Towards a Single Integrative Metric on the Dynamics of Social-Environmental Systems
Abstract
:1. Introduction
1.1. Need for Integrative Indicators
1.2. Integrative Indicator for SES Dynamics
1.3. IMoSES Calculation and the Intermediate Variables
1.4. The Uses of IMoSES
1.5. Practical Questions
2. IMoSES of the Asian Drylands Belt
3. Empirical Evidence for IMoSES Applications
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Commission on Environment and Development (WCED). Our Common Future; Oxford University Press: Oxford, UK, 1987; p. 27. [Google Scholar]
- Hancock, T. Health, human development and the community ecosystem: Three ecological models. Health Promot. Int. 1993, 8, 41–47. [Google Scholar] [CrossRef]
- Elkington, J. Cannibals with Forks: The Triple Bottom Line of 21st Century Business; New Society Publishers: Gabriola Island, BC, Canada, 1998. [Google Scholar]
- Hansmann, R.; Mieg, H.A.; Frischknecht, P. Principal sustainability components: Empirical analysis of synergies between the three pillars of sustainability. Int. J. Sustain. Dev. World Ecol. 2012, 19, 451–459. [Google Scholar] [CrossRef]
- Holden, E.; Linnerud, K.; Banister, D. Sustainable development: Our common future revisited. Glob. Environ. Chang. 2014, 26, 130–139. [Google Scholar] [CrossRef] [Green Version]
- Schlüter, M.; Haider, L.J.; Lade, S.J.; Lindkvist, E.; Martin, R.; Orach, K.; Wijermans, N.; Folke, C. Capturing emergent phenomena in social-ecological systems: An analytical framework. Ecol. Soc. 2019, 24. [Google Scholar] [CrossRef] [Green Version]
- Dietz, T.; Rosa, E.A. Effects of population and affluence on CO2 emissions. Proc. Natl. Acad. Sci. USA 1997, 94, 175. [Google Scholar] [CrossRef] [Green Version]
- Redman, C.L.; Grove, J.M.; Kuby, L.H. Integrating social science into the long-term ecological research (LTER) network: Social dimensions of ecological change and ecological dimensions of social change. Ecosystems 2004, 7, 161–171. [Google Scholar] [CrossRef]
- Millennium Ecosystem Assessment (MEA). Ecosystems and Human Well-Being: Synthesis; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- Babcicky, P. Rethinking the foundations of sustainability measurement: The limitations of the environmental sustainability index (ESI). Soc. Indic. Res. 2013, 113, 133–157. [Google Scholar] [CrossRef]
- Wilson, M.C.; Wu, J. The problems of weak sustainability and associated indicators. Int. J. Sustain. Dev. World Ecol. 2017, 24, 44–51. [Google Scholar] [CrossRef]
- Bell, S.; Morse, S. Sustainability Indicators: Measuring the Immeasurable? 2nd ed.; Routledge: London, UK, 2008. [Google Scholar]
- Hickel, J. The sustainable development index: Measuring the ecological efficiency of human development in the anthropocene. Ecol. Econ. 2020, 167, 106331. [Google Scholar] [CrossRef]
- Martínez-Fernández, J.; Banos-González, I.; Esteve-Selma, M.Á. An integral approach to address socio-ecological systems sustainability and their uncertainties. Sci. Total Environ. 2021, 762, 144457. [Google Scholar] [CrossRef]
- van den Bergh, J.C.J.M. The GDP paradox. J. Econ. Psychol. 2009, 30, 117–135. [Google Scholar] [CrossRef]
- Bleys, B. Beyond GDP: Classifying alternative measures for progress. Soc. Indic. Res. 2012, 109, 355–376. [Google Scholar] [CrossRef]
