Enhancement of a Landrace of Carosello (Unripe Melon) through the Use of Light-Emitting Diodes (LED) and Nutritional Characterization of the Fruit Placenta
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Set-Up
2.2. Plant Material and Growing Conditions
2.3. Nutrient Solution (NS) Management
2.4. Supplementary Light Treatments
2.5. Yield, Fruit Fresh and Dry Weight, and Biometric Characteristics
2.6. Color Analysis
2.7. Polyphenols Determination
2.8. Isoprenoids Determination
2.9. Chemicals
2.10. Experimental Design and Statistical Analysis
3. Results
3.1. PPFD, DLI and Photoperiod
3.2. ‘Carosello leccese’ Yield and Fruit Morphology
3.3. Color Traits
3.4. Biochemical Characterization of ‘Carosello leccese’ Fruits Grown under Different Supplementary Light Conditions
3.5. Biochemical Characterization of the Endosperm of ‘Carosello leccese’ Fruits Grown under Natural Light
4. Discussion
4.1. Supplementary Light Management and Its Effects on ‘Carosello leccese’ Yield and Fruit Quality
4.2. Color Traits and Nutritional Content of Different Fruit Parts
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bisognin, D.A. Origin and evolution of cultivated cucurbits. Ciência Rural 2002, 32, 715–723. [Google Scholar] [CrossRef] [Green Version]
- Di Gioia, F.; Renna, M.; Santamaria, P. Sprouts, Microgreens and “Baby Leaf” Vegetables. In Minimally Processed Refrigerated Fruits and Vegetables; Springer: Boston, MA, USA, 2017; pp. 403–432. ISBN 978-1-4939-7016-2. [Google Scholar]
- Renna, M.; Di Gioia, F.; Leoni, B.; Mininni, C.; Santamaria, P. Culinary Assessment of Self-Produced Microgreens as Basic Ingredients in Sweet and Savory Dishes. J. Culin. Sci. Technol. 2017, 15, 126–142. [Google Scholar] [CrossRef]
- Sotelo, A.; López-García, S.; Basurto-Peña, F. Content of nutrient and antinutrient in edible flowers of wild plants in Mexico. Plant Foods Hum. Nutr. 2007, 62, 133–138. [Google Scholar] [CrossRef]
- Lestari, B.; Meiyanto, E. A Review: The Emerging Nutraceutical Potential of Pumpkin Seeds. Indones. J. Cancer Chemoprev. 2018, 9, 92. [Google Scholar] [CrossRef] [Green Version]
- Patel, S.; Rauf, A. Edible seeds from Cucurbitaceae family as potential functional foods: Immense promises, few concerns. Biomed. Pharmacother. 2017, 91, 330–337. [Google Scholar] [CrossRef]
- Chunduri, J.R. Antoxidant and Nutritional Analysis of Edible Cucurbitaceae Vegetables of India. Int. J. Bioassays 2013, 2, 1124–1129. [Google Scholar]
- Conversa, G.; Gonnella, M.; Santamaria, P.; Vincenzo, V. Caratterizzazione e valorizzazione di due tipici ortaggi pugliesi: Carosello e barattiere. Colt. Protette 2005, 34, 4–13. [Google Scholar]
- Pavan, S.; Marcotrigiano, A.R.; Ciani, E.; Mazzeo, R.; Zonno, V.; Ruggieri, V.; Lotti, C.; Ricciardi, L. Genotyping-by-sequencing of a melon (Cucumis melo L.) germplasm collection from a secondary center of diversity highlights patterns of genetic variation and genomic features of different gene pools. BMC Genom. 2017, 18, 59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Renna, M.; Montesano, F.F.; Signore, A.; Gonnella, M.; Santamaria, P. Biodiverso: A case study of integrated project to preserve the biodiversity of vegetable crops in puglia (southern Italy). Agriculture 2018, 8, 128. [Google Scholar] [CrossRef] [Green Version]
