Sunlight Intensity, Photosynthetically Active Radiation Modelling and Its Application in Algae-Based Wastewater Treatment and Its Cost Estimation
Abstract
:1. Introduction
2. Materials and Method
2.1. Instruments
2.2. PAR Modeling
2.2.1. Estimation of PAR from Solar Radiation
2.2.2. Estimation of Various Unknown Parameters for PAR Estimation Model
2.3. Projection Model for PAR
2.4. Optimization of Cost of Algae Production Taking into Account Sunlight Distribution for Algae Growth and Heat Production
- Q = flow rate (m3/day),
- HRT = Hydraulic retention time (day),
- H = height of algal pond (meter),
- I = solar light intensity used for algae growth (in μmol/m2/s),
- X = solar light intensity for a particular time, p = solar light intensity used for algal growth (μmol/m2/s).
3. Results and Discussion
3.1. Diurnal Patterns of Monthly Mean Hourly PAR Values
3.2. PAR (OBSERVED) vs. PAR (MODELED) and Solar Radiation (Observed) vs. Solar Radiation (Modelled)
3.3. PAR Prediction from Solar Radiation for Other Places
3.4. Calibration of a Model to Simulate the Diurnal Variation of PAR from the Monthly Average Solar Radiation
3.5. Cost of Solar Heating Integrated Algae-Based Wastewater Treatment
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Schmer, M.R.; Vogel, K.P.; Varvel, G.E.; Follett, R.F.; Mitchell, R.B.; Jin, V.L. Energy Potential and Greenhouse Gas Emissions from Bioenergy Cropping Systems on Marginally Productive Cropland. PLoS ONE 2014, 9, e89501. [Google Scholar] [CrossRef]
- Hsu, D.D.; Inman, D.; Heath, G.A.; Wolfrum, E.J.; Mann, M.K.; Aden, A. Life cycle environmental impacts of selected US ethanol production and use pathways in 2022. Environ. Sci. Technol. 2010, 44, 5289–5297. [Google Scholar] [CrossRef]
- Pate, R.; Klise, G.; Wu, B. Resource demand implications for US algae biofuels production scale-up. Appl. Energy 2011, 88, 3377–3388. [Google Scholar] [CrossRef]
- Chisti, Y. Biodiesel from microalgae. Biotechnol. Adv. 2007, 25, 294–306. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, R.; Freire, F. Bioenergy production from algae using dairy manure as a nutrient source: Life cycle energy and greenhouse gas emission analysis. Appl. Energy 2015, 154, 1112–1121. [Google Scholar] [CrossRef]
- Sutherland, D.L.; Turnbull, M.H.; Craggs, R.J. Increased pond depth improves algal productivity and nutrient removal in wastewater treatment high rate algal ponds. Water Res. 2015, 53, 271–281. [Google Scholar] [CrossRef]
- Iluz, D.; Abu-Ghosh, S. A novel photobioreactor creating fluctuating light from solar energy for a higher light-to-biomass conversion efficiency. Energy Convers. Manag. 2016, 126, 767–773. [Google Scholar] [CrossRef]
- Xue, S.; Zhang, Q.; Wu, X.; Yan, C.; Cong, W. A novel photobioreactor structure using optical fibers as inner light source to fulfill flashing light effects of microalgae. Bioresour. Technol. 2013, 138, 141–147. [Google Scholar] [CrossRef] [PubMed]
- Wondraczek, L.; Batentschuk, M.; Schmidt, M.; Borchardt, R.; Scheiner, S.; Seemann, B.; Schweizer, P.; Brabec, C.J. Solar spectral conversion for improving the photosynthetic activity in algae reactors. Nat. Commun. 2013, 4, 2047. [Google Scholar] [CrossRef]
- Poblete, R.; Painemal, O. Improvement of the solar drying process of sludge using thermal storage. J. Environ. Manag. 2020, 255, 109883. [Google Scholar] [CrossRef]
- Chong, K.K.; Onubogu, N.O.; Yew, T.K.; Wong, C.W.; Tan, W.C. Design and construction of active daylighting system using two-stage non-imaging solar concentrator. Appl. Energy 2017, 207, 45–60. [Google Scholar] [CrossRef]
- Pearce, M.; Shemfe, M.; Sansom, C. Techno-economic analysis of solar integrated hydrothermal liquefaction of microalgae. Appl. Energy 2016, 166, 19–26. [Google Scholar] [CrossRef]
