Study on the Physical, Chemical and Nano-Microstructure Characteristics of Asphalt Mixed with Recycled Eggshell Waste
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Preparation
2.3. The Hardness, Thermal Stability and Ductility of Asphalt
2.4. Chemical Properties of Asphalt
2.5. Microscopic Characteristics of Eggshell Powder
2.6. Nano-Microstructure of Asphalt
3. Results and Discussion
3.1. The Hardness, Thermal Stability and Ductility of Asphalt
3.2. Chemical Properties of Asphalt
3.2.1. Chemical Shift
3.2.2. Hydrogen Atom Index
3.3. Microscopic Characteristics of Eggshell Powder
3.4. Evolution of Nano-Scale Microstructure Characteristics of Asphalt
3.4.1. Characteristics of Nano-Scale Microstructure of Asphalt
3.4.2. Quantification of Nano-Scale Microstructure Characteristics of Asphalt
3.4.3. The Relationship between Nano-Micro Indexes of Asphalt and Proportion of Eggshell Waste
3.4.4. Evolution Analysis of Nano-Scale Microstructure Characteristics of Asphalt
4. Conclusions
- The penetration, softening point and ductility tests indicates that the eggshell waste increases the hardness, thermal stability and reduces the ductility of asphalt.
- 1H-NMR test points out that there is no obvious chemical reaction between the eggshell waste and asphalt, and the interaction between eggshell waste and asphalt is a physical miscible process.
- The SEM test of the eggshell powder microstructure shows that eggshell powder is rough, wrinkled, porous and loosened and can usually show good adsorption performance.
- The AFM test of the asphalt shows that a “bee-like structure” exists in the nano-microstructure of asphalt with different contents of eggshell waste. In addition, adding different contents of eggshell waste changes the maturity, size, quantity of the “bee-like structure” and roughness of asphalt, which can be attributed to the interaction of the asphaltene—waxiness system.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gao, J.; Wang, H.; You, Z.; Hasan, M. Research on properties of bio-asphalt binders based on time and frequency sweep test. Constr. Build. Mater. 2018, 160, 786–793. [Google Scholar] [CrossRef]
- Chinese Industrial Information. Available online: https://www.chyxx.com/industry/202007/879935.html (accessed on 6 June 2021).
- Zhang, Y.; Wang, X.; Ji, G.; Fan, Z.; Xin, L. Mechanical Performance Characterization of Lignin-Modified Asphalt Mixture. Appl. Sci. 2020, 10, 3324. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, X.; Apostolidis, P.; Jing, R.; Skarpas, A. Evaluation of Organosolv Lignin as an Oxidation Inhibitor in Bitumen. Molecules 2020, 25, 2455. [Google Scholar] [CrossRef] [PubMed]
- Sun, M.; Zheng, M.; Qu, G.; Yuan, K.; Bi, Y.; Wang, J. Performance of polyurethane modified asphalt and its mixtures. Constr. Build. Mater. 2018, 191, 386–397. [Google Scholar] [CrossRef]
- Bostancioglu, M.; Oruc, S. Effect of furfural-derived thermoset furan resin on the high-temperature performance of bitumen. Road Mater. Pavement Des. 2015, 16, 227–237. [Google Scholar] [CrossRef]
- Airey, G.D. Rheological evaluation of ethylene vinyl acetate polymer modified bitumens. Constr. Build. Mater. 2002, 16, 473–487. [Google Scholar] [CrossRef]
- Xu, C.; Zhang, Z.; Zhao, F.; Liu, F.; Wang, J. Improving the performance of RET modified asphalt with the addition of polyurethane prepolymer (PUP). Constr. Build. Mater. 2019, 206, 560–575. [Google Scholar] [CrossRef]