- Perrino, P.; Hammer, K.; Hanelt, P. Carosello and the taxonomy of Cucumis melo L., especially of its vegetables races. Acta Hortic. 1986, 34, 95–100. [Google Scholar] [CrossRef]
- Hammer, K.; Hanelt, P.; Perrino, P. Carosello and the taxonomy of Cucumis melo L. especially of its vegetable races. Genet. Resour. Crop. Evol. 1986, 34, 249–259. [Google Scholar] [CrossRef]
- Paris, H.S.; Daunay, M.C.; Janick, J. Medieval iconography of watermelons in Mediterranean Europe. Ann. Bot. 2013, 112, 867–879. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laghetti, G.; Accogli, R.; Hammer, K. Different cucumber melon (Cucumis melo L.) races cultivated in Salento (Italy). Genet. Resour. Crop Evol. 2008, 55, 619–623. [Google Scholar] [CrossRef]
- Macchia, F.; Pacucci, G. Sul numero cromosomico del cucumis coltivato nelle puglie con il nome di «carosello». Caryologia 1961, 14, 151–153. [Google Scholar] [CrossRef]
- Buttaro, D.; Bonasia, A.; Minuto, A.; Serio, F.; Santamaria, P. Effect of silicon in the nutrient solution on the incidence of powdery mildew and quality traits in carosello and barattiere (Cucumismelo L.) grown in a soilless system. J. Hortic. Sci. Biotechnol. 2009, 84, 300–304. [Google Scholar] [CrossRef]
- Elia, A.; Santamaria, P. Biodiversity in vegetable crops: A heritage to save. The case of the Puglia region. Ital. J. Agron. 2013, 8, 21–34. [Google Scholar] [CrossRef] [Green Version]
- Parente, A.; Buttaro, D.; Conversa, G.; Serio, F.; Santamaria, P. Confronto tra sistemi di coltivazione di carosello e barattiere in serra II. Aspetti qualitativi. Colt. Protette 2005, 34, 28–35. [Google Scholar]
- Jing, S.; Zou, H.; Wu, Z.; Ren, L.; Zhang, T.; Zhang, J.; Wei, Z. Cucurbitacins: Bioactivities and synergistic e ff ect with small-molecule drugs. J. Funct. Foods 2020, 72, 1–9. [Google Scholar] [CrossRef]
- Vergauwen, D.; De Smet, I. Watermelons versus Melons: A Matter of Taste. Trends Plant Sci. 2019, 24, 973–976. [Google Scholar] [CrossRef]
- Renna, M.; D’Imperio, M.; Gonnella, M.; Parente, A.; Santamaria, P.; Serio, F. Barattiere: An italian local variety of Cucumis melo L. with quality traits between melon and cucumber. Plants 2020, 9, 578. [Google Scholar] [CrossRef] [PubMed]
- Palmitessa, O.D.; Pantaleo, M.A.; Santamaria, P. Applications and Development of LEDs as Supplementary Lighting for Tomato at Different Latitudes. Agronomy 2021, 11, 835. [Google Scholar] [CrossRef]
- Palmitessa, O.D.; Leoni, B.; Montesano, F.F.; Serio, F.; Signore, A.; Santamaria, P. Supplemental lighting with LED for efficient year- round production of soilless tomato in a Mediterranean greenhouse. Acta Hortic. 2021, 367–374. [Google Scholar] [CrossRef]
- Hoagland, D.R.; Arnon, D.I. The water-culture method for growing plants without soil. Circ. Calif. Agric. Exp. Stn. 1950, 347, 32. [Google Scholar]
- Renna, M.; Pace, B.; Cefola, M.; Santamaria, P.; Serio, F.; Gonnella, M. Comparison of two jam making methods to preserve the quality of colored carrots. LWT—Food Sci. Technol. 2013, 53, 547–554. [Google Scholar] [CrossRef]
- Abu-Reidah, I.M.; Arráez-Román, D.; Quirantes-Piné, R.; Fernández-Arroyo, S.; Segura-Carretero, A.; Fernández-Gutiérrez, A. HPLC-ESI-Q-TOF-MS for a comprehensive characterization of bioactive phenolic compounds in cucumber whole fruit extract. Food Res. Int. 2012, 46, 108–117. [Google Scholar] [CrossRef]
