A New Sustainable and Novel Hybrid Solar Chimney Power Plant Design for Power Generation and Seawater Desalination
Abstract
:1. Introduction
2. Materials and Methods
2.1. HSCPP Description
2.2. Mathematical Model
2.2.1. Sector 1: Solar Air Heating
2.2.2. Sector 2: Water Evaporation
2.2.3. Sector 3: Chimney
2.3. Model Validation
2.4. Cost Analysis
3. Results and Discussion
3.1. SCPP Performance
3.2. CT Performance
3.3. HSCPP Performance
3.4. Environmental Impact Assessment
3.5. Economic Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
A | Area (m2) |
H | Height (m) |
Pelc | Electrical Power (W) |
q | Heat transfer rate (W m−2) |
h | Heat transfer coefficient (W m−2 K−1) |
dh | Hydraulic diameter (m) |
rw | Seawater pool radius (m) |
Mass flow rate (kg s−1) | |
g | Gravity acceleration (m s−2) |
D | Diameter (m) |
I | Intensity of solar irradiation (kW m−2) |
k | Thermal conductivity of air |
T | Temperature (K) |
Qout | Heat transfer between the outside and chimney wall (W) |
cp | Specific heat capacity (J kg−1 K−1) |
r | Radius (m) |
PV | Photovoltaic |
i | Enthalpy |
hfg | Latent heat of water evaporation, (kJ/kg) |
f | Friction factor |
Vch | Air velocity entering the chimney, (m s−1) |
E | The net mechanical energy, (Pa). |
F | Energy loss coefficient |
Turbine Efficiency, 0.63. | |
Greek Symbols | |
Transmissivity | |
Absorptivity | |
Density (kg m−3) | |
Relative Humidity | |
System Utilization Factor | |
Subscripts | |
c | Convective heat transfer |
gls | Glass |
wtr | Water |
ch | Chimney |
cd | Condensated water |
e | Evaporation |
col | Collector |
ent | Entrance |
out | Outside |
r | Radiative heat transfer |
sky | Sky |
abs | Absorber |
air | Airflow |
vap | The humid air resulting from spraying water on the dry air in the case of CT |
Net | Net |
References
- Mohsin, M.; Abbas, Q.; Zhang, J.; Ikram, M.; Iqbal, N. Integrated effect of energy consumption, economic development, and population growth on CO2 based environmental degradation: A case of transport sector. Environ. Sci. Pollut. Res. 2019, 26, 32824–32835. [Google Scholar] [CrossRef]
- Takalkar, G.D.; Bhosale, R.R.; Kumar, A.; Almomani, F.; Khraisheh, M.A.M.; Shakoor, R.A.; Gupta, R.B. Transition metal doped ceria for solar thermochemical fuel production. Sol. Energy 2018, 172, 204–211. [Google Scholar] [CrossRef]
- International Energy Agency. Energy, Water & the Sustainability Development Goals, Excerpt from World Energy Outlook 2018. 2018, pp. 1–15. Available online: https://webstore.iea.org/download/direct/2459 (accessed on 12 August 2021).