- Islam, S.M.N.; Clarke, M. The relationship between economic development and social welfare: A new adjusted GDP measure of welfare. Soc. Indic. Res. 2002, 57, 201–229. [Google Scholar] [CrossRef]
- Vitousek, P.M.; Ehrlich, P.R.; Ehrlich, A.H.; Matson, P.A. Human appropriation of the products of photosynthesis. BioScience 1986, 36, 368–373. [Google Scholar] [CrossRef]
- Haberl, H. Human appropriation of net primary production as an environmental indicator: Implications for sustainable development. Ambio 1997, 26, 143–146. [Google Scholar]
- Rojstaczer, S.; Sterling, S.M.; Moore, N.J. Human appropriation of photosynthesis products. Science 2001, 294, 2549. [Google Scholar] [CrossRef]
- Barton, E.M.; Pearsall, D.R.; Currie, W.S. Human appropriated net primary productivity as a metric for land use planning: A case study in the US Great Lakes region. Landsc. Ecol. 2020, 35, 1323–1339. [Google Scholar] [CrossRef]
- Krausmann, F.; Erb, K.-H.; Gingrich, S.; Haberl, H.; Bondeau, A.; Gaube, V.; Lauk, C.; Plutzar, C.; Searchinger, T.D. Global human appropriation of net primary production doubled in the 20th century. Proc. Natl. Acad. Sci. USA 2013, 110, 10324. [Google Scholar] [CrossRef] [Green Version]
- Lu, D.; Xu, X.; Tian, H.; Moran, E.; Zhao, M.; Running, S. The effects of urbanization on net primary productivity in southeastern China. Environ. Manag. 2010, 46, 404–410. [Google Scholar] [CrossRef] [PubMed]
- Fan, P.; Chen, J.; Ouyang, Z.; Groisman, P.; Loboda, T.; Gutman, G.; Prishchepov, A.V.; Kvashnina, A.; Messina, J.; Moore, N.; et al. Urbanization and sustainability under transitional economies: A synthesis for Asian Russia. Environ. Res. Lett. 2018, 13, 095007. [Google Scholar] [CrossRef]
- Chen, J.; John, R.; Zhang, Y.; Shao, C.; Brown, D.G.; Batkhishig, O.; Amarjargal, A.; Ouyang, Z.; Dong, G.; Wang, D.; et al. Divergences of two coupled human and natural systems on the Mongolian Plateau. BioScience 2015, 65, 559–570. [Google Scholar] [CrossRef] [Green Version]
- Tian, L.; Gong, Q.; Chen, J. Coupled dynamics of socioeconomic and environmental systems in Tibet. Environ. Res. Lett. 2018, 13, 034001. [Google Scholar] [CrossRef]
- Imhoff, M.L.; Bounoua, L.; Ricketts, T.; Loucks, C.; Harriss, R.; Lawrence, W.T. Global patterns in human consumption of net primary production. Nature 2004, 429, 870–873. [Google Scholar] [CrossRef] [Green Version]
- Haberl, H.; Erb, K.-H.; Krausmann, F. Human appropriation of net primary production: Patterns, trends, and planetary boundaries. Annu. Rev. Environ. Resour. 2014, 39, 363–391. [Google Scholar] [CrossRef]
- Ostrom, E. Background on the institutional analysis and development framework. Policy Stud. J. 2011, 39, 7–27. [Google Scholar] [CrossRef]
- Chen, J.; John, R.; Shao, C.; Fan, Y.; Zhang, Y.; Amarjargal, A.; Brown, D.G.; Qi, J.; Han, J.; Lafortezza, R.; et al. Policy shifts influence the functional changes of the CNH systems on the Mongolian plateau. Environ. Res. Lett. 2015, 10, 085003. [Google Scholar] [CrossRef]
- United Nations Development Program (UNDP). Human Development Report 2019; United Nations: New York, NY, USA, 2019. [Google Scholar]
- Böhringer, C.; Jochem, P.E.P. Measuring the immeasurable—A survey of sustainability indices. Ecol. Econ. 2007, 63, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Safriel, U.; Adeel, Z. Development paths of drylands: Thresholds and sustainability. Sustain. Sci. 2008, 3, 117–123. [Google Scholar] [CrossRef]
