Micromechanics-Based Prediction Models and Experimental Validation on Elastic Modulus of Recycled Aggregate Concrete
Abstract
:1. Introduction
2. Theoretical Models
2.1. Voigt Model and Reuss Model
2.2. Eshelby Method
2.3. Mori–Tanaka Method
3. Experiments
3.1. Materials
3.2. Concrete Mixture Proportions
3.3. Experimental Method
4. Results and Discussions
4.1. Experimental Results
4.2. Comparison of Theoretical and Experimental Results
5. Conclusions
- Both compressive strength and the elastic modulus of RAC tend to decrease with the increase in the replacement ratio of RCA. However, the elastic modulus does not fit the overall trend well when the replacement ratio of RCA reaches 60%. In addition, there is an empirical relationship between the compressive strength and the elastic modulus. Further research needs to be conducted to verify the correctness and applicability of this linear relationship.
- Of the four prediction models, the Mori–Tanaka method is the most accurate and reasonable. The accuracy of the Voigt model or the Reuss model fits relatively well respectively when the replacement ratio is within a certain range. As far as engineering is concerned, the Voigt model or the Reuss model can also be employed because of their simple calculation to obtain a relatively accurate elastic modulus of RAC conveniently.
- The Mori–Tanaka method gives the best overall approximation for various data compared to the prediction models obtained from the previous literature. Moreover, it illustrates the extensive effects of the Mori–Tanaka method in predicting the elastic modulus of RAC.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Liu, T.; Teng, Y.; Wang, D.; Gong, E. System dynamic analysis of construction waste recycling industry chain in China. Environ. Sci. Pollut. Res. Int. 2020, 27, 37260–37277. [Google Scholar] [CrossRef]
- GB/T 25177-2010. Recycled Coarse Aggregate for Concrete; Ministry of Housing and Urban-Rural Development of the People’s Republic of China: Beijing, China, 2010.
- Ho, N.Y.; Lee, Y.P.K.; Lim, W.F.; Zayed, T.; Chew, K.C.; Low, G.L.; Ting, S.K. Efficient Utilization of Recycled Concrete Aggregate in Structural Concrete. J. Mater. Civ. Eng. 2013, 25, 318–327. [Google Scholar] [CrossRef]
- Karimipour, A.; Edalati, M. Influence of untreated coal and recycled aggregates on the mechanical properties of green concrete. J. Clean Prod. 2020, 276, 124291. [Google Scholar] [CrossRef]
- Xiao, J.Z.; Lu, D.; Ying, J.W. Durability of recycled aggregate concrete: An overview. J. Adv. Concr. Technol. 2013, 11, 347–359. [Google Scholar] [CrossRef] [Green Version]
- Chinzorigt, G.; Lim, M.K.; Yu, M.; Lee, H.; Enkbold, O.; Choi, D. Strength, shrinkage and creep and durability aspects of concrete including CO2 treated recycled fine aggregate. Cem. Concr. Res. 2020, 136, 106062. [Google Scholar] [CrossRef]
- Rais, M.S.; Khan, R.A. Effect of biomineralization technique on the strength and durability characteristics of recycled aggregate concrete. Constr. Build. Mater. 2021, 290, 123280. [Google Scholar] [CrossRef]
- Gupta, P.K.; Rajhans, P.; Panda, S.K.; Nayak, S.; Das, S.K. Mix design method for self-compacting recycled aggregate concrete and its microstructural investigation by considering adhered mortar in aggregate. J. Mater. Civ. Eng. 2020, 32, 04019371. [Google Scholar] [CrossRef]
