Impacts of Temperature Trends and SPEI on Yields of Major Cereal Crops in the Gambia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Acquisition
2.3. Trend Analysis
2.4. Determination of Drought Severity Index
2.5. Climate–Crop Yield Relationship and Impact Analysis
3. Results
3.1. Observed Trends of Tmin, Tmax, and SPEI
3.2. Crop Yield Trends
3.3. Climate–Crop Yield Correlation
3.4. Impact of Historical Climate Trends on Yields
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Grassini, P.; Eskridge, K.M.; Cassman, K.G. Distinguishing between yield advances and yield plateaus in historical crop production trends. Nat. Commun. 2013, 4, 2918. [Google Scholar] [CrossRef] [PubMed]
- Lobell, D.B.; Schlenker, W.; Costa-Roberts, J. Climate trends and global crop production since 1980. Science 2011, 333, 616–620. [Google Scholar] [CrossRef] [Green Version]
- Peña-Gallardo, M.; Vicente-Serrano, S.M.; Quiring, S.; Svoboda, M.; Hannaford, J.; Tomas-Burguera, M.; Martín-Hernández, N.; Domínguez-Castro, F.; El Kenawy, A. Response of crop yield to different time-scales of drought in the United States: Spatio-temporal patterns and climatic and environmental drivers. Agric. For. Meteorol. 2019, 264, 40–55. [Google Scholar] [CrossRef] [Green Version]
- Intergovernmental Panel on Climate Change (IPCC). Climate change 2007: The physical science basis. S. Afr. Geogr. J. 2013, 92, 86–87. [Google Scholar] [CrossRef] [Green Version]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2014: Impacts, Adaptation, and Vulnerability; Impacts, Adaptation, and Vulnerability; Part A: Global and Sectoral Aspects; Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; p. 1132. [Google Scholar]
- Araya, A.; Hoogenboom, G.; Luedeling, E.; Hadgu, K.M.; Kisekka, I.; Martorano, L.G. Assessment of maize growth and yield using crop models under present and future climate in southwestern Ethiopia. Agric. For. Meteorol. 2015, 214–215, 252–265. [Google Scholar] [CrossRef]
- Gammans, M.; Mérel, P.; Ortiz-Bobea, A. Negative impacts of climate change on cereal yields: Statistical evidence from France. Environ. Res. Lett. 2017, 12, 054007. [Google Scholar] [CrossRef]
- Hansen, J.; Ruedy, R.; Sato, M.; Lo, K. Global surface temperature change. Rev. Geophys. 2010, 48, 1–29. [Google Scholar] [CrossRef] [Green Version]
- Zewdie, A. Impacts of Climate Change on Food Security: A Literature Review in Sub Saharan Africa. J. Earth Sci. Clim. Change 2014, 5, 8–11. [Google Scholar] [CrossRef]
- Mesike, C.S.; Esekhade, T.U. Rainfall variability and rubber production in Nigeria. Afr. J. Environ. Sci. Technol. 2014, 8, 54–57. [Google Scholar] [CrossRef]
- Vogel, E.; Donat, M.G.; Alexander, L.V.; Meinshausen, M.; Ray, D.K.; Karoly, D.; Meinshausen, N.; Frieler, K. The effects of climate extremes on global agricultural yields. Environ. Res. Lett. 2019, 14, 054010. [Google Scholar] [CrossRef]
- Nkemelang, T.; New, M.; Zaroug, M. Temperature and precipitation extremes under current, 1.5 °C and 2.0 °C global warming above pre-industrial levels over Botswana, and implications for climate change vulnerability. Environ. Res. Lett. 2018, 13, 065016. [Google Scholar] [CrossRef] [Green Version]
- Adamgbe, E.M.; Ujoh, F. Effect of Variability in Rainfall Characteristics on Maize Yield in Gboko, Nigeria. J. Environ. Prot. 2013, 04, 881–887. [Google Scholar] [CrossRef] [Green Version]
- Yamusa, A.M.; Abubakar, I.U.; Falaki, A.M. Rainfall variability and crop production in the North- western semi-arid zone of Nigeria. J. Soil Sci. Environ. Manag. 2015, 6, 125–131. [Google Scholar] [CrossRef]