- Yu, X.; Wu, Z.; Jiang, W.; Guo, X. Predicting daily photosynthetically active radiation from global solar radiation in the Contiguous United States. Energy Convers. Manag. 2015, 89, 71–82. [Google Scholar] [CrossRef]
- Qin, J.; Yang, K.; Liang, S.; Tang, W. Estimation of daily mean photosynthetically active radiation under all-sky conditions based on relative sunshine data. J. Appl. Meteorol. Climatol. 2012, 51, 150–160. [Google Scholar] [CrossRef] [Green Version]
- Chukwujindu, N.S.; Ogbulezie Julie, C.; Kabele, T.C.; Alwell, S.J.J. Estimations of photosynthetically active radiation over different climatic zones in Nigeria. SPC J. Energy. 2018, 1, 1–8. [Google Scholar]
- Hocaoğlu, F.O. Novel analytical hourly solar radiation models for photovoltaic based system sizing algorithms. Energy Convers. Manag. 2010, 51, 2921–2929. [Google Scholar] [CrossRef]
- Hocaoğlu, F.O. Stochastic approach for daily solar radiation modeling. Solar Energy 2011, 85, 278–287. [Google Scholar] [CrossRef]
- Bhardwaj, S.; Sharma, V.; Srivastava, S.; Sastry, O.S.; Bandyopadhyay, B.; Chandel, S.S.; Gupta, P.J.R. Estimation of solar radiation using a combination of Hidden Markov Model and generalized Fuzzy model. Solar Energy 2013, 93, 43–54. [Google Scholar] [CrossRef]
- Vindel, J.M.; Polo, J. Markov processes and Zipf’s law in daily solar irradiation at earth’s surface. J. Atmos. Sol.-Terr. Phys. 2014, 107, 42–47. [Google Scholar] [CrossRef]
- Sudhakar, K.; Srivastava, T.; Satpathy, G.; Premalatha, M. Modelling and estimation of photosynthetically active incident radiation based on global irradiance in Indian latitudes. Int. J. Energy Environ. Eng. 2013, 4, 21. [Google Scholar] [CrossRef] [Green Version]
- Sun, Z.; Liu, J.; Zeng, X.; Liang, H. Parameterization of instantaneous global horizontal irradiance: Cloudy—Sky component. J. Geophys. Res. Atmos. 2012, 117, D14. [Google Scholar] [CrossRef] [Green Version]
- Amrouche, B.; Le Pivert, X. Artificial neural network based daily local forecasting for global solar radiation. Appl. Energy 2014, 130, 333–341. [Google Scholar] [CrossRef]
- Davò, F.; Alessandrini, S.; Sperati, S.; Delle Monache, L.; Airoldi, D.; Vespucci, M.T. Post-processing techniques and principal component analysis for regional wind power and solar irradiance forecasting. Solar Energy 2016, 134, 327–338. [Google Scholar] [CrossRef] [Green Version]
- Shams, M.B.; Haji, S.; Salman, A.; Abdali, H.; Alsaffar, A. Time series analysis of Bahrain’s first hybrid renewable energy system. Energy 2016, 103, 1–15. [Google Scholar] [CrossRef]
- Ajayi, O.O.; Ohijeagbon, O.D.; Nwadialo, C.E.; Olasope, O. New model to estimate daily global solar radiation over Nigeria. Sustain. Energy Technol. Assess. 2014, 5, 28–36. [Google Scholar] [CrossRef]
- Yadala, S.; Cremaschi, S. Design and optimization of artificial cultivation units for algae production. Energy 2014, 78, 23–39. [Google Scholar] [CrossRef]
- Dhimish, M.; Holmes, V.; Mather, P.; Sibley, M. Preliminary assessment of the solar resource in the United Kingdom. Clean Energy 2018, 2, 112–125. [Google Scholar] [CrossRef]
- Adejumo, A.O.; Suleiman, E.A.; Okagbue, H.I. Exploration of solar radiation data from three geo-political zones in Nigeria. Data Brief 2017, 13, 60–68. [Google Scholar] [CrossRef]
- Hu, B.; Wang, Y. Comparison of multi-empirical estimation models of photosynthetically active radiation under all sky conditions in Northeast China. Theor. Appl. Climatol. 2014, 116, 119–129. [Google Scholar] [CrossRef]
- Available online: https://www.nestoria.in/roorkee/property/sale (accessed on 18 February 2019).