- Wang, C.; Wang, S.; Gao, Z.; Song, Z. Effect evaluation of road piezoelectric micro-energy collection-storage system based on laboratory and on-site tests. Appl. Energ. 2021, 287, 116581. [Google Scholar] [CrossRef]
- Wang, C.; Chen, Q.; Guo, T.; Li, Q. Environmental effects and enhancement mechanism of graphene/tourmaline composites. J. Clean. Prod. 2020, 262, 121313. [Google Scholar] [CrossRef]
- Gao, J.; Wang, H.; You, Z.; Mohd, M.H.; Lei, Y.; Muhammad, I. Rheological Behavior and Sensitivity of Wood-Derived Bio-Oil Modified Asphalt Binders. Appl. Sci. 2018, 8, 919. [Google Scholar] [CrossRef] [Green Version]
- Su, N.; Xiao, F.; Wang, J.; Cong, L.; Amirkhanian, S. Productions and applications of bio-asphalts-A review. Constr. Build. Mater. 2018, 183, 578–591. [Google Scholar] [CrossRef]
- Lv, S.; Xia, C.; Yang, Q.; Guo, S.; Zheng, J. Improvements on high-temperature stability, rheology, and stiffness of asphalt binder modified with waste crayfish shell powder. J. Clean. Prod. 2020, 264, 121745. [Google Scholar] [CrossRef]
- Nciri, N.; Shin, T.; Cho, N. Potential of Waste Oyster Shells as a Novel Biofiller for Hot-Mix Asphalt. Appl. Sci. 2018, 8, 415. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Guo, Y.; Ji, G.; Zhang, Y.; Zhao, J.; Su, H. Effect of bio-waste on the high and low temperature rheological properties of asphalt binders. Adv. Civ. Eng. 2021, 2021, 5516546. [Google Scholar]
- Hamada, H.M.; Tayeh, B.A.; Al-Attar, A.; Yahaya, F.M.; Muthusamy, K.; Humada, A.M. The present state of the use of eggshell powder in concrete: A review. J. Build. Eng. 2020, 32, 101583. [Google Scholar] [CrossRef]
- Senthil, C.; Vediappan, K.; Nanthagopal, M.; Kang, H.S.; Chang, W.L. Thermochemical Conversion of Eggshell as Biological Waste and its Application as a Functional Material for Lithium-ion Batteries. Chem. Eng. J. 2019, 372, 765–773. [Google Scholar] [CrossRef]
- Pradhan, A.K.; Sahoo, P.K. Synthesis and study of thermal, mechanical and biodegradation properties of chitosan-g-PMMA with chicken egg shell (nano-CaO) as a novel bio-filler. Mater. Sci. Eng. C 2017, 80, 149–155. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, Y.; Kang, Z.W.; Gao, X.; Yang, D.P. Waste eggshell membrane-assisted synthesis of magnetic CuFe2O4 nanomaterials with multifunctional properties (adsorptive, catalytic, antibacterial) for water remediation. Colloids Surf. A Physicochem. Eng. Asp. 2021, 612, 125874. [Google Scholar] [CrossRef]
- Shekhawat, P.; Sharma, G.; Rao, M.S. Strength behavior of alkaline activated eggshell powder and flyash geopolymer cured at ambient temperature. Constr. Build. Mater. 2019, 223, 1112–1122. [Google Scholar] [CrossRef]
- Francis, A.A.; Rahman, M.A. The environmental sustainability of calcined calcium phosphates production from the milling of eggshell wastes and phosphoric acid. J. Clean. Prod. 2016, 137, 1432–1438. [Google Scholar] [CrossRef]
- Singh, N.; Singh, S.P. Validation of carbonation behavior of self compacting concrete made with recycled aggregates using microstructural and crystallization investigations. Eur. J. Environ. Civ. Eng. 2020, 24, 2187–2210. [Google Scholar] [CrossRef]
- Wang, X.; Ji, G.; Zhang, Y.; Guo, Y.; Zhao, J. Research on High- and Low-Temperature Characteristics of Bitumen Blended with Waste Eggshell Powder. Materials 2021, 14, 2020. [Google Scholar] [CrossRef]