- Kazmi, S.M.S.; Munir, M.J.; Wu, Y.F.; Patnaikuni, I.; Zhou, Y.W.; Feng, X. Effect of different aggregate treatment techniques on the freeze-thaw and sulfate resistance of recycled aggregate concrete. Cold Reg. Sci. Tech. 2020, 178, 103126. [Google Scholar] [CrossRef]
- Ahmed, T.W.; Ali, A.M.; Zidan, R.S. Properties of high strength polypropylene fiber concrete containing recycled aggregate. Constr. Build. Mater. 2020, 241, 118010. [Google Scholar] [CrossRef]
- Bidabadi, M.S.; Akbari, M.; Panahi, O. Optimum mix design of recycled concrete based on the fresh and hardened properties of concrete. J. Build. Eng. 2020, 32, 101483. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, Y.Y.; Lehman, D.E.; Kuder, K. Time-dependent drying shrinkage model for concrete with coarse and fine recycled aggregate. Cem. Concr. Compos. 2019, 105, 103426. [Google Scholar] [CrossRef]
- Gholampour, A.; Ozbakkaloglu, T. Time-dependent and long-term mechanical properties of concretes incorporating different grades of coarse recycled concrete aggregates. Eng. Struct. 2018, 157, 224–234. [Google Scholar] [CrossRef]
- Ayub, T.; Mahmood, W.; Khan, A. Durability performance of SCC and SCGC containing recycled concrete aggregates: A comparative study. Sustainability 2021, 13, 8621. [Google Scholar] [CrossRef]
- Ying, J.W.; Zhou, B.; Xiao, J.Z. Pore structure and chloride diffusivity of recycled aggregate concrete with nano-SiO2 and nano-TiO2. Constr. Build. Mater. 2017, 150, 49–55. [Google Scholar] [CrossRef]
- Kazmi, S.M.S.; Munir, M.J.; Wu, Y.F. Application of waste tire rubber and recycled aggregates in concrete products: A new compression casting approach. Resour. Conserv. Recycl. 2021, 167, 105353. [Google Scholar] [CrossRef]
- Sadowska-Buraczewska, B.; Barnat-Hunek, D. Szafraniec, M. Influence of recycled high-performance aggregate on deformation and load-carrying capacity of reinforced concrete beams. Materials 2020, 13, 186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deresa, S.T.; Xu, J.J.; Demartino, C.; Heo, Y.; Li, Z.; Xiao, Y. A review of experimental results on structural performance of reinforced recycled aggregate concrete beams and columns. Adv. Struct. Eng. 2020, 23, 3351–3369. [Google Scholar] [CrossRef]
- Khelil, A.; Boissiere, R.; Al Mahmoud, F.; Wurtzer, F.; Blin-Lacroix, J.L. Experimental and numerical investigation on axial compression of reinforced concrete columns made from recycled coarse and fine aggregates. Struct. Concr. 2020, 22, 193–206. [Google Scholar] [CrossRef]
- Xiao, J.Z. Recycled Aggregate Concrete Structures; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar] [CrossRef]
- Bendimerad, A.Z.; Delsaute, B.; Roziere, E.; Staquet, S.; Loukili, A. Advanced techniques for the study of shrinkage-induced cracking of concrete with recycled aggregates at early age. Constr. Build. Mater. 2020, 233, 17340. [Google Scholar] [CrossRef]
- Barbudo, A.; de Brito, J.; Evangelista, L.; Bravo, M. Influence of water-reducing admixtures on the mechanical performance of recycled concrete. J. Clean. Prod. 2013, 59, 93–98. [Google Scholar] [CrossRef]
- Corinaldesi, V. Mechanical and elastic behaviour of concretes made of recycled-concrete coarse aggregates. Constr. Build. Mater. 2010, 24, 1616–1620. [Google Scholar] [CrossRef]