- Available online: https://homes.mitula.com.ng/detalle/238612/1610119585150072117/3/8/landssokoto?page=2&pos=3&t_sec=190&t_or=2&t_pvid=7b3a4c4a-bf3d-434f-b7c9-7c626d3ec178 (accessed on 21 May 2020).
- Available online: https://www.onthemarket.com/details/8422968/ (accessed on 30 May 2020).
- Friedler, E.; Pisanty, E. Effects of design flow and treatment level on construction and operation costs of municipal wastewater treatment plants and their implications on policy making. Water Res. 2006, 40, 3751–3758. [Google Scholar] [CrossRef]
- Voyant, C.; Muselli, M.; Paoli, C.; Nivet, M.L. Optimization of an artificial neural network dedicated to the multivariate forecasting of daily global radiation. Energy 2011, 36, 348–359. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Liu, J.; Linderholm, H.W.; Chen, D.; Yu, Q.; Wu, D.; Haginoya, S. Observation and calculation of the solar radiation on the Tibetan Plateau. Energy Convers. Manag. 2012, 57, 23–32. [Google Scholar] [CrossRef]
- Available online: http://www.synergyenviron.com/tools/solarirradiance/Jaipur%252CRajasthan%252CIndia (accessed on 12 February 2019).
- Hognon, C.; Delrue, F.; Boissonnet, G. Energetic and economic evaluation of Chlamydomonas reinhardtii hydrothermal liquefaction and pyrolysis through thermochemical models. Energy 2015, 93, 31–40. [Google Scholar] [CrossRef]
- Davis, R.; Markham, J.; Kinchin, C.; Grundl, N.; Tan, E.C.; Humbird, D. Process Design and Economics for the Production of Algal Biomass: Algal Biomass Production in Open Pond Systems and Processing through Dewatering for Downstream Conversion (No. NREL/TP-5100-64772); National Renewable Energy Lab. (NREL): Golden, CO, USA, 2016. [Google Scholar]
- Chowdhury, R.; Keen, P.L.; Tao, W. Fatty acid profile and energy efficiency of biodiesel production from an alkaliphilic algae grown in the photobioreactor. Bioresour. Technol. Rep. 2019, 6, 229–236. [Google Scholar] [CrossRef]
- Chowdhury, R.; Franchetti, M. Life cycle energy demand from algal biofuel generated from nutrients present in the dairy waste. Sustain. Prod. Consum. 2017, 9, 22–27. [Google Scholar] [CrossRef]
- Sanwal, V.; Chowdhury, R.; Sadhukhan, J. Optimization life cycle net energy of algal biofuel production. In Sustainable Utilization of Natural Resources; CRC Press: Boca Raton, FL, USA, 2017; pp. 581–593. [Google Scholar]
- Chowdhury, R.; Sadhukhan, J.; Traverso, M.; Keen, P.L. Effects of residence time on life cycle assessment of bioenergy production from dairy manure. Bioresour. Technol. Rep. 2018, 4, 57–65. [Google Scholar] [CrossRef]
- Acién, F.G.; Fernández, J.M.; Magán, J.J.; Molina, E. Production cost of a real microalgae production plant and strategies to reduce it. Biotechnol. Adv. 2012, 30, 1344–1353. [Google Scholar] [CrossRef] [PubMed]