- Nejres, A.M.; Mustafa, Y.F.; Aldewachi, H.S. Evaluation of natural asphalt properties treated with egg shell waste and low density polyethylene. Int. J. Pavement Eng. 2020, 1728534. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, X.; Zhang, W.; Ding, L. Study on the Relationship between Nano-Morphology Parameters and Properties of Bitumen during the Ageing Process. Materials 2020, 13, 1472. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Mills-Beale, J.; You, Z. Chemical characterization and oxidative aging of bio-asphalt and its compatibility with petroleum asphalt. J. Clean. Prod. 2017, 142, 1837–1847. [Google Scholar] [CrossRef]
- Lv, S.; Hu, L.; Xia, C.; Cabrera, M.B.; You, L. Recycling fish scale powder in improving the performance of asphalt: A sustainable utilization of fish scale waste in asphalt. J. Clean. Prod. 2020, 288, 125682. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, L.; Qin, Y. Aging mechanism of SBS modified asphalt based on chemical reaction kinetics. Constr. Build. Mater. 2015, 91, 47–56. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Jia, Z.; Zhang, Y.; Hu, K.; Ding, L.; Wang, F. The Effect of Direct-to-Plant Styrene-Butadiene-Styrene Block Copolymer Components on Bitumen Modification. Polymers 2019, 11, 140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nciri, N.; Kim, J.; Kim, N.; Cho, N. An In-Depth Investigation into the Physicochemical, Thermal, Microstructural, and Rheological Properties of Petroleum and Natural Asphalts. Materials 2016, 9, 859. [Google Scholar] [CrossRef] [PubMed]
- Ltd, A.; Xw, A.; Mz, A.; Zhao, C.A.; Jm, A.; Xs, B. Morphology and properties changes of virgin and aged asphalt after fusion. Constr. Build. Mater. 2021, 291, 123284. [Google Scholar]
- Li, L.; Zhang, N.; Sun, D.; Yang, Q. Asphalt material. In Road Engineering Material, 5th ed.; China Communications Publishing & Media Management Co. Ltd.: Beijing, China, 2010; pp. 60–61. [Google Scholar]
- GB/T 15180-2010. Petroleum Asphalts for Heavy Traffic Road Pavement; China State Adminstration for Market Regulation, China; Standardization adminstration: Beijing, China, 2010. [Google Scholar]
- JTG F40-2004. Technical Specification for Construction of Highway Asphalt Pavements; China Communications Publishing & Media Management Co. Ltd.: Beijing, China, 2004. [Google Scholar]
- JTG E20-2011. Standard Test Methods of Bitumen and Bituminous Mixtures for Highway Engineering; China Communications Publishing & Media Management Co. Ltd.: Beijing, China, 2011. [Google Scholar]
- AASHTO T49-15. Standard Method of Test for Penetration of Bituminous Materials; AASHTO: Washington, DC, USA, 2015. [Google Scholar]
- AASHTO T53-09. Standard Method of Test for Softening Point of Bitumen (Ring-and-Ball Apparatus); AASHTO: Washington, DC, USA, 2013. [Google Scholar]
- ASTM D113-07. Standard Test Method for Ductility of Bituminous _Materials; ASTM: Washington, DC, USA, 2007. [Google Scholar]
- Ran, L.; He, Z.; Cao, Q. Performance Research of Regenerative Agent Based on SBS-Modified Asphalt. J. Build. Mater. 2015, 18, 578–595. [Google Scholar]
- Chemical Book. Available online: https://www.chemicalbook.com/NewsInfo_24081.htm (accessed on 2 October 2021).
- Xiao, M. Research on Performance and Mechanism of Waste Rubber Powder Modified Asphalts. Master’s Thesis, Nanjing University of Aeronautics and Astronautics, Nanjing, China, 2005. Available online: https://globethesis.com/?t=2132360185459497 (accessed on 6 June 2021).