- Moldan, B.; Janoušková, S.; Hák, T. How to understand and measure environmental sustainability: Indicators and targets. Ecol. Indic. 2012, 17, 4–13. [Google Scholar] [CrossRef]
- Wu, J. Landscape sustainability science: Ecosystem services and human well-being in changing landscapes. Landsc. Ecol. 2013, 28, 999–1023. [Google Scholar] [CrossRef]
- Groisman, P.; Bulygina, O.; Henebry, G.; Speranskaya, N.; Shiklomanov, A.; Chen, Y.; Tchebakova, N.; Parfenova, E.; Tilinina, N.; Zolina, O.; et al. Dryland belt of Northern Eurasia: Contemporary environmental changes and their consequences. Environ. Res. Lett. 2018, 13, 115008. [Google Scholar] [CrossRef]
- Chen, J.; John, R.; Sun, G.; Fan, P.; Henebry, G.M.; Fernández-Giménez, M.E.; Zhang, Y.; Park, H.; Tian, L.; Groisman, P.; et al. Prospects for the sustainability of social-ecological systems (SES) on the Mongolian Plateau: Five critical issues. Environ. Res. Lett. 2018, 13, 123004. [Google Scholar] [CrossRef]
- Qu, L.; Dong, G.; De Boeck, H.J.; Tian, L.; Chen, J.; Tang, H.; Xin, X.; Chen, J.; Hu, Y.; Shao, C. Joint forcing by heat waves and mowing poses a threat to grassland ecosystems: Evidence from a manipulative experiment. Land Degrad. Dev. 2020, 31, 785–800. [Google Scholar] [CrossRef]
- Gutman, G.; Chen, J.; Henebry, G.M.; Kappas, M. Landscape Dynamics of Drylands across Greater Central Asia: People, Societies and Ecosystems; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Dong, G.; Zhao, F.; Chen, J.; Zhang, Y.; Qu, L.; Jiang, S.; Ochirbat, B.; Chen, J.; Xin, X.; Shao, C. Non-climatic component provoked substantial spatiotemporal changes of carbon and water use efficiency on the Mongolian Plateau. Environ. Res. Lett. 2020, 15. [Google Scholar] [CrossRef]
- Chen, J. Biophysical Models and Applications in Ecosystem Analysis; Michigan State University Press: East Lansing, MI, USA, 2021. [Google Scholar]
- Quintas-Soriano, C.; Martín-López, B.; Santos-Martín, F.; Loureiro, M.; Montes, C.; Benayas, J.; García-Llorente, M. Ecosystem services values in Spain: A meta-analysis. Environ. Sci. Policy 2016, 55, 186–195. [Google Scholar] [CrossRef]
- Han, J.; Chen, J.; Miao, Y.; Wan, S. Multiple resource use efficiency (mRUE): A new concept for ecosystem production. Sci. Rep. 2016, 6, 37453. [Google Scholar] [CrossRef] [Green Version]
- US Bureau of Economic Analysis (US BEA). Gross Domestic Product. 2021. Available online: https://www.bea.gov/data/gdp/gross-domestic-product. (accessed on 20 June 2020).
- Ivković, A.F. Limitations of the GDP as a measure of progress and well-being. Ekon. Vjesn. Econviews Rev. Contemp. Bus. Entrep. Econ. Issues 2016, 29, 257–272. [Google Scholar]
- Kuznets, S. Inventive Activity: Problems of Definition and Measurement. In The Rate and Direction of Inventive Activity: Economic and Social Factors; Universities-National Bureau Committee for Economic Research, Ed.; Princeton University Press: Princeton, NJ, USA, 1962; pp. 19–52. [Google Scholar]
- Stiglitz, J. Rethink GDP Fetish. 2009. Available online: http://host.madison.com/ct/news/opinion/column/guest/article_71fad514-9caa-11de-9a00-001cc4c03286.html (accessed on 16 September 2021).
