Characterization of Properties of Soil–Rock Mixture Prepared by the Laboratory Vibration Compaction Method
Abstract
:1. Introduction
2. Materials and Testing Methods
2.1. Soil–Rock Materials
2.2. Testing Methods
2.2.1. CBR Test
2.2.2. Resilient Modulus Test
3. Development of the VCM for SRM
3.1. Determination of Work Parameters of the VCM for SRM
3.1.1. Vibration Frequency
3.1.2. Exciting Force
3.1.3. Static Pressure
3.1.4. Compaction Time
3.2. Detail Procedures of the Established VCM for SRM
3.2.1. Determining the Maximum Dry Density and Optimum Water Content
3.2.2. Specimen Preparation
3.3. Verification of the VCM
3.3.1. Compaction Characteristics
3.3.2. Resilient Modulus
3.3.3. CBR
3.3.4. Gradation Variation
4. Engineering Properties of SRM Prepared by the VCM
4.1. Effect of the Soil–Rock Ratio
4.2. Effect of the Maximum Particle Size
5. Field Application
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chai, H.; Chen, Q.; Kong, X.; Dong, Y. Summary of research on construction technology of soil and rock mixture. Rock. Soil. Mech. 2004, 1005–1010. [Google Scholar] [CrossRef]
- Liu, L.Q.; Mao, X.S.; Xiao, Y.J.; Wu, Q.; Tang, K.; Liu, F.F. Effect of Rock Particle Content on the Mechanical Behavior of a Soil-Rock Mixture (SRM) via Large-Scale Direct Shear Test. Adv. Civ. Eng. 2019, 2019, 1–16. [Google Scholar] [CrossRef]
- Sun, S.R.; Zhu, F.; Wei, J.H.; Wang, W.C.; Le, H.L. Experimental Study on Shear Failure Mechanism and the Identification of Strength Characteristics of the Soil-Rock Mixture. Shock Vib. 2019, 2019, 25. [Google Scholar] [CrossRef] [Green Version]
- Salam, S.; Osouli, A.; Tutumluer, E. Crushed Limestone Aggregate Strength Influenced by Gradation, Fines Content, and Dust Ratio. J. Transp. Eng. 2018, 144. [Google Scholar] [CrossRef]
- Ren, J.; Yin, C. Investigating mechanical characteristics of aggregate structure for road materials. Int. J. Pavement Eng. 2020, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Kong, X. Experimental Study on Compaction Characteristics of Soil and Rock Mixture. Master’s Thesis, Chongqing Jiaotong University, Chongqing, China, 2004. [Google Scholar]
- Yang, Z.P.; Zhao, Y.L.; Hu, Y.X.; Li, S.Q.; Lei, X.D.; Li, X.Y. Influence of rock strength on shear characteristics of soil-rock mixture. Chin. J. Rock. Mech. Eng. 2021, 40, 814–827. [Google Scholar] [CrossRef]
- Wang, J. Research on Rapid Assessment Method of Compaction Quality of Soil-Rock Mixed Subgrade. Master’s Thesis, Shanghai Jiaotong University, Shanghai, China, 2007. [Google Scholar]
- Tu, Y.L.; Liu, X.R.; Ren, Q.Y.; Chai, H.J.; Wang, J.B.; Yu, J.Y. Study on the influence of rock content and particle crushing on the strength of soil-rock mixture. Rock. Soil. Mech. 2020, 41, 3919–3928. [Google Scholar] [CrossRef]
- Torrey, V.; Donaghe, R. Compaction Control of Earth-Rock Mixtures: A New Approach. Geotech. Test. J. 1994, 3, 371–386. [Google Scholar]
- Wang, J.; Gong, H.; Guo, N.N.; Zhou, Y. Large-scale compaction test study of soil-rock mixture. Highway 2021, 66, 297–302. [Google Scholar]
- Zhou, Z.; Xing, K.; Yang, H.; Wang, H. Damage mechanism of soil-rock mixture after freeze-thaw cycles. J. Cent. South Univ. 2019, 26, 13–24. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, X.; Zhao, Y.; Liu, L.; Lin, X. 3 D random reconstruction of meso-structure for soil-rock mixture and numerical simulation of its mechanical characteristics by particle flow code. Chin. J. Geotech. 2019, 41, 60–69. [Google Scholar]
- Zhao, Y.; Liu, Z. Numerical Experiments on Triaxial Compression Strength of Soil-Rock Mixture. Adv. Civ. Eng. 2019, 2019. [Google Scholar] [CrossRef] [Green Version]
- Ji, X.; Li, H.; Xiong, Y.; Hajdu, M.; Shi, Y. Research on vibration test method of soil-rock Mixed subgrade Soil. Highway 2019, 64, 27–32. [Google Scholar]