- Franzluebbers, A.J. Cattle Grazing Effects on the Environment: Greenhouse Gas Emissions and Carbon Footprint. In Management Strategies for Sustainable Cattle Production in Southern Pastures; Elsevier: Amsterdam, The Netherlands, 2020; pp. 11–34. [Google Scholar]
- Almomani, F.; Judd, S.; Bhosale, R.R.; Shurair, M.; Aljaml, K.; Khraisheh, M. Intergraded wastewater treatment and carbon bio-fixation from flue gases using Spirulina platensis and mixed algal culture. Process Saf Environ Prot. 2019, 124, 240. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, F.; Ochieng, R.M. A review of solar chimney power technology. Renew. Sustain. Energy Rev. 2010, 14, 2315–2338. [Google Scholar] [CrossRef]
- Dhahri, A.; Omri, A. A review of solar chimney power generation technology. Int. J. Eng. Adv. Technol. 2013, 2, 1–17. [Google Scholar]
- Kasaeian, A.; Ghalamchi, M.; Ahmadi, M.H.; Ghalamchi, M. GMDH algorithm for modeling the outlet temperatures of a solar chimney based on the ambient temperature. Mech. Ind. 2017, 18, 216. [Google Scholar] [CrossRef]
- Ming, T.; Liu, W.; Xu, G. Analytical and numerical investigation of the solar chimney power plant systems. Int. J. Energy Res. 2006, 30, 861–873. [Google Scholar] [CrossRef]
- Schlaich, J. The solar chimney: Electricity from the Sun, Edition Axel Menges; Scientific Research: Stuttgart, Germany, 1995. [Google Scholar]
- Ghalamchi, M.; Kasaeian, A.; Ahmadi, M.H.; Ghalamchi, M. Evolving ICA and HGAPSO algorithms for prediction of outlet temperatures of constructed solar chimney. Int. J. Low-Carbon Technol. 2017, 12, 84–95. [Google Scholar] [CrossRef] [Green Version]
- Schlaich, J.; Bergermann, R.; Schiel, W.; Weinrebe, G. Sustainable electricity generation with solar updraft towers. Structural Eng. Int. J. Int. Assoc. Bridge Struct. Eng. 2004, 14, 225–229. [Google Scholar] [CrossRef]
- Tingzhen, M.; Wei, L.; Guoling, X.; Yanbin, X.; Xuhu, G.; Yuan, P. Numerical simulation of the solar chimney power plant systems coupled with turbine. Renew. Energy 2008, 33, 897–905. [Google Scholar] [CrossRef]
- Zou, Z.; He, S. Modeling and characteristics analysis of hybrid cooling-tower-solar-chimney system. Energy Convers. Manag. 2015, 95, 59–68. [Google Scholar] [CrossRef]
- Xu, Y.; Zhou, X. Performance of a modified solar chimney power plant for power generation and vegetation. Energy 2019, 171, 502–509. [Google Scholar] [CrossRef]
- Asayesh, M.; Kasaeian, A.; Ataei, A. Optimization of a combined solar chimney for desalination and power generation. Energy Convers. Manag. 2017, 150, 72–80. [Google Scholar] [CrossRef]
- Khan, M.A.M.; Rehman, S.; Al-sulaiman, F.A. A hybrid renewable energy system as a potential energy source for water desalination using reverse osmosis: A review. Renew. Sustain. Energy Rev. 2018, 97, 456–477. [Google Scholar] [CrossRef]
- Niroomand, N.; Amidpour, M. New combination of solar chimney for power generation and seawater desalination. Desalin. Water Treat. 2013, 51, 7401–7411. [Google Scholar] [CrossRef] [Green Version]
- Kiwan, S.; Salam, Q.I.A. Solar chimney power-water distillation plant (SCPWDP). Desalination 2018, 445, 105–114. [Google Scholar] [CrossRef]
- Ming, T.; de Richter, R.K.; Meng, F.; Pan, Y.; Liu, W. Chimney shape numerical study for solar chimney power generating systems. Int. J. Energy Res. 2013, 37, 310–322. [Google Scholar] [CrossRef]
- Chergui, T.; Larbi, S.; Bouhdjar, A. Thermo-hydrodynamic aspect analysis of flows in solar chimney power plants-A case study. Renew. Sustain. Energy Rev. 2010, 14, 1410–1418. [Google Scholar] [CrossRef]
- Pasumarthi, N.; Sherif, S.A. Experimental and theoretical performance of a demonstration solar chimney model-part I: Mathematical model development. Int. J. Energy Res. 1998, 22, 277–288. [Google Scholar] [CrossRef]