- Schepelmann, P.; Goossens, Y.; Makipaa, A. Towards Sustainable Development: Alternatives to GDP for Measuring Progress; Wuppertal Institute for Climate, Environment and Energy: Wuppertal, Germany, 2009. [Google Scholar]
- Costanza, R.; d’Arge, R.; de Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.V.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Chen, J.; Ouyang, Z.; John, R.; Henebry, G.M.; Groisman, P.Y.; Karnieli, A.; Pueppke, S.; Kussainova, M.; Amartuvshin, A.; Tulobaev, A.; et al. Social-Ecological Systems Across the Asian Drylands Belt (ADB). In Landscape Dynamics of Drylands across Greater Central Asia: People, Societies and Ecosystems; Gutman, G., Chen, J., Henebry, G.M., Kappas, M., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 191–225. [Google Scholar]
- Jung, M.; Reichstein, M.; Ciais, P.; Seneviratne, S.I.; Sheffield, J.; Goulden, M.L.; Bonan, G.; Cescatti, A.; Chen, J.; de Jeu, R.; et al. Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature 2010, 467, 951–954. [Google Scholar] [CrossRef] [PubMed]
- Groisman, P.Y.; Legates, D.R. Documenting and detecting long-term precipitation trends: Where we are and what should be done. Clim. Chang. 1995, 31, 601–622. [Google Scholar] [CrossRef]
- Qi, J.; Xin, X.; John, R.; Groisman, P.; Chen, J. Understanding livestock production and sustainability of grassland ecosystems in the Asian Dryland Belt. Ecol. Process. 2017, 6, 22. [Google Scholar] [CrossRef]
- de Beurs, K.M.; Henebry, G.M. Land surface phenology, climatic variation, and institutional change: Analyzing agricultural land cover change in Kazakhstan. Remote Sens. Environ. 2004, 89, 497–509. [Google Scholar] [CrossRef]
- Xu, G.; Wu, J. Social-ecological transformations of Inner Mongolia: A sustainability perspective. Ecol. Process. 2016, 5, 23. [Google Scholar] [CrossRef] [Green Version]
- Fang, X.; Wu, J.; He, C. Assessing human-environment system sustainability based on Regional Safe and Just Operating Space: The case of the Inner Mongolia Grassland. Environ. Sci. Policy 2021, 116, 276–286. [Google Scholar] [CrossRef]
- North, D.C. Institutions, Institutional Change and Economic Performance; Cambridge University Press: Cambridge, UK, 1990. [Google Scholar]
- Dinda, S. Environmental Kuznets Curve hypothesis: A survey. Ecol. Econ. 2004, 49, 431–455. [Google Scholar] [CrossRef] [Green Version]
- Siche, J.R.; Agostinho, F.; Ortega, E.; Romeiro, A. Sustainability of nations by indices: Comparative study between environmental sustainability index, ecological footprint and the emergy performance indices. Ecol. Econ. 2008, 66, 628–637. [Google Scholar] [CrossRef]
- Musson, A. Combining sustainable development and economic attractiveness: Towards an indicator of sustainable attractiveness. Int. J. Sustain. Dev. 2013, 16, 127–162. [Google Scholar] [CrossRef]
- Clark, W.C.; Dickson, N.M. Sustainability science: The emerging research program. Proc. Natl. Acad. Sci. USA 2003, 100, 8059. [Google Scholar] [CrossRef] [Green Version]