- Filippelli, L.; Gentile, L.; Rossi, C.O.; Ranieri, G.A.; Antunes, F.E. Structural Change of Bitumen in the Recycling Process by Using Rheology and NMR. Ind. Eng. Chem. Res. 2012, 51, 16346. [Google Scholar] [CrossRef]
- Yan, J. Chemical structure of petroleum asphalt. In Properties of Asphalt Materials, 1st ed.; China Communications Publishing & Media Management Co., Ltd.: Beijing, China, 1990; pp. 23–29. [Google Scholar]
- Yao, C.; Yu, X. Effect of waste rubber powder on properties of rubber asphalt. J. East China Jiaotong Univ. 2013, 30, 11–15. [Google Scholar]
- Yin, S.; Liu, Y. Application of NMR Spectroscopy Analysis on the Detection of Asphalt. Shandong Chem. Ind. 2020, 49, 119–120. [Google Scholar]
- Zhao, H.; Chai, X.; Wang, Y.; Shi, H.; Zhang, R.; Dong, Z.; Han, L. Analysis of Styrene-Butadiene-Styrene (SBS) Content in Modified Asphalt with 1H NMR Spectroscopy. Chin. J. Magn. Reson. 2017, 34, 323–328. [Google Scholar]
- Lyne, Å.L.; Wallqvist, V.; Rutland, M.W.; Claesson, P.; Birgisson, B. Surface wrinkling: The phenomenon causing bees in bitumen. J. Mater. Sci. 2013, 48, 6970–6976. [Google Scholar] [CrossRef]
- Li, Z.; Li, B.; Zhang, Y.; Fa, C.; Zhao, Z.; Yu, X. Rheological property and surface structure of SBS compound modified asphalt with sulfur. J. Mater. Sci. Eng. 2020, 38, 425–430. [Google Scholar]
- Dai, Z.; Zhu, H.; Shen, J. Application of Atomic Force Microscope (AFM) in Microstructure of Asphalt Surface. East China Highw. 2017, 6, 94–98. [Google Scholar]
- Li, X. Aging Characteristics of WMA Based on Micro- mechanism. Bull. Chin. Ceram. Soc. 2016, 35, 3741–3747. [Google Scholar]
- Yang, J.; Gong, M.; Pauli, T.; Wei, J.; Wang, X. Study on Micro-Structures of Asphalt by Using Atomic Force Microscopy. Acta Pet. Sin. (Pet. Process. Sect.) 2015, 31, 959–965. [Google Scholar]
- Li, L.; Zhang, N.; Sun, D.; Yang, Q. Asphalt material. In Road Engineering Material, 5th ed.; China Communications Publishing & Media Management Co. Ltd.: Beijing, China, 2010; pp. 46–55. [Google Scholar]
- Guo, Y.; Wang, X.; Ji, G.; Zhang, Y.; Su, H.; Luo, Y. Effect of Recycled Shell Waste as a Modifier on the High- and Low-Temperature Rheological Properties of Asphalt. Sustainability. 2021, 13, 10271. [Google Scholar] [CrossRef]
- Hong, H.; Zhang, H.; Huang, L. Study Progress of Characterization of Asphalt Materials by Nuclear Magnetic Resonance, Thermal Analysis and Scanning Electron Microscopy. J. Highw. Transp. Res. Dev. 2019, 36, 15–28. [Google Scholar]
- Cesare, O.R.; Paolino, C.; Giuseppina, D.L.; Loredana, M.; Shahin, E.; Cesare, S. 1H-NMR Spectroscopy: A Possible Approach to Advanced Bitumen Characterization for Industrial and Paving Applications. Appl. Sci. 2018, 8, 229. [Google Scholar]
- Yang, W. Nuclear magnetic resonance spectrum. In Polymer Materials Characterization and Testing, 1st ed.; China Light Industry Press Ltd.: Beijing, China, 2017; pp. 49–57. [Google Scholar]
- Han, Y.; Wang, L.; Wu, w.; Du, J.; Sun, Z.; Qiao, Y.; Wang, J.; Liao, L. Absorption Properties of Modified Eggshell. Acad. Period. Farm Prod. Process. 2012, 42–46. [Google Scholar]
- He, W.; Yang, S.; Zhang, G. Research progress of eggshell as adsorption material. Trans. Chin. Soc. Agric. Eng. 2016, 32, 297–303. [Google Scholar]
- Yan, J.; Wu, L.; Wen, K.; Qian, K.; Wei, S.; Du, X. Absorption Performance of Phosphorus on High-Temperature Modified Eggshell in Wastewater. J. Tianjin Chengjian Univ. 2019, 25, 46–50. [Google Scholar]