- Delrue, F.; Setier, P.A.; Sahut, C.; Cournac, L.; Roubaud, A.; Peltier, G.; Froment, A.K. An economic, sustainability, and energetic model of biodiesel production from microalgae. Bioresour. Technol. 2012, 111, 191–200. [Google Scholar] [CrossRef] [PubMed]
- Rani, S.; Chowdhury, R.; Tao, W.; Nedbalova, L. Microalga—Mediated tertiary treatment of municipal wastewater: Removal of nutrients and pathogens. Sustainability 2021, 13, 9554. [Google Scholar] [CrossRef]
- Ambat, I.; Tang, W.Z.; Sillanpää, M. Statistical analysis of sustainable production of algal biomass from wastewater treatment process. Biomass Bioenergy 2019, 120, 471–478. [Google Scholar] [CrossRef]
- Pegallapati, A.K.; Nirmalakhandan, N. Internally illuminated photobioreactor for algal cultivation under carbon dioxide-supplementation: Performance evaluation. Renew. Energy 2013, 56, 129–135. [Google Scholar] [CrossRef]
- John, S.G.; Lakshmanan, T. Cost optimization of dish solar concentrators for improved scalability decisions. Renew. Energy 2017, 114, 600–613. [Google Scholar] [CrossRef]
- Sander, K.; Murthy, G.S. Life cycle analysis of algae biodiesel. Int. J. Life Cycle Assess. 2010, 15, 704–714. [Google Scholar] [CrossRef]
- Safaei, A.; Freire, F.; Antunes, C.H. A model for optimal energy planning of a commercial building integrating solar and cogeneration systems. Energy 2013, 61, 211–223. [Google Scholar] [CrossRef]
- Rigter, J.; Vidican, G. Cost and optimal feed-in tariff for small scale photovoltaic systems in China. Energy Policy 2010, 38, 6989–7000. [Google Scholar] [CrossRef]
- Maes, D.; Van Passel, S. Interference of regional support policies on the economic and environmental performance of a hybrid cogeneration-solar panel energy system. Energy Policy 2012, 42, 670–680. [Google Scholar] [CrossRef]
- Lopez-Ruiz, H.G.; Blazquez, J.; Vittorio, M. Assessing residential solar rooftop potential in Saudi Arabia using nighttime satellite images: A study for the city of Riyadh. Energy Policy 2020, 140, 111399. [Google Scholar] [CrossRef]
- Chowdhury, R.; Viamajala, S.; Gerlach, R. Reduction of environmental and energy footprint of microalgal biodiesel production through material and energy integration. Bioresour. Technol. 2012, 108, 102–111. [Google Scholar] [CrossRef] [Green Version]
- Ischia, G.; Orlandi, M.; Fendrich, M.A.; Bettonte, M.; Merzari, F.; Miotello, A.; Fiori, L. Realization of a solar hydrothermal carbonization reactor: A zero-energy technology for waste biomass valorization. J. Environ. Manag. 2020, 259, 110067. [Google Scholar] [CrossRef]
- Kumar, D.; Kumar, S. Thermal performance of the solar parabolic trough collector at different flow rates: An experimental study. Int. J. Ambient. Energy 2018, 39, 93–102. [Google Scholar] [CrossRef]
ITEM | COST (INR) | SOURCE |
---|---|---|