- Baumol, W.J. Productivity growth, convergence, and welfare: What the long-run data show. Am. Econ. Rev. 1986, 76, 1072–1085. Available online: https://www.jstor.org/stable/1816469. (accessed on 20 June 2020).
Year | AF | KG | KZ | TJ | TM | UZ | GS | IM | MN | NX | QH | TB | XJ | IQ | IR | JO | SY | TK |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Central Asia | East Asia | The Middle East | ||||||||||||||||
1992 | 1.08 | 12.68 | 141.16 | 2.85 | 12.56 | 3.09 | 2.88 | 14.29 | 154.21 | 1.32 | 22.10 | 42.94 | 9.87 | 1.05 | 6.57 | 2.50 | 2.25 | 42.18 |
1993 | 0.66 | 10.97 | 141.02 | 2.21 | 10.98 | 2.66 | 3.06 | 15.45 | 177.61 | 1.47 | 24.97 | 39.47 | 10.94 | 0.77 | 7.22 | 2.23 | 2.61 | 43.97 |
1994 | 0.43 | 8.81 | 109.81 | 1.67 | 9.61 | 2.52 | 2.70 | 17.19 | 192.73 | 1.41 | 25.07 | 42.95 | 11.56 | 0.57 | 6.46 | 2.30 | 2.02 | 30.42 |
1995 | 0.52 | 7.31 | 81.26 | 1.29 | 7.18 | 1.98 | 2.76 | 17.05 | 160.31 | 1.25 | 22.37 | 40.89 | 11.17 | 0.47 | 6.31 | 2.14 | 2.10 | 38.40 |
1996 | 0.44 | 9.05 | 85.81 | 1.08 | 6.70 | 1.72 | 3.64 | 20.70 | 146.42 | 1.92 | 25.38 | 43.62 | 11.48 | 0.70 | 6.39 | 1.86 | 2.10 | 38.78 |
1997 | 0.38 | 7.92 | 102.29 | 0.88 | 7.72 | 2.20 | 3.59 | 20.94 | 118.24 | 1.55 | 25.61 | 48.46 | 12.16 | 0.66 | 5.15 | 1.85 | 2.31 | 40.68 |
1998 | 0.51 | 7.90 | 73.00 | 1.50 | 9.37 | 2.26 | 4.03 | 26.10 | 141.77 | 1.81 | 26.91 | 57.86 | 14.01 | 1.05 | 5.72 | 2.16 | 1.94 | 40.81 |
1999 | 0.33 | 5.41 | 63.83 | 0.99 | 9.94 | 2.07 | 4.25 | 23.98 | 103.55 | 1.78 | 31.23 | 62.81 | 13.95 | 1.09 | 4.65 | 1.78 | 1.30 | 33.80 |
2000 | 0.28 | 4.91 | 80.41 | 0.51 | 11.02 | 1.22 | 4.18 | 23.37 | 94.13 | 1.23 | 31.31 | 73.25 | 14.18 | 0.95 | 3.90 | 1.75 | 1.22 | 31.16 |
2001 | 0.23 | 4.89 | 84.64 | 0.55 | 12.74 | 0.73 | 4.21 | 23.74 | 100.20 | 1.53 | 31.19 | 76.71 | 14.92 | 1.24 | 4.26 | 1.90 | 1.78 | 21.72 |
2002 | 0.33 | 6.18 | 123.13 | 0.88 | 22.11 | 1.25 | 5.18 | 30.19 | 104.22 | 2.60 | 36.83 | 82.87 | 17.62 | 1.08 | 5.46 | 1.95 | 1.57 | 26.60 |
2003 | 0.40 | 6.94 | 132.11 | 1.08 | 30.77 | 1.20 | 5.72 | 38.52 | 129.91 | 2.89 | 38.29 | 91.77 | 18.51 | 0.94 | 5.35 | 2.05 | 1.64 | 30.44 |
2004 | 0.33 | 6.84 | 145.28 | 1.31 | 29.52 | 1.27 | 6.40 | 40.88 | 130.98 | 3.06 | 46.21 | 104.89 | 18.41 | 1.63 | 6.74 | 2.09 | 1.81 | 40.68 |
2005 | 0.48 | 8.25 | 195.97 | 1.70 | 35.47 | 1.53 | 7.88 | 56.81 | 169.59 | 3.00 | 59.56 | 114.33 | 22.12 | 1.81 | 7.98 | 2.11 | 1.81 | 50.17 |
2006 | 0.35 | 7.17 | 220.29 | 1.34 | 30.10 | 1.36 | 8.36 | 59.44 | 208.28 | 3.12 | 62.40 | 110.17 | 21.58 | 2.52 | 8.39 | 2.08 | 1.77 | 50.92 |
2007 | 0.57 | 9.69 | 337.98 | 1.85 | 36.22 | 1.80 | 9.78 | 70.58 | 197.96 | 4.47 | 65.28 | 107.62 | 23.94 | 3.21 | 10.73 | 2.22 | 1.87 | 55.25 |
2008 | 0.34 | 9.71 | 281.03 | 1.61 | 30.19 | 1.75 | 10.44 | 97.34 | 312.55 | 4.56 | 74.75 | 128.72 | 22.02 | 3.13 | 9.51 | 2.40 | 1.77 | 57.01 |
2009 | 0.70 | 12.95 | 294.41 | 2.72 | 36.75 | 2.95 | 10.91 | 97.85 | 233.34 | 4.92 | 86.90 | 123.02 | 23.78 | 3.46 | 10.95 | 2.35 | 2.24 | 57.27 |