- Ji, X.; Han, B.; Hu, J.; Li, S.; Xiong, Y.; Sun, E. Application of the discrete element method and CT scanning to investigate the compaction characteristics of the soil-rock mixture in the subgrade. Road Mater. Pavement Des. 2020. [Google Scholar] [CrossRef]
- Dai, H.; Fu, Y.; Zhang, Y. Vibration compaction of weak saline soil based on method of shaking table. J. China Fore. Highw. 2014, 34, 64–69. [Google Scholar]
- Yan, X. Discussion on Compaction Detection Method of Soil-rock Mixtures Subgrade. J. Highw. Transp. Res. Dev. 2001, 40–42. [Google Scholar]
- Arabali, P.; Lee, S.I.; Sebesta, S.; Sakhaeifar, M.S.; Lytton, R.L. Application of Superpave Gyratory Compactor for Laboratory Compaction of Unbound Granular Materials. In Proceedings of the American-Society-of-Civil-Engineers (ASCE) International Conference on Transportation and Development (ICTD), Pittsburgh, PA, USA, 15–18 July 2018. [Google Scholar]
- Liu, D.; Li, L. Experiment on Gyratory Compaction of Cement Stabilized Base Course Materials. China J. Highw. Transp. 2019, 32, 118–128. [Google Scholar]
- Liu, H.; Cheng, P. Research about different molding methods’ effect on the resistance against frost and shrinkage of cement stabilized gravel. In Proceedings of the International Conference on Civil Engineering and Transportation (ICCET 2011), Jinan, China, 14–16 October 2011. [Google Scholar]
- Ji, X.; Hou, Y.; Li, X.; Wang, T. Comparison on properties of cement-stabilised gravel prepared by different laboratory compaction methods. Road Mater. Pavement Des. 2019, 20, 991–1003. [Google Scholar] [CrossRef]
- Ji, X.P.; Jiang, Y.J.; Liu, Y.J. Evaluation of the mechanical behaviors of cement-stabilized cold recycled mixtures produced by vertical vibration compaction method. Mater. Struct. 2016, 49, 2257–2270. [Google Scholar] [CrossRef]
- Deng, C.; Jiang, Y.; Yuan, K.; Tian, T.; Yi, Y. Mechanical properties of vertical vibration compacted lime–fly ash-stabilized macadam material. Constr. Build. Mater. 2020, 251, 119089. [Google Scholar] [CrossRef]
- Jiang, Y.; Yuan, K.; Deng, C.; Tian, T. Fatigue Performance of Cement-Stabilized Crushed Gravel Produced Using Vertical Vibration Compaction Method. J. Mater. Civ. Eng. 2020, 32. [Google Scholar] [CrossRef]
- Zhang, B. Research on Design Parameters of Cement Stabilized Macadam Based on VTM. Master’s Thesis, Chang’an University, Xi’an, China, 2011. [Google Scholar]
- Zvonaric, M.; Barisic, I.; Galic, M.; Minazek, K. Influence of Laboratory Compaction Method on Compaction and Strength Characteristics of Unbound and Cement-Bound Mixtures. Appl. Sci. 2021, 11, 4750. [Google Scholar] [CrossRef]
- Deng, C.Q.; Jiang, Y.J.; Zhang, Y.; Yi, Y.; Tian, T.; Yuan, K.J.; Fan, J.T. Mechanical properties and influencing factors of vertical-vibration compacted unbound graded aggregate materials. Transp. Geotech. 2021, 28, 10. [Google Scholar] [CrossRef]
- Oliveira, M.F.; Bessa, I.S.; Vasconcelos, R.R.; Vasconcelos, K.L.; Bernucci, L.L.B. A new approach to laboratory roller compaction method and its influence on surface texture and permanent deformation of asphalt mixtures. Int. J. Pavement Eng. 2021, 1–12. [Google Scholar] [CrossRef]
- Jiang, Y.J.; Deng, C.Q.; Xue, J.S.; Chen, Z.J. Investigation into the performance of asphalt mixture designed using different methods. Constr. Build. Mater. 2018, 177, 378–387. [Google Scholar] [CrossRef]
- Jiang, Y.J.; Lin, H.W.; Han, Z.C.; Deng, C.Q. Fatigue Properties of Cold-Recycled Emulsified Asphalt Mixtures Fabricated by Different Compaction Methods. Sustainability 2019, 11, 3483. [Google Scholar] [CrossRef] [Green Version]
- Sha, A.; Chen, K.; Ma, F. Indoor test on physical-mechanical properties of loess under vibration compaction. J. Chang’an Univ. (Nat. Sci. Ed.) 2008, 28, 1–5. [Google Scholar] [CrossRef]
- Jiang, Y.; Yuan, K.; Li, Q.; Deng, C.; Yi, Y.; Zhang, Y.; Xue, J. Comparison of Mechanical Properties of Cement-Stabilized Loess Produced Using Different Compaction Methods. Adv. Mater. Sci. Eng. 2020, 2020. [Google Scholar] [CrossRef]