- Zuo, L.; Ding, L.; Chen, J.; Zhou, X.; Xu, B.; Liu, Z. Comprehensive study of wind supercharged solar chimney power plant combined with seawater desalination. Sol. Energy 2018, 166, 59–70. [Google Scholar] [CrossRef]
- Cao, F.; Ma, Q.; Zhao, L.; Guo, L. Design and simulation of a novel geothermalsolar combined chimney power plant. In Proceedings of the 26th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems (ECOS 2013), Guilin, China, 15–19 July 2013; Volume 84, pp. 186–195. [Google Scholar]
- Chergui, T.; Larbi, S.; Bouhdjar, A. Modelling and simulation of solar chimney power plant performances in southern region of Algeria. In Proceedings of the 2011 Fourth International Conference on Modeling, Simulation and Applied Optimization, Kuala Lumpur, Malaysia, 19–21 April 2011. [Google Scholar] [CrossRef]
- Kiwan, S.; Al-Nimr, M.; Salim, I. A hybrid solar chimney/photovoltaic thermal system for direct electric power production and water distillation. Sustain. Energy Technol. Assess. 2020, 38, 100680. [Google Scholar] [CrossRef]
- Okoye, C.O.; Atikol, U. A parametric study on the feasibility of solar chimney power plants in North Cyprus conditions. Energy Convers. Manag. 2014, 80, 178–187. [Google Scholar] [CrossRef]
- Mathur, J.; Mathur, S.; Anupma. Summer-performance of inclined roof solar chimney for natural ventilation. Energy Build. 2006, 38, 1156–1163. [Google Scholar] [CrossRef]
- Fluri, T.P.; von Backström, T.W. Performance analysis of the power conversion unit of a solar chimney power plant. Sol. Energy 2008, 82, 999–1008. [Google Scholar] [CrossRef]
- Miqdam, T.C.; Hussein, A.K. Basement kind effects on air temperature of a solar chimney in Baghdad-Iraq weather. Int. J. Appl. Sci. 2011, 2, 12–20. [Google Scholar] [CrossRef]
- Tingzhen, M.; Wei, L.; Yuan, P. Numerical Analysis of the Solar Chimney Power Plant with Energy Storage Layer. In ISES Solar World Congress 2007, ISES 2007; Springer: Berlin/Heidelberg, Germany, 2007; Volume 3, pp. 1800–1805. [Google Scholar] [CrossRef]
- Zuo, L.; Yuan, Y.; Li, Z.; Zheng, Y. Experimental research on solar chimneys integrated with seawater desalination under practical weather condition. Desalination 2012, 298, 22–33. [Google Scholar] [CrossRef]
- Tavakolinia, F. Wind-Chimney: Integrating the Principles of a Wind-Catcher and a Solar-Chimney to Provide Natural Ventilation. Master’s Thesis, California Polytechnic State University, San Luis Obispo, CA, USA, 2011; p. 48. Available online: http://digitalcommons.calpoly.edu/theses/678 (accessed on 18 June 2021).
- Zandian, A.; Ashjaee, M. The thermal efficiency improvement of a steam Rankine cycle by innovative design of a hybrid cooling tower and a solar chimney concept. Renew. Energy 2013, 51, 465–473. [Google Scholar] [CrossRef]
- Abdelsalam, E.; Kafiah, F.M.; Tawalbeh, M.; Almomani, F.; Azzam, A.R.; Alzoubi, I.; Alkasrawi, M. Performance analysis of hybrid solar chimney–power plant for power production and seawater desalination: A sustainable approach. Int. J. Energy Res. 2020, 45, 17327–17341. [Google Scholar] [CrossRef]
- Abdelmohimen, M.A.H.; Algarni, S.A. Numerical investigation of solar chimney power plants performance for Saudi Arabia weather conditions. Sustain. Cities Soc. 2018, 38, 1–8. [Google Scholar] [CrossRef]
- Okoye, C.O.; Taylan, O. Performance analysis of a solar chimney power plant for rural areas in Nigeria. Renew. Energy 2017, 104, 96–108. [Google Scholar] [CrossRef]
- El-Haroun, A.A. Performance Evaluation of Solar Chimney Power Plants in Egypt. 2012. Available online: www.ijopaasat.in (accessed on 26 November 2020).