- Golafshani, E.M.; Behnood, A. Application of soft computing methods for predicting the elastic modulus of recycled aggregate concrete. J. Clean. Prod. 2018, 176, 1163–1176. [Google Scholar] [CrossRef]
- Han, T.H.; Siddique, A.; Khayat, K.; Huang, J.; Kumar, A. An ensemble machine learning approach for prediction and optimization of modulus of elasticity of recycled aggregate concrete. Constr. Build. Mater. 2020, 244, 118271. [Google Scholar] [CrossRef]
- Counto, U.J.; Mears, A.R.; Ishai, O.; Chiorino, M.A. Discussion: The effect of the elastic modulus of the aggregate on the elastic modulus, creep and creep recovery of concrete. Mag. Concr. Res. 1965, 17, 142–151. [Google Scholar] [CrossRef]
- Chang, C.F.; Chen, J.W. Strength and Elastic Modulus of Carbonated Concrete. ACI Mater. J. 2005, 102, 315–321. [Google Scholar]
- Voigt, W. Uber die Beziehung Zwischen Den Beiden Elastiziatskonstanten Isotroper Korper. Wied. Ann. 1889, 38, 573–578. [Google Scholar] [CrossRef] [Green Version]
- Reuss, A.Z. Berchung der Fiessgrenze von Mischkristallen auf Grund der Plastiziatsbedingung fur Einkristalle. Angew. Math. Mach. 1929, 9, 49–58. [Google Scholar] [CrossRef]
- Eshelby, J.D. The Determination of the Elastic Field of an Ellipsoidal Inclusion, and Related Problems. Proc. R. Soc. A 1957, 241, 376–396. [Google Scholar] [CrossRef]
- Eshelby, J.D. The Elastic Field outside an Ellipsoidal Inclusion. Proc. R. Soc. A 1959, 252, 561–569. [Google Scholar] [CrossRef]
- Qu, J.M.; Cherkaoui, M. Fundamentals of Micromechanics of Solids; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2006. [Google Scholar]
- Mori, T.; Tanaka, K. Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall. 1973, 21, 571–574. [Google Scholar] [CrossRef]
- GB/T 14684-2011. Sand for Construction; China Building Materials Federation: Beijing, China, 2011. [Google Scholar]
- GB/T 14685-2011. Pebble and Crushed Stone for Construction; China Building Materials Federation: Beijing, China, 2011. [Google Scholar]
- Zhang, Y.M.; Qin, H.G.; Sun, W.; Hao, D.M.; Ning, Z. The mix proportion design of recycled concrete. Concr. Cem. Prod. 2002, 1, 7–9. [Google Scholar] [CrossRef]
- GB/T 50081-2019. Standard for Test Methods of Concrete Physical and Mechanical Properties; Ministry of Housing and Urban-Rural Development of the People’s Republic of China: Beijing, China, 2019.
- Zheng, J.J.; Chen, T.; Zhou, X.Z.; Zhou, H. Analytical solution for the elastic modulus of recycled concrete. Concrete 2019, 3, 40–43. [Google Scholar] [CrossRef]
- Zhou, H.Y.; Li, S.C.; Duan, Z.; Wang, M.L.; Zhi, B. Study on the preparation of similar basalt materials and their physical and mechanical parameters. Yangtze River 2021, 52. [Google Scholar] [CrossRef]
- Gil, H.; Ortega, A.; Pérez, J. Mechanical behavior of mortar reinforced with sawdust waste. Procedia Eng. 2017, 200, 325–332. [Google Scholar] [CrossRef]
- Hirsch, T.J. Modulus of elasticity of concrete affected by elastic moduli of cement paste matrix and aggregate. Proc. Am. Concr. Inst. 1962, 59, 427–451. [Google Scholar]
- Luo, S.R.; Ye, S.C.; Xiao, J.Z.; Zhu, Y.T. Carbonated recycled coarse aggregate and uniaxial compressive stress-strain relation of recycled aggregate concrete. Constr. Build. Mater. 2018, 188, 956–965. [Google Scholar] [CrossRef]
Property | NCA | RCA | Requirement/Category | |