- Ahmed, M.; Hassan, F.U.; Aslam, M.A.; Akram, M.N.; Akmal, M. Regression model for the study of sole and cumulative effect of temperature and solar radiation on wheat yield. Afr. J. Biotechnol. 2011, 10, 9114–9121. [Google Scholar] [CrossRef] [Green Version]
- Ramirez-Villegas, J.; Thornton, P.K. Climate Change Impacts on African Crop Production; CCAFS Working Paper No. 119; CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS): Copenhagen, Denmark, 2015; pp. 1–27. [Google Scholar]
- Cairns, J.E.; Sonder, K.; Zaidi, P.H.; Verhulst, N.; Mahuku, G.; Babu, R.; Nair, S.K.; Das, B.; Govaerts, B.; Vinayan, M.T.; et al. Maize production in a changing climate. impacts, adaptation, and mitigation strategies. Adv. Agron. 2012, 114, 1–58. [Google Scholar] [CrossRef]
- Byakatonda, J.; Parida, B.P.; Kenabatho, P.K.; Moalafhi, D.B. Influence of climate variability and length of rainy season on crop yields in semiarid Botswana. Agric. For. Meteorol. 2018, 248, 130–144. [Google Scholar] [CrossRef]
- World Bank. The Gambia Agriculture Engagement Note: Fostering Agriculture-Led Inclusive Growth; World Bank: Washington, DC, USA, 2019; pp. 1–51. [Google Scholar]
- Sanneh, E.S.; Hu, A.H.; Hsu, C.W.; Njie, M. Prioritization of climate change adaptation approaches in the Gambia. Mitig. Adapt. Strateg. Glob. Chang. 2014, 19, 1163–1178. [Google Scholar] [CrossRef]
- Jaiteh, M.S. Climate Change and Development in the Gambia Challenges to Ecosystem Goods and Services; Center for International Earth Science Information Network (CIESIN): Kanifing, Gambia, 2011; pp. 1–57. [Google Scholar]
- Loum, A.; Fogarassy, C. The effects of climate change on cereals yield of production and food security in Gambia. Appl. Stud. Agribus. Commer. 2015, 9, 83–92. [Google Scholar] [CrossRef]
- Serdeczny, O.; Adams, S.; Baarsch, F.; Coumou, D.; Robinson, A.; Hare, W.; Schaeffer, M.; Perrette, M.; Reinhardt, J. Climate change impacts in Sub-Saharan Africa: From physical changes to their social repercussions. Reg. Environ. Chang. 2017, 17, 1585–1600. [Google Scholar] [CrossRef]
- Omoyo, N.N.; Wakhungu, J.; Oteng’i, S. Effects of climate variability on maize yield in the arid and semi arid lands of lower eastern Kenya. Agric. Food Secur. 2015, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Hu, H.; Tan, Y.; Yang, G.; Zhu, P.; Jiang, B. Quantifying the impacts of climate variability and human interventions on crop production and food security in the Yangtze River Basin, China, 1990–2015. Sci. Total Environ. 2019, 665, 379–389. [Google Scholar] [CrossRef] [PubMed]
- Najafi, E.; Pal, I.; Khanbilvardi, R. Climate drives variability and joint variability of global crop yields. Sci. Total Environ. 2019, 662, 361–372. [Google Scholar] [CrossRef]
- Bhatt, D.; Maskey, S.; Babel, M.S.; Uhlenbrook, S.; Prasad, K.C. Climate trends and impacts on crop production in the Koshi River basin of Nepal. Reg. Environ. Chang. 2014, 14, 1291–1301. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Takahashi, T.; Suzuki, N.; Kaiser, H.M. The impact of climate change on maize yields in the United States and China. Agric. Syst. 2011, 104, 348–353. [Google Scholar] [CrossRef]
- Nicholls, N. Increased Australian wheat yield due to recent climate trends. Nature 1997, 387, 484–485. [Google Scholar] [CrossRef]
- Tao, F.; Yokozawa, M.; Liu, J.; Zhang, Z. Climate-crop yield relationships at provincial scales in China and the impacts of recent climate trends. Clim. Res. 2008, 38, 83–94. [Google Scholar] [CrossRef]
- Lobell, D.B.; Bänziger, M.; Magorokosho, C.; Vivek, B. Nonlinear heat effects on African maize as evidenced by historical yield trials. Nat. Clim. Chang. 2011, 1, 42–45. [Google Scholar] [CrossRef]