- Sangi, R. Performance evaluation of solar chimney power plants in Iran. Renew. Sustain. Energy Rev. 2012, 16, 704–710. [Google Scholar] [CrossRef]
- Hamdan, M.O. Analysis of a solar chimney power plant in the Arabian Gulf region. Renew. Energy 2011, 36, 2593–2598. [Google Scholar] [CrossRef]
- Larbi, S.; Bouhdjar, A.; Chergui, T. Performance analysis of a solar chimney power plant in the southwestern region of Algeria. Renew. Sustain. Energy Rev. 2010, 14, 470–477. [Google Scholar] [CrossRef]
- Nizetic, S.; Ninic, N.; Klarin, B. Analysis and feasibility of implementing solar chimney power plants in the Mediterranean region. Energy 2008, 33, 1680–1690. [Google Scholar] [CrossRef]
- Guo, P.; Li, J.; Wang, Y. Annual performance analysis of the solar chimney power plant in Sinkiang, China. Energy Convers. Manag. 2014, 87, 392–399. [Google Scholar] [CrossRef]
- Ahmed, M.R.; Patel, S.K. Computational and experimental studies on solar chimney power plants for power generation in Pacific Island countries. Energy Convers. Manag. 2017, 149, 61–78. [Google Scholar] [CrossRef]
- Akhtar, Z.; Rao, K.V.S. Study of economic viability of 200 MW solar chimney power plant in Rajasthan, India. In Proceedings of the 2014 1st International Conference on non Conventional Energy (ICONCE 2014), Kalyani, India, 16–17 January 2014; pp. 84–88. [Google Scholar]
- Abdelsalam, E.; Kafiah, F.; Alkasrawi, M.; Al-Hinti, I.; Azzam, A. Economic Study of Solar Chimney Power-Water Distillation Plant (SCPWDP). Energies 2020, 13, 2789. [Google Scholar] [CrossRef]
- Zuo, L.; Zheng, Y.; Li, Z.; Sha, Y. Solar chimneys integrated with sea water desalination. Desalination 2011, 276, 207–213. [Google Scholar] [CrossRef]
- Larbi, S.; Bouhdjar, A.; Meliani, K.; Taghourt, A.; Semai, H. Solar chimney power plant with heat storage system performance analysis in South Region of Algeria. In Proceedings of the 2015 3rd International Renewable and Sustainable Energy Conference (IRSEC), Marrakech, Morocco, 10–13 December 2015; pp. 1–6. [Google Scholar]
- Asnaghi, A.; Ladjevardi, S.M. Solar chimney power plant performance in Iran. Renew. Sustain. Energy Rev. 2012, 16, 3383–3390. [Google Scholar] [CrossRef]
- Toghraie, D.; Karami, A.; Afrand, M.; Karimipour, A. Effects of geometric parameters on the performance of solar chimney power plants. Energy 2018, 162, 1052–1061. [Google Scholar] [CrossRef]
- Fujita, A.; Kurose, R.; Komori, S. Experimental study on effect of relative humidity on heat transfer of an evaporating water droplet in air flow. Int. J. Multiph. Flow 2010, 36, 244–247. [Google Scholar] [CrossRef]
- Ruberto, S.; Reutzsch, J.; Weigand, B. Experimental investigation of the evaporation rate of supercooled water droplets at constant temperature and varying relative humidity. Int. Commun. Heat Mass Transf. 2016, 77, 190–194. [Google Scholar] [CrossRef]
- Sakonidou, E.P.; Karapantsios, T.D.; Balouktsisa, A.I.; Chassapisa, D. Modeling of the optimum tilt of a solar chimney for maximum air flow. Solar Energy 2008, 82, 80–94. [Google Scholar] [CrossRef]
- Arcea, J.; Jiménez, M.J.; Guzmán, J.D.; Heras, M.R.; Alvarez, G.; Xamán, J. Experimental study for natural ventilation on a solar chimney. Renewable Energy 2009, 34, 2928–2934. [Google Scholar] [CrossRef]