- Laddomada, B.; Durante, M.; Mangini, G.; D’Amico, L.; Lenucci, M.S.; Simeone, R.; Piarulli, L.; Mita, G.; Blanco, A. Genetic variation for phenolic acids concentration and composition in a tetraploid wheat (Triticum turgidum L.) collection. Genet. Resour. Crop Evol. 2017, 64, 587–597. [Google Scholar] [CrossRef]
- Sadler, G.; Davis, J.; Dezman, D. Rapid Extraction of Lycopene and P-Carotene from Reconstituted Tomato Paste and Pink Grapefruit Homogenates. J. Food Sci. 1990, 55, 1460–1461. [Google Scholar] [CrossRef]
- Perkins-veazie, P.; Collins, J.K.; Pair, S.D.; Roberts, W. Lycopene content differs among red-fleshed watermelon cultivars. J. Sci. Food Agric. 2001, 987, 983–987. [Google Scholar] [CrossRef]
- Durante, M.; Salvatore, M.; Paolo, P.; Rizzi, V.; Caroli, M.; De Piro, G.; Fini, P.; Luigi, G.; Mita, G. α-Cyclodextrin encapsulation of supercritical CO2 extracted oleoresins from different plant matrices: A stability study. Food Chem. 2016, 199, 684–693. [Google Scholar] [CrossRef]
- Palmitessa, O.D.; Paciello, P.; Santamaria, P. Supplemental LED Increases Tomato Yield in mediterranean Semi-Closed Greenhouse. Agronomy 2020, 10, 1353. [Google Scholar] [CrossRef]
- Palmitessa, O.D.; Durante, M.; Caretto, S.; Milano, F.; D’imperio, M.; Serio, F.; Santamaria, P. Supplementary light differently influences physico-chemical parameters and antioxidant compounds of tomato fruits hybrids. Antioxidants 2021, 10, 687. [Google Scholar] [CrossRef]
- Paucek, I.; Pennisi, G.; Pistillo, A.; Appolloni, E.; Crepaldi, A.; Calegari, B.; Spinelli, F.; Cellini, A.; Gabarrell, X.; Orsini, F.; et al. Supplementary LED Interlighting Improves Yield and Precocity of Greenhouse Tomatoes in the Mediterranean. Agronomy 2020, 10, 1002. [Google Scholar] [CrossRef]
- Voutsinos, O.; Mastoraki, M.; Ntatsi, G.; Liakopoulos, G.; Savvas, D. Comparative Assessment of Hydroponic Lettuce Production Either under Artificial Lighting, or in a Mediterranean Greenhouse during Wintertime. Agriculture 2021, 11, 503. [Google Scholar] [CrossRef]
- Garcia, C.; Lopez, R.G. Supplemental Radiation Quality Influences Cucumber, Tomato, and Pepper Transplant Growth and Development. HortScience 2020, 55, 804–811. [Google Scholar] [CrossRef]
- Särkkä, L.E.; Jokinen, K.; Ottosen, C.O.; Kaukoranta, T. Effects of HPS and LED lighting on cucumber leaf photosynthesis, light quality penetration and temperature in the canopy, plant morphology and yield. Agric. Food Sci. 2017, 26, 101–109. [Google Scholar] [CrossRef] [Green Version]
- Palmitessa, O.D.; Leoni, B.; Montesano, F.F.; Serio, F.; Signore, A.; Santamaria, P. Supplementary Far-Red Light Did Not Affect Tomato Plant Growth or Yield under Mediterranean Greenhouse Conditions. Agronomy 2020, 10, 1849. [Google Scholar] [CrossRef]
- Zhen, S.; Bugbee, B. Substituting Far-Red for Traditionally Defined Photosynthetic Photons Results in Equal Canopy Quantum Yield for CO2 Fixation and Increased Photon Capture During Long-Term Studies: Implications for Re-Defining PAR. Front. Plant Sci. 2020, 11, 1–14. [Google Scholar] [CrossRef]
- Sager, J.C.; Smith, W.O.; Edwards, J.L.; Cyr, K.L. Photosynthetic Efficiency and Phytochrome Photoequilibria Determination Using Spectral Data. Am. Soc. Agric. Eng. 1988, 31, 1882–1889. [Google Scholar] [CrossRef]