- Wei, T.; Cherry, T.L.; Glomrød, S.; Zhang, T. Climate change impacts on crop yield: Evidence from China. Sci. Total Environ. 2014, 499, 133–140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Intergovernmental Panel on Climate Change (IPCC). Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation; A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change. Cambridge University Press: Cambridge, UK; New York, NY, USA, 2012; p. 582. [Google Scholar]
- Leng, G.; Tang, Q.; Rayburg, S. Climate change impacts on meteorological, agricultural and hydrological droughts in China. Glob. Planet. Change 2015, 126, 23–34. [Google Scholar] [CrossRef]
- Zampieri, M.; Ceglar, A.; Dentener, F.; Toreti, A. Wheat yield loss attributable to heat waves, drought and water excess at the global, national and subnational scales. Environ. Res. Lett. 2017, 12, 064008. [Google Scholar] [CrossRef]
- Tubiello, F.N.; Soussana, J.-F.; Howden, S. Crop and pasture response to climate change. Proc. Natl. Acad. Sci. USA 2007, 104, 19686–19690. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rowhani, P.; Lobell, D.B.; Linderman, M.; Ramankutty, N. Climate variability and crop production in Tanzania. Agric. For. Meteorol. 2011, 151, 449–460. [Google Scholar] [CrossRef]
- Shi, W.; Tao, F. Vulnerability of African maize yield to climate change and variability during 1961–2010. Food Secur. 2014, 6, 471–481. [Google Scholar] [CrossRef]
- Miyan, M.A. Droughts in asian least developed countries: Vulnerability and sustainability. Weather Clim. Extrem. 2015, 7, 8–23. [Google Scholar] [CrossRef] [Green Version]
- Palmer, W.C. Meteorological Drought. U.S. Weather Bur. Res. Pap. 1965, 45, 58. [Google Scholar]
- McKee, T.B.; Doesken, N.J.; Kleist, J. The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference on Applied Climatology, Boston, MA, USA, 17–22 January 1993; pp. 179–184. [Google Scholar]
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef] [Green Version]
- Potopová, V.; Štěpánek, P.; Možný, M.; Türkott, L.; Soukup, J. Performance of the standardised precipitation evapotranspiration index at various lags for agricultural drought risk assessment in the Czech Republic. Agric. For. Meteorol. 2015, 202, 26–38. [Google Scholar] [CrossRef]
- Lu, J.; Carbone, G.J.; Gao, P. Detrending crop yield data for spatial visualization of drought impacts in the United States, 1895–2014. Agric. For. Meteorol. 2017, 237–238, 196–208. [Google Scholar] [CrossRef]
- Wang, Q.; Wu, J.; Li, X.; Zhou, H.; Yang, J.; Geng, G.; An, X.; Liu, L.; Tang, Z. A comprehensively quantitative method of evaluating the impact of drought on crop yield using daily multi-scale SPEI and crop growth process model. Int. J. Biometeorol. 2017, 61, 685–699. [Google Scholar] [CrossRef]
- International Fund for Agricultural Development (IFAD). (The) Resilience of Organizations for Transformative Smallholder Agriculture Programme: Project Design Report; International Fund for Agricultural Development (IFAD): Rome, Italy, 2019; pp. 1–377. [Google Scholar]
- Yaffa, S. Loss and Damage from Drought in the North Bank Region of The Gambia. In Loss and Damage in Vulnerable Countries Initiative, Case Study Report; United Nations University Institute for Environment and Human Security: Bonn, Germany, 2013; pp. 1–44. [Google Scholar]
- Kutir, C. Farmers Awareness and Response to Climate Change: A Case Study of the North Bank Region, The Gambia. J. Econ. Sustain. Dev. 2015, 6, 32–41. [Google Scholar]
- Bagagnan, A.R.; Ouedraogo, I.; Fonta, W.M. Perceived climate variability and farm level adaptation in the Central River Region of The Gambia. Atmosphere 2019, 10, 423. [Google Scholar] [CrossRef] [Green Version]