- Al-Dabbas, M.A. A performance analysis of solar chimney thermal power systems. Therm. Sci. 2011, 15, 619–642. [Google Scholar] [CrossRef]
- Dehghani, S.; Mohammadi, A.H. Optimum dimension of geometric parameters of solar chimney power plants-A multi-objective optimization approach. Sol. Energy 2014, 105, 603–612. [Google Scholar] [CrossRef]
- Towler, G.; Sinnott, R. Chemical Engineering Design: Principles, Practice and Economics of Plant and Process Design; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
Aim of the Study | Reference(s) |
---|---|
Introduce a ventilation system using roof solar chimney | [27,28,29,30,31] |
Introduce multi turbo generators and power electronics | [29] |
Use different absorber materials and collector types | [32,33,34,35,36] |
Improve storing capabilities | [37,38] |
Integrate SCPP with PV system | [26] |
Insulate the surface of the collector to increase the power outcome and the process efficiency | [32] |
Combine the SCPP with a wind capture device to harvest wind energy at an elevated height | [39,40,41] |
Location | Contribution | Year | Reference |
---|---|---|---|
Saudi Arabia | Numerical study on the performance of SCPP. | 2018 | [36] |
Nigeria | Performance analysis of SCPP (power output, levelized cost of electricity (LCOE), and carbon emission predictions) seven regions. | 2017 | [37] |
Egypt | Performance assessment of electrical energy via SCPP in different locations of Egypt theoretically. | 2012 | [38] |
Iran | Performance evaluation, simulation, and optimization of different SCPP models in different locations across Iran. | 2012, 2012, 2017, 2014 | [39] |
Arabian Gulf region | A simplified thermodynamics model for steady airflow inside a solar chimney and evaluation of geometric parameters on power generation. | 2011 | [40] |
Algeria | Performance and CFD analysis of different SCPP models across regions in Algeria. | 2010, 2015, 2017 | [41] |
Mediterranean region | Analysis and feasibility of implementing solar chimney. | 2008 | [42] |
Cyprus | A parametric study on the feasibility of solar chimney. | 2014 | [27] |
China | Annual performance analysis of the solar chimney power plant in Sinkiang. Performance analysis of conventional and sloped solar chimney power plants in China. | 2014, 2013 | [43] |
Pacific Island Countries | Computational and experimental studies on power generation from SCPP in Pacific Island countries. | 2017 | [44] |
India | Study of economic viability of 200 MW SCPP. | 2014 | [45] |
Parameter | Dimension (m) |
---|---|
Collector Diameter | 250 |
Collector Entrance Height | 6 |
Chimney Height | 200 |
Chimney Diameter | 10 |
Depth of Seawater Pool | 0.03 |
Material | Transmissivity | Emissivity | Absorptivity |
---|---|---|---|
Glass | 0.90 | 0.90 | 0.05 |
Water | 0.90 | 0.95 | 0.05 |
Base | 0.95 | 0.95 | 0.95 |
Location | Annual Energy Production (kWh) | Daily Solar Irradiance Range (W/m2) | Design Parameters | Reference |
---|---|---|---|---|
Saudi Arabia | 660−765 | 715−765 | H: 195 m, h: 2 m D: 244 m, d: 10 m | [36] |
Nigeria | 602−738 | 840–860 | H: 150 m, h: 2.5 m D: 600 m, d: 10 m | [37] |
Egypt | 1.6−1.7 × 105 | 500−950 | H: 500 m, D: 3000 m, d: 50 m | [38] |
Iran | 13,000 to 26,000 | 450−750 | H: 350 m, D: 1000 m, | [39] |