- Cantore, V.; Boari, F.; Bianco, V.V.; Pertosa, N. Effetti della salinità su carosello e barattiere (Cucumis melo L.). Colt. Protette 2005, 5, 37–43. [Google Scholar]
- Accogli, R.; Nicolì, F.; De Bellis, L. Tradizioni e saperi attorno ad alcune varietà locali di Cucumis melo L. in Salento (Puglia). Thalassia Salentina 2014, 36, 43–52. [Google Scholar] [CrossRef]
- Pandey, A.; Ranjan, P.; Ahlawat, S.P.; Bhardwaj, R.; Dhariwal, O.P.; Singh, P.K.; Malav, P.K.; Harish, G.D.; Prabhu, P.; Agrawal, A. Studies on fruit morphology, nutritional and floral diversity in less-known melons (Cucumis melo L.) of India. Genet. Resour. Crop Evol. 2021, 68, 1453–1470. [Google Scholar] [CrossRef]
- Pathare, P.B.; Opara, U.L.; Al-Said, F.A.J. Colour Measurement and Analysis in Fresh and Processed Foods: A Review. Food Bioprocess Technol. 2013, 6, 36–60. [Google Scholar] [CrossRef]
- Pitrat, M. Phenotypic diversity in wild and cultivated melons (Cucumis melo). Plant Biotechnol. 2013, 30, 273–278. [Google Scholar] [CrossRef] [Green Version]
- Reid, M.S.; Lee, T.H.; Pratt, H.K.; Chichester, C.O. Chlorophyll Carotenoid Changes Muskmelon. J. Am. Soc. Hortic. Sci. 1970, 95, 814–815. [Google Scholar]
- Gómez-García, R.; Campos, D.A.; Aguilar, C.N.; Madureira, A.R.; Pintado, M. Valorization of melon fruit (Cucumis melo L.) by-products: Phytochemical and Biofunctional properties with Emphasis on Recent Trends and Advances. Trends Food Sci. Technol. 2020, 99, 507–519. [Google Scholar] [CrossRef]
- Rodríguez-Pérez, C.; Quirantes-Piné, R.; Fernández-Gutiérrez, A.; Segura-Carretero, A. Comparative characterization of phenolic and other polar compounds in Spanish melon cultivars by using high-performance liquid chromatography coupled to electrospray ionization quadrupole-time of flight mass spectrometry. Food Res. Int. 2013, 54, 1519–1527. [Google Scholar] [CrossRef] [Green Version]
- Maeda, H.; DellaPenna, D. Tocopherol functions in photosynthetic organisms. Curr. Opin. Plant Biol. 2007, 10, 260–265. [Google Scholar] [CrossRef]
- Silva, M.A.; Albuquerque, T.G.; Alves, R.C.; Oliveira, M.B.P.P.; Costa, H.S. Melon (Cucumis melo L.) by-products: Potential food ingredients for novel functional foods? Trends Food Sci. Technol. 2020, 98, 181–189. [Google Scholar] [CrossRef]
N | K | P | Mg | Ca | Si | S | |
---|---|---|---|---|---|---|---|
Days after transplant (DAT) | mg∙L−1 | ||||||
1–31 | 145 | 208 | 40 | 23 | 133 | 20 | 82 |
32–40 | 145 | 239 | 40 | 23 | 133 | 60 | 82 |
41–81 | 145 | 270 | 40 | 23 | 133 | 100 | 82 |
Number of Fruits | Yield | Average Fruit Weight | Fruit Dry Weight | |
---|---|---|---|---|
Light treatments | n∙plant−1 | g∙plant−1 | g∙fruit−1 | g∙100 g−1 fresh weight |
Natural light (NL) | 13.7 ± 1.2 | 3021 ± 96 | 221.0 ± 12.3 | 4.1 ± 0.31 |
LED R + B + FR | 17.5 ± 1.7 | 3647 ± 558 | 207.7 ± 13.6 | 4.5 ± 0.33 |
LED R + B | 17.0 ± 2.2 | 4041 ± 223 | 227.3 ± 14.3 | 3.9 ± 0.31 |
Significance (1) | ||||
NL vs. LEDs | * | * | ns | ns |
R + B + FR vs. R + B | ns | ns | ns | ns |
Equatorial Diameter | Polar Diameter | Mesocarp Thickness | Fruit Length | Endosperm Width | Endosperm Length | |
---|---|---|---|---|---|---|
Light treatments | mm | |||||
Natural light (NL) | 61.5 ± 17.7 | 44.8 ± 11.6 | 14.9 ± 3.4 | 117.3 ± 19.8 | 29.4 ± 5.6 | 86.5 ± 16.4 |
LED R + B + FR | 61.6 ± 16.9 | 43.8 ± 12.4 | 14.4 ± 3.3 | 116.6 ± 19.5 | 29.0 ± 6.1 | 85.1 ± 16.5 |