2010 | 0.74 | 13.26 | 278.06 | 3.16 | 37.46 | 2.86 | 13.54 | 118.26 | 328.08 | 8.10 | 105.10 | 137.92 | 30.34 | 3.93 | 14.01 | 2.50 | 2.48 | 62.48 |
2011 | 0.53 | 13.26 | 422.21 | 1.83 | 35.81 | 2.19 | 14.28 | 126.75 | 459.92 | 7.72 | 108.36 | 159.43 | 33.15 | 4.17 | 13.69 | 2.12 | 2.73 | 70.65 |
2012 | 0.87 | 13.54 | 394.43 | 3.09 | 51.88 | 3.12 | 17.25 | 162.22 | 585.27 | 11.43 | 123.85 | 171.72 | 35.00 | 4.53 | 14.29 | 2.07 | 1.78 | 60.82 |
2013 | 0.78 | 15.12 | 557.10 | 3.07 | 54.91 | 3.45 | 18.59 | 164.52 | 542.40 | 10.51 | 123.27 | 195.01 | 40.42 | 5.57 | 12.87 | 2.10 | 1.24 | 67.70 |
2014 | 0.66 | 12.85 | 420.82 | 3.13 | 48.14 | 3.26 | 20.01 | 166.32 | 489.88 | 11.17 | 127.00 | 203.23 | 37.98 | 5.42 | 9.55 | 2.12 | 0.86 | 60.33 |
2015 | 0.68 | 10.23 | 410.30 | 2.62 | 53.08 | 3.61 | 17.99 | 161.18 | 413.46 | 9.61 | 122.23 | 272.19 | 39.64 | 3.79 | 8.44 | 2.24 | 1.02 | 65.36 |
2016 | 0.60 | 11.60 | 365.35 | 2.25 | 48.04 | 3.75 | 18.28 | 160.38 | 413.05 | 10.74 | 124.76 | 279.65 | 45.53 | 3.75 | 9.59 | 1.93 | 0.49 | 57.43 |
Mean | 0.53 | 9.50 | 221.67 | 1.81 | 27.13 | 2.23 | 8.80 | 70.16 | 244.32 | 4.53 | 62.84 | 112.46 | 22.17 | 2.30 | 8.17 | 2.11 | 1.79 | 47.00 |
Min | 0.23 | 4.89 | 63.83 | 0.51 | 6.70 | 0.73 | 2.70 | 14.29 | 94.13 | 1.23 | 22.10 | 39.47 | 9.87 | 0.47 | 3.90 | 1.75 | 0.49 | 21.72 |
Max | 1.08 | 15.12 | 557.10 | 3.16 | 54.91 | 3.75 | 20.01 | 166.32 | 585.27 | 11.43 | 127.00 | 279.65 | 45.53 | 5.57 | 14.29 | 2.50 | 2.73 | 70.65 |
SD | 0.21 | 3.01 | 143.16 | 0.85 | 16.43 | 0.86 | 5.91 | 57.32 | 152.31 | 3.64 | 39.92 | 68.88 | 10.83 | 1.64 | 3.13 | 0.20 | 0.54 | 13.94 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.; John, R.; Shao, C.; Ouyang, Z.; Mack, E.A.; Henebry, G.M.; Dong, G.; Allington, G.R.H.; Pearson, A.L.; Zhao, F.; et al. Towards a Single Integrative Metric on the Dynamics of Social-Environmental Systems. Sustainability 2021, 13, 11246. https://doi.org/10.3390/su132011246
Chen J, John R, Shao C, Ouyang Z, Mack EA, Henebry GM, Dong G, Allington GRH, Pearson AL, Zhao F, et al. Towards a Single Integrative Metric on the Dynamics of Social-Environmental Systems. Sustainability. 2021; 13(20):11246. https://doi.org/10.3390/su132011246
Chicago/Turabian StyleChen, Jiquan, Ranjeet John, Changliang Shao, Zutao Ouyang, Elizabeth A. Mack, Geoffrey M. Henebry, Gang Dong, Ginger R. H. Allington, Amber L. Pearson, Fangyuan Zhao, and et al. 2021. "Towards a Single Integrative Metric on the Dynamics of Social-Environmental Systems" Sustainability 13, no. 20: 11246. https://doi.org/10.3390/su132011246
APA StyleChen, J., John, R., Shao, C., Ouyang, Z., Mack, E. A., Henebry, G. M., Dong, G., Allington, G. R. H., Pearson, A. L., Zhao, F., Roy, D. P., Fan, P., Shirkey, G. E., Tian, L., Kussainova, M., Chen, J., Reed, D. E., & Abraha, M. (2021). Towards a Single Integrative Metric on the Dynamics of Social-Environmental Systems. Sustainability, 13(20), 11246. https://doi.org/10.3390/su132011246