Iran | 120,000–336,000 * | 450−750 | H: 200 m, h: 2 m D: 244 m, d: 10 m, | [49] |
Arabian Gulf region | +104,000 | 185−1250 | H: 500 m, D: 1000 m | [40] |
Algeria | 700–720 | 420−620 | H: 200 m, h: 2.5 m D: 500 m, d: 10 m, | [41] |
Mediterranean region | 5000–6200 * | 130−750 | H: 550 m, D: 1250 m, d: 82 m | [42] |
Cyprus | 945,000 | 120–700 | H: 750 m, h: 2.5 m D: 2900 m, d: 70 m | [27] |
China | 1,300,000 * | 200–1000 | H: 1000 m, D: 2750 m, d: 120 m, | [43] |
Pacific Island Countries | 560 | 608 | H: 100 m, h: 0.5 m D: 80 m, d: 2.5 m | [44] |
India | 2,600,000 * | - | [45] | |
Qatar | 633,125.9 | 125 to 850 | H: 200 m, h: 6 m, D: 250 m, d: 10 m | This study |
Month | Monthly Global Solar Irradiation (kWh/m2) | Electric Energy, SCPP (kWh) | Electric Energy, CT (kWh) | Electric Energy, HSCPP (kWh) SCPP & CT | Distilled Water (ton) |
---|---|---|---|---|---|
January | 185.944 | 29,515.89 | 0 | 29,515.89 | 8960.995 |
February | 175.847 | 28,347.98 | 0 | 28,347.98 | 10,243.77 |
March | 204.597 | 32,542.67 | 327.133 | 32,869.8 | 11,499.31 |
April | 206.499 | 32,119.36 | 824.2792 | 32,943.64 | 13,501.25 |
May | 234.531 | 35,510.46 | 39,262.42 | 74,772.87 | 13,339.45 |
June | 231.652 | 34,419.29 | 47,988.49 | 82,407.78 | 14,510.86 |
July | 231.961 | 34,129.4 | 50,792.73 | 84,922.13 | 14,816.74 |
August | 226.995 | 34,068.48 | 47,993.29 | 82,061.77 | 13,176.88 |
September | 212.239 | 31,472.88 | 51,265.52 | 82,738.4 | 11,412.38 |
October | 206.029 | 30,662.84 | 14,243.77 | 44,906.61 | 9558.005 |
November | 189.334 | 29,553.07 | 165.1956 | 29,718.26 | 9339.416 |
December | 173.411 | 27,920.79 | 0 | 27,920.79 | 9084.36 |
Total | 2479.04 | 380,263.1 | 252,862.8 | 633,125.9 | 139,443.4 |
Item | SCPP [48] | HSCPP |
---|---|---|
Electrical power production, (kWh/year) | 380,263 | 633,125 |
Fresh water production (metric tons/year) | 90,000 | 139,443 |
CO2 emission reduction (tons/year) | 294.4 | 617.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdelsalam, E.; Almomani, F.; Kafiah, F.; Almaitta, E.; Tawalbeh, M.; Khasawneh, A.; Habash, D.; Omar, A.; Alkasrawi, M. A New Sustainable and Novel Hybrid Solar Chimney Power Plant Design for Power Generation and Seawater Desalination. Sustainability 2021, 13, 12100. https://doi.org/10.3390/su132112100
Abdelsalam E, Almomani F, Kafiah F, Almaitta E, Tawalbeh M, Khasawneh A, Habash D, Omar A, Alkasrawi M. A New Sustainable and Novel Hybrid Solar Chimney Power Plant Design for Power Generation and Seawater Desalination. Sustainability. 2021; 13(21):12100. https://doi.org/10.3390/su132112100
Chicago/Turabian StyleAbdelsalam, Emad, Fares Almomani, Feras Kafiah, Eyad Almaitta, Muhammad Tawalbeh, Asma Khasawneh, Dareen Habash, Abdullah Omar, and Malek Alkasrawi. 2021. "A New Sustainable and Novel Hybrid Solar Chimney Power Plant Design for Power Generation and Seawater Desalination" Sustainability 13, no. 21: 12100. https://doi.org/10.3390/su132112100
APA StyleAbdelsalam, E., Almomani, F., Kafiah, F., Almaitta, E., Tawalbeh, M., Khasawneh, A., Habash, D., Omar, A., & Alkasrawi, M. (2021). A New Sustainable and Novel Hybrid Solar Chimney Power Plant Design for Power Generation and Seawater Desalination. Sustainability, 13(21), 12100. https://doi.org/10.3390/su132112100