LED R + B | 62.8 ± 17.1 | 46.5 ± 12.2 | 15.1 ± 2.9 | 116.3 ± 20.4 | 27.7 ± 6.0 | 83.4 ± 15.9 |
Significance (1) | ||||||
Control vs. LEDs | ns | ns | ns | ns | ns | ns |
R + B + FR vs. R + B | ns | ns | ns | ns | ns | ns |
L* | a* | b* | HUE | C | |
---|---|---|---|---|---|
(0–100) | (−60/+60) | (−60/+60) | √(a2 + b2) | (0–360)° | |
Fruit part Exocarp | 67.3 ± 3.3 | −18.4 ± 1.4 | 34.9 ± 2.2 | 117.8 ± 1.1 | 39.4 ± 1.3 |
Mesocarp | 82.0 ± 1.4 | −10.7 ± 0.6 | 23.9 ± 1.9 | 114.1 ± 1.0 | 26.1 ± 1.8 |
Light treatment (SL) | |||||
Natural light | 73.9 ± 1.8 | −14.2 ± 1.1 | 28.6 ± 2.0 | 116.0 ± 1.2 | 32.0 ± 2.3 |
R + B + FR | 75.1 ± 2.4 | −14.8 ± 0.7 | 29.7 ± 1.4 | 116.1 ± 1.2 | 33.2 ± 1.2 |
R + B | 75.0 ± 2.1 | −14.6 ± 1.4 | 29.8 ± 1.4 | 115.7 ± 0.9 | 33.2 ± 1.8 |
Significance (1) | |||||
Fruit part | ** | *** | *** | ** | *** |
SL | ns | ns | ns | ns | ns |
Fruit part × SL | ns | ns | ns | ns | ns |
Polyphenols | Tocopherols | Carotenoids | Chlorophylls | |
---|---|---|---|---|
µg·g−1 fresh weight | ||||
Day of harvest (DAT) 32 | 3.35 ± 0.39 | 0.49 ± 0.10 | 2.92 ± 1.09 | 2.64 ± 0.90 |
50 | 4.18 ± 1.44 | 0.76 ± 0.28 | 4.13 ± 2.22 | 4.53 ± 3.40 |
Light treatment (SL) | ||||
Natural light | 4.15 ± 1.50 | 0.64 ± 0.15 | 3.93 ± 0.99 | 1.87 ± 1.45 |
R + B + FR | 3.44 ± 0.50 | 0.68 ± 0.19 | 3.06 ± 1.18 | 4.02 ± 1.57 |
R + B | 3.71 ± 1.18 | 0.55 ± 0.16 | 3.59 ± 2.88 | 4.85 ± 3.83 |
Significance (1) | ||||
DAT | ns | * | ns | ns |
SL | ns | ns | ns | ns |
Control vs. LEDs | ns | ns | ns | ns |
R + B vs. R + B + FR | ns | ns | ns | ns |
DAT × SL | ns | ns | ns | ns |
Polyphenols | Tocopherols | Carotenoids | Chlorophylls | |
---|---|---|---|---|
Fruit part | µg·g−1 fresh weight | |||
Exocarp + Mesocarp | 1.93 ± 0.15 | 0.64 ± 0.27 | 6.03 ± 0.81 | 7.50 ± 0.99 |
Endosperm | 5.05 ± 1.19 | 0.95 ± 0.25 | 1.78 ± 2.79 | 1.52 ± 3.83 |
Significance (1) | * | ns | ** | ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palmitessa, O.D.; Durante, M.; Leoni, B.; Montesano, F.; Renna, M.; Serio, F.; Somma, A.; Santamaria, P. Enhancement of a Landrace of Carosello (Unripe Melon) through the Use of Light-Emitting Diodes (LED) and Nutritional Characterization of the Fruit Placenta. Sustainability 2021, 13, 11464. https://doi.org/10.3390/su132011464
Palmitessa OD, Durante M, Leoni B, Montesano F, Renna M, Serio F, Somma A, Santamaria P. Enhancement of a Landrace of Carosello (Unripe Melon) through the Use of Light-Emitting Diodes (LED) and Nutritional Characterization of the Fruit Placenta. Sustainability. 2021; 13(20):11464. https://doi.org/10.3390/su132011464
Chicago/Turabian StylePalmitessa, Onofrio Davide, Miriana Durante, Beniamino Leoni, Francesco Montesano, Massimiliano Renna, Francesco Serio, Annalisa Somma, and Pietro Santamaria. 2021. "Enhancement of a Landrace of Carosello (Unripe Melon) through the Use of Light-Emitting Diodes (LED) and Nutritional Characterization of the Fruit Placenta" Sustainability 13, no. 20: 11464. https://doi.org/10.3390/su132011464
APA StylePalmitessa, O. D., Durante, M., Leoni, B., Montesano, F., Renna, M., Serio, F., Somma, A., & Santamaria, P. (2021). Enhancement of a Landrace of Carosello (Unripe Melon) through the Use of Light-Emitting Diodes (LED) and Nutritional Characterization of the Fruit Placenta. Sustainability, 13(20), 11464. https://doi.org/10.3390/su132011464