- Food and Agriculture Organization of the United Nations (FAO); International Crops Research Institute for the Semi-Arid Tropics (ICRISAT); International Center for Tropical Agriculture (CIAT). Climate-Smart Agriculture in the Gambia; CSA Country Profiles for Africa Series; International Center for Tropical Agriculture (CIAT): Rome, Italy; International Crops Research Institute for the Semi-Arid Tropics (ICRISAT): Hyderabad, India; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2018; pp. 1–26. [Google Scholar]
- International Fund for Agricultural Development (IFAD). Republic of The Gambia: Country Strategic Opportunities Programme 2019–2024; Note to Executive Board Representatives Focal points: Executive Board-126th Session; International Fund for Agricultural Development (IFAD): Rome, Italy, 2019; pp. 1–66. [Google Scholar]
- Government of The Gambia. The Gambia Annual Climate Report; Government of The Gambia: Banjul, Gambia, 2018; pp. 1–45. [Google Scholar]
- Wagner, A.; Hermelin, B.; Bruyeron, O.; Alby-Flores, V.; Faivre-Dupaigre, B.; Kaboré, C.; Ficini, C. Food Security Profile, The Gambia; CSAO-CILSS: Banjul, Gambia, 2008. [Google Scholar]
- R Core Team. A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019. [Google Scholar]
- Gourdji, S.; Läderach, P.; Valle, A.M.; Martinez, C.Z.; Lobell, D.B. Historical climate trends, deforestation, and maize and bean yields in Nicaragua. Agric. For. Meteorol. 2015, 200, 270–281. [Google Scholar] [CrossRef] [Green Version]
- Etana, D.; Snelder, D.J.R.M.; van Wesenbeeck, C.F.A. Trends of Climate Change and Variability in Three Agro-Ecological Settings in Central Ethiopia: Contrasts of Meteorological Data and Farmers’ Perceptions. Climate 2020, 8, 121. [Google Scholar] [CrossRef]
- Hargreaves, B.G.H. Reference evapotranspiration. J. Irrig. Drain. Eng. 1994, 120, 1132–1139. [Google Scholar] [CrossRef]
- Venkataraman, K.; Nelson, M.; Frandsen, C. Comparison of Two Temperature-Based Methods of Estimating Potential Evapotranspiration (PET) in Texas. In Proceedings of the World Environmental and Water Resources Congress 2016: Hydraulics and Waterways and Hydro-Climate/Climate Change, West Palm Beach, FL, USA, 22–26 May 2016; pp. 699–708. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotraspiration Guidelines for Computing Crop Water Requirements; Food and Agriculture Organization of the United Nations: Rome, Italy, 1998; ISBN 9251042195. [Google Scholar]
- Fu, J.; Niu, J.; Kang, S.; Adeloye, A.J.; Du, T. Crop production in the Hexi Corridor challenged by future climate change. J. Hydrol. 2019, 579, 124197. [Google Scholar] [CrossRef]
- Beguería, S.; Vicente-Serrano, S.M.; Reig, F.; Latorre, B. Standardized Precipitation Evapotranspiration Index (SPEI) revisited: Parameter fitting, evapotranspiration models, tools, datasets and drought monitoring. Int. J. Climatol. 2014, 34, 1–48. [Google Scholar] [CrossRef] [Green Version]
- Potopová, V.; Boroneanţ, C.; Boincean, B.; Soukup, J. Impact of agricultural drought on main crop yields in the Republic of Moldova. Int. J. Climatol. 2016, 36, 2063–2082. [Google Scholar] [CrossRef] [Green Version]
- Begueria, S.; Serrano, V.; Sawasawa, H. SPEI: Calculation of Standardised Precipitation-Evapotranspiration index. R Package Version 1.7. 2017, 16. [Google Scholar] [CrossRef] [Green Version]
- Masupha, T.E.; Moeletsi, M.E. Use of standardized precipitation evapotranspiration index to investigate drought relative to maize, in the Luvuvhu River catchment area, South Africa. Phys. Chem. Earth 2017, 102, 1–9. [Google Scholar] [CrossRