very high | 6.14 | 15.13 | 16.03 | 15.03 |
Landslide Hazard Zones | Area (km2) in Different Return Periods | |||||
---|---|---|---|---|---|---|
2 Year | 5 Year | 10 Year | 20 Year | 50 Year | 100 Year | |
Very low | 56.72 | 43.23 | 42.32 | 41.10 | 37.47 | 37.29 |
Low | 61.01 | 54.91 | 50.88 | 50.41 | 48.91 | 50.27 |
Moderate | 47.93 | 53.83 | 53.23 | 51.67 | 50.51 | 49.71 |
High | 26.28 | 37.59 | 40.26 | 40.02 | 42.36 | 40.52 |
Very high | 6.09 | 8.90 | 11.53 | 15.03 | 18.97 | 20.44 |
Resources at Risk | Area (km2) in Different Return Periods | ||||||
---|---|---|---|---|---|---|---|
GW-ANN | 2 Year | 5 Year | 10 Year | 20 Year | 50 Year | 100 Year | |
Built up | 0.14 | 0.16 | 0.26 | 0.31 | 0.40 | 0.56 | 0.63 |
Waterbodies | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |
Dense vegetation | 1.43 | 1.53 | 1.43 | 1.39 | 1.32 | 1.28 | 1.16 |
Sparse vegetation | 2.78 | 3.00 | 2.60 | 2.45 | 2.33 | 2.26 | 2.13 |
Agriculture cropland | 0.01 | 0.02 | 0.01 | 0.01 | 0.01 | 0.01 | 0.02 |
Scrubland | 13.65 | 14.96 | 19.02 | 21.02 | 22.15 | 24.89 | 24.56 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mallick, J.; Alqadhi, S.; Talukdar, S.; AlSubih, M.; Ahmed, M.; Khan, R.A.; Kahla, N.B.; Abutayeh, S.M. Risk Assessment of Resources Exposed to Rainfall Induced Landslide with the Development of GIS and RS Based Ensemble Metaheuristic Machine Learning Algorithms. Sustainability 2021, 13, 457. https://doi.org/10.3390/su13020457
Mallick J, Alqadhi S, Talukdar S, AlSubih M, Ahmed M, Khan RA, Kahla NB, Abutayeh SM. Risk Assessment of Resources Exposed to Rainfall Induced Landslide with the Development of GIS and RS Based Ensemble Metaheuristic Machine Learning Algorithms. Sustainability. 2021; 13(2):457. https://doi.org/10.3390/su13020457
Chicago/Turabian StyleMallick, Javed, Saeed Alqadhi, Swapan Talukdar, Majed AlSubih, Mohd. Ahmed, Roohul Abad Khan, Nabil Ben Kahla, and Saud M. Abutayeh. 2021. "Risk Assessment of Resources Exposed to Rainfall Induced Landslide with the Development of GIS and RS Based Ensemble Metaheuristic Machine Learning Algorithms" Sustainability 13, no. 2: 457. https://doi.org/10.3390/su13020457
APA StyleMallick, J., Alqadhi, S., Talukdar, S., AlSubih, M., Ahmed, M., Khan, R. A., Kahla, N. B., & Abutayeh, S. M. (2021). Risk Assessment of Resources Exposed to Rainfall Induced Landslide with the Development of GIS and RS Based Ensemble Metaheuristic Machine Learning Algorithms. Sustainability, 13(2), 457. https://doi.org/10.3390/su13020457