- Li, Z.; Fa, C.; Zhao, H.; Zhang, Y.; Xie, H. Investigation on evolution of bitumen composition and micro-structure during aging. Constr. Build. Mater. 2020, 244, 118322. [Google Scholar] [CrossRef]
- Loeber, L.; Sutton, O.; Morel, J.; Valleton, J.M.; Muller, G. New direct observations of asphalts and asphalt binders by scanning electron microscopy and atomic force microscopy. J. Microsc. 1996, 182, 32–39. [Google Scholar] [CrossRef]
- Wu, S.; Zhu, G.; Chen, Z.; Liu, Z. Laboratory research on rheological behavior and characterization of ultraviolet aged asphalt. J. Cent. South Univ. Technol. 2008, 15, 369–373. [Google Scholar] [CrossRef]
- Pauli, A.T.; Grimes, R.W.; Beemer, A.G.; Turner, T.F.; Branthaver, J.F. Morphology of asphalts, asphalt fractions and model wax-doped asphalts studied by atomic force microscopy. Int. J. Pavement Eng. 2011, 12, 291–309. [Google Scholar] [CrossRef]
- Yang, J.; Gong, M.; Wang, X.; Chen, X.; Wang, Z. Observation and characterization of asphalt microstructure by atomic force microscopy. J. Southeast Univ. 2014, 30, 353–357. [Google Scholar]
- Li, L.; Zhang, N.; Sun, D.; Yang, Q. Asphalt material. In Road Engineering Material, 5th ed.; China Communications Publishing & Media Management Co. Ltd.: Beijing, China, 2010; pp. 41–44. [Google Scholar]
- Moraes, M.; Pereira, R.B.; SimAO, R.A.; Leite, L. High temperature AFM study of CAP 30/45 pen grade bitumen. J. Microsc. 2010, 239, 46–53. [Google Scholar] [CrossRef]
- Li, Z.; Li, B.; Zhang, Y.; Fa, C.; Zhao, Z.; Yu, Y. Rheological Property and Surface Structure of SBS Compound Modified Asphalt with Nano Sulfur. J. Mater. Sci. Eng. 2020, 38, 425–430. [Google Scholar]
Properties | Experimental Values | Requirements [34] |
---|---|---|
Penetration (25 °C, 100 g, 5 s, 0.1 mm) | 67.6 | 60–80 |
Softening point (°C) | 49 | ≥46 |
Ductility (5 cm/min, 5 °C, mm) | 79 | — |
Classification | Meaning | Chemical Shift (ppm) |
---|---|---|
Ha | Hydrogen directly linked to aromatic carbon | 6.0~9.0 |
Hα | Hydrogen linked to α-carbon of aromatic ring | 2.0~4.0 |
Hβ | Hydrogen on β carbon of aromatic ring and hydrogen on CH2CH group far away from β | 1.0~2.0 |
Hγ | Hydrogen on γ-position of aromatic ring and hydrogen on CH3 group far away from γ-position | 0.5~1.0 |
Inano | P | a | b | c | R2 |
---|---|---|---|---|---|
Rq | Eggshell Waste proportion | −0.01328 | 0.27363 | 5.80242 | 0.92127 |
Ra | −0.02034 | 0.37530 | 3.16000 | 0.93266 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ji, G.; Wang, X.; Guo, Y.; Zhang, Y.; Yin, Q.; Luo, Y. Study on the Physical, Chemical and Nano-Microstructure Characteristics of Asphalt Mixed with Recycled Eggshell Waste. Sustainability 2021, 13, 11173. https://doi.org/10.3390/su132011173
Ji G, Wang X, Guo Y, Zhang Y, Yin Q, Luo Y. Study on the Physical, Chemical and Nano-Microstructure Characteristics of Asphalt Mixed with Recycled Eggshell Waste. Sustainability. 2021; 13(20):11173. https://doi.org/10.3390/su132011173
Chicago/Turabian StyleJi, Guanyu, Xuancang Wang, Yuchen Guo, Yi Zhang, Qinglian Yin, and Yaolu Luo. 2021. "Study on the Physical, Chemical and Nano-Microstructure Characteristics of Asphalt Mixed with Recycled Eggshell Waste" Sustainability 13, no. 20: 11173. https://doi.org/10.3390/su132011173
APA StyleJi, G., Wang, X., Guo, Y., Zhang, Y., Yin, Q., & Luo, Y. (2021). Study on the Physical, Chemical and Nano-Microstructure Characteristics of Asphalt Mixed with Recycled Eggshell Waste. Sustainability, 13(20), 11173. https://doi.org/10.3390/su132011173