Land Cost | 1600/sq. ft ($21.62/sq. ft) | [30] |
Cost of trough + optical fibre | 1231 USD for 4 m2 illumination area | Chong et al. [11] |
Construction cost of algal pond | 0.60 × 71 × 8988Q0.71 | [31] |
BNR cost | 16/m3 ($0.22/m3) | [32] |
Biomass cost | 21/kg ($0.28/kg) | ## |
Aeration cost | 0.26/m3/day ($ 0.003/m3/day) | [33] |
Cost of Heat Produced | 0.92/MJ [$0.012/MJ] (estimated taking data from the relevant reference) | [10] |
Items | Conventional | Optimistic |
---|---|---|
land cost * | 10 years | 10 years |
algal pond * | 20 years | 30 years |
solar trough * | 5 years | 10 years |
optical fibers * | 5 years | 10 years |
kinetic parameter (k) | 2 | 3 |
drying of biomass | included | not included |
Month | PAR (Ave ± Std.Dev) μmol/m2/s | Ks (Ave ± Std.Dev) | ρlear (Ave ± Std.Dev) | a | b | c | w |
---|---|---|---|---|---|---|---|
August | 221 ± 225 | 0.2 ± 0.2 | 0.2 ± 0.2 | 1.8 ± 0.6 | 0.6 ± 0.3 | 1.0 ± 0.7 | 1.8 ± 0.8 |
September | 586 ± 599 | 0.4 ± 0.2 | 0.4 ± 0.3 | 2.3 ± 0.5 | 0.9 ± 0.6 | 1.0 ± 0.5 | 1.4 ± 0.6 |
October | 182 ± 111 | 0.25 ± 0.06 | 0.4 ± 0.3 | 1.6 ± 0.9 | 0.9 ± 0.3 | 0.09 ± 0.08 | 0.7 ± 0.9 |
December | 400 ± 453 | 0.3 ± 0.2 | 0.6 ± 0.3 | 1.9 ± 0.6 | 1.2 ± 0.8 | 0.6 ± 0.4 | 1.4 ± 0.8 |
January | 523 ± 398 | 0.4 ± 0.2 | 0.5 ± 0.3 | 1.7 ± 0.5 | 0.6 ± 0.2 | 0.5 ± 0.2 | 0.4 ± 0.3 |
February | 496 ± 496 | 0.4 ± 0.2 | 0.4 ± 0.3 | 1.9 ± 0.6 | 1.0 ± 0.8 | 0.8 ± 0.7 | 1.7 ± 0.7 |
Months | RMSE (%) | SD [(Observed)/SD(Modeled)] |
---|---|---|
August | 0.06 | 1 |
September | 0.16 | 1 |
October | 0.06 | 1 |
December | 0.14 | 1 |
January | 0.18 | 1 |
February | 0.25 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Verma, S.; Chowdhury, R.; Das, S.K.; Franchetti, M.J.; Liu, G. Sunlight Intensity, Photosynthetically Active Radiation Modelling and Its Application in Algae-Based Wastewater Treatment and Its Cost Estimation. Sustainability 2021, 13, 11937. https://doi.org/10.3390/su132111937
Verma S, Chowdhury R, Das SK, Franchetti MJ, Liu G. Sunlight Intensity, Photosynthetically Active Radiation Modelling and Its Application in Algae-Based Wastewater Treatment and Its Cost Estimation. Sustainability. 2021; 13(21):11937. https://doi.org/10.3390/su132111937
Chicago/Turabian StyleVerma, Saumya, Raja Chowdhury, Sarat K. Das, Matthew J. Franchetti, and Gang Liu. 2021. "Sunlight Intensity, Photosynthetically Active Radiation Modelling and Its Application in Algae-Based Wastewater Treatment and Its Cost Estimation" Sustainability 13, no. 21: 11937. https://doi.org/10.3390/su132111937
APA StyleVerma, S., Chowdhury, R., Das, S. K., Franchetti, M. J., & Liu, G. (2021). Sunlight Intensity, Photosynthetically Active Radiation Modelling and Its Application in Algae-Based Wastewater Treatment and Its Cost Estimation. Sustainability, 13(21), 11937. https://doi.org/10.3390/su132111937