- Nan, B. Study on Indoor Vibratory Compaction of the Subgrade Packing and Settlement Deformation. Master’s Thesis, Chang’an University, Xi’an, China, 2014. [Google Scholar]
- Chen, Z.; Huang, Z.; Yin, L. Experimental study on pavement performance of improved saline soil mixed with gravel. Subgr. Eng. 2017, 18, 97–100. [Google Scholar]
- Zhou, Z.; Zhu, H.; Zhang, Y. Microscopic Analysis of the Structural Strength of Soil-rock mixture. China J. Highw. Transp. 2008, 21, 30–34. [Google Scholar] [CrossRef]
- Jing, Y. Study on Vibration Test Methods for Cement Stabilization of Crushd Aggregate; Southeast University: Nanjing, China, 2009. [Google Scholar]
- Zhang, H. Research on Compaction Mechanism of Full Hydraulic Single Drum Vibratory Roller. Master’s Thesis, Chang’an University, Xi’an, China, 2016. [Google Scholar]
- RIOH. Test Methods of Soils for Highway Engineering: JTG E40—2007; China Communications Press: Beijing, China, 2007. [Google Scholar]
Sieve Size (mm) | 40 | 20 | 10 | 5 | 2 | 1 | 0.5 | 0.25 | 0.075 |
---|---|---|---|---|---|---|---|---|---|
Passing rate (%) | 100 | 89.5 | 73.2 | 54.5 | 29.2 | 21.7 | 11.0 | 5.1 | 1.7 |
Uniformity Coefficient | Coefficient of Curvature | Liquid Limit (%) | Plastic Limit (%) | Plasticity Index |
---|---|---|---|---|
13.8 | 1.4 | 30 | 21 | 9 |
(%) | ≥96 | ≥95 | ≥94 | ≥93 | ≥92 | ≥90 |
---|---|---|---|---|---|---|
Vibration time (s) | 67 | 65 | 64 | 62 | 60 | 58 |
Frequency (Hz) | Amplitude (mm) | Working Weight (kg) | Exciting Force (kN) | ||
---|---|---|---|---|---|
Upper System | Nether System | Total Weight | |||
25 | 1.2~1.3 | 107.08~115.01 | 170.69~179.33 | 277.77~294.34 | 5.3 |
Soil-Rock Ratio | Method | Passing Rate (%) at Different Sieve Size (mm) | S | ||||
---|---|---|---|---|---|---|---|
40 | 20 | 10 | 5 | 2 | |||
60:40 | Pre-compaction | 100 | 90 | 80 | 60 | 30 | / |
SPCM | 100 | 94.2 | 86.8 | 70.2 | 40.4 | 8.31 | |
VCM | 100 | 91.8 | 82.4 | 64 | 31.3 | 2.58 | |
50:50 | Pre-compaction | 100 | 80 | 65 | 50 | 25 | / |
SPCM | 100 | 89.3 | 79.7 | 67.9 | 45.1 | 16.02 | |
VCM | 100 | 85.2 | 72.5 | 56.2 | 31.1 | 6.30 | |
40:60 | Pre-compaction | 100 | 70 | 50 | 35 | 15 | / |
SPCM | 100 | 85.3 | 63.4 | 57.4 | 29.3 | 16.73 | |
VCM | 100 | 81.7 | 59.3 | 49.2 | 23.4 | 11.13 |
Measuring Point | CBR of Laboratory Specimens (%) | CBR of on-Site Subgrade (%) | Correlation (%) | ||
---|---|---|---|---|---|
SPCM | VCM | SPCM | VCM | ||
Measuring point 1 | 35.91 | 52.51 | 60.38 | 59.5 | 87.0 |
Measuring point 2 | 32.47 | 53.32 | 61.44 | 52.8 | 86.8 |
Measuring Point | Resilient Modulus of Laboratory Test Piece (MPa) | Resilient Modulus of on-Site Subgrade (MPa) | Correlation (%) | ||
---|---|---|---|---|---|
SPCM | VCM | SPCM | VCM | ||
Point 1 | 59.27 | 71.12 | 80.32 | 73.8 | 88.5 |
Point 2 | 61.21 | 73.44 | 82.01 | 74.6 | 89.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ji, X.; Lu, H.; Dai, C.; Ye, Y.; Cui, Z.; Xiong, Y. Characterization of Properties of Soil–Rock Mixture Prepared by the Laboratory Vibration Compaction Method. Sustainability 2021, 13, 11239. https://doi.org/10.3390/su132011239
Ji X, Lu H, Dai C, Ye Y, Cui Z, Xiong Y. Characterization of Properties of Soil–Rock Mixture Prepared by the Laboratory Vibration Compaction Method. Sustainability. 2021; 13(20):11239. https://doi.org/10.3390/su132011239
Chicago/Turabian StyleJi, Xiaoping, Honglei Lu, Cong Dai, Yonggen Ye, Zhifei Cui, and Yue Xiong. 2021. "Characterization of Properties of Soil–Rock Mixture Prepared by the Laboratory Vibration Compaction Method" Sustainability 13, no. 20: 11239. https://doi.org/10.3390/su132011239
APA StyleJi, X., Lu, H., Dai, C., Ye, Y., Cui, Z., & Xiong, Y. (2021). Characterization of Properties of Soil–Rock Mixture Prepared by the Laboratory Vibration Compaction Method. Sustainability, 13(20), 11239. https://doi.org/10.3390/su132011239