---|---|---|---|---|
GB/T 14685-2011 | GB/T 25177-2010 | |||
Apparent density (kg/m3) | 2660 | 2590 | ≥2600 | Class I |
Water absorption (%) | 0.7 | 4.8 | Class I | Class II |
Crushing index (%) | 9.8 | 17.6 | Class I | Class II |
Elongated or flat particle (%) | 5.0 | 9.0 | Class I | <10 |
Type | Cement (kg) | Sand (kg) | NCA (kg) | RCA (kg) | Water (kg) | Additional Water (kg) |
---|---|---|---|---|---|---|
NAC | 461 | 512 | 1252 | 0 | 175 | 0 |
RAC-10 | 461 | 512 | 1127 | 125 | 175 | 5 |
RAC-20 | 461 | 512 | 902 | 250 | 175 | 10 |
RAC-30 | 461 | 512 | 876 | 376 | 175 | 14 |
RAC-40 | 461 | 512 | 751 | 501 | 175 | 19 |
RAC-50 | 461 | 512 | 626 | 626 | 175 | 24 |
RAC-60 | 461 | 512 | 501 | 751 | 175 | 29 |
RAC-70 | 461 | 512 | 376 | 876 | 175 | 34 |
RAC-80 | 461 | 512 | 250 | 1002 | 175 | 38 |
RAC-90 | 461 | 512 | 125 | 1127 | 175 | 43 |
RAC-100 | 461 | 512 | 0 | 1252 | 175 | 48 |
Type | Slump (mm) | Compressive Strength | Elastic Modulus | ||||
---|---|---|---|---|---|---|---|
Mean (MPa) | SD (MPa) | C.V (%) | Mean (GPa) | SD (GPa) | C.V (%) | ||
NAC | 49 | 33.63 | 0.74 | 2.19 | 33.96 | 0.80 | 2.35 |
RAC-10 | 46 | 33.27 | 1.23 | 3.71 | 33.03 | 1.22 | 3.70 |
RAC-20 | 44 | 32.87 | 1.25 | 3.80 | 32.53 | 1.32 | 4.07 |
RAC-30 | 42 | 32.17 | 0.80 | 2.49 | 31.01 | 0.41 | 1.33 |
RAC-40 | 47 | 31.27 | 0.85 | 2.72 | 28.91 | 0.66 | 2.27 |
RAC-50 | 50 | 30.73 | 1.39 | 4.51 | 28.22 | 1.30 | 4.59 |
RAC-60 | 51 | 29.83 | 0.38 | 1.27 | 29.16 | 0.77 | 2.65 |
RAC-70 | 53 | 28.57 | 1.31 | 4.57 | 27.37 | 0.41 | 1.48 |
RAC-80 | 53 | 28.33 | 0.42 | 1.47 | 25.70 | 0.61 | 2.37 |
RAC-90 | 55 | 27.93 | 0.60 | 2.16 | 24.99 | 0.39 | 1.57 |
RAC-100 | 56 | 27.60 | 0.36 | 1.31 | 24.44 | 1.02 | 4.17 |
Type | Elastic Modulus (GPa) | Poisson’s Ratio | Bulk Modulus (GPa) | Shear Modulus (GPa) | Density (g/cm3) |
---|---|---|---|---|---|
NCA | 60.00 | 0.25 | 40.00 | 24.00 | 2.7 |
RCA | 33.96 | 0.20 | 18.87 | 14.15 | 2.6 |
Mortar | 22.00 | 0.15 | 10.48 | 9.57 | — |
Concrete (NAC and RAC) | — | — | — | — | 2.4 |
Model | R | R2 | MAE (GPa) | MAPE (%) | RMSE (GPa) |
---|---|---|---|---|---|
Voigt model | 0.9794 | 0.9593 | 2.8061 | 8.9222 | 2.8789 |
Reuss model | 0.9766 | 0.9537 | 3.8761 | 14.3613 | 4.5913 |
Eshelby method | 0.9759 | 0.9523 | 1.8000 | 6.3184 | 2.2251 |
Mori–Tanaka method | 0.9804 | 0.9613 | 1.3581 | 10.8007 | 1.5873 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, S.; Wang, B.; Sun, Y.; Lyu, B. Micromechanics-Based Prediction Models and Experimental Validation on Elastic Modulus of Recycled Aggregate Concrete. Sustainability 2021, 13, 11172. https://doi.org/10.3390/su132011172
Yan S, Wang B, Sun Y, Lyu B. Micromechanics-Based Prediction Models and Experimental Validation on Elastic Modulus of Recycled Aggregate Concrete. Sustainability. 2021; 13(20):11172. https://doi.org/10.3390/su132011172
Chicago/Turabian StyleYan, Shirong, Binglei Wang, Yu Sun, and Boning Lyu. 2021. "Micromechanics-Based Prediction Models and Experimental Validation on Elastic Modulus of Recycled Aggregate Concrete" Sustainability 13, no. 20: 11172. https://doi.org/10.3390/su132011172
APA StyleYan, S., Wang, B., Sun, Y., & Lyu, B. (2021). Micromechanics-Based Prediction Models and Experimental Validation on Elastic Modulus of Recycled Aggregate Concrete. Sustainability, 13(20), 11172. https://doi.org/10.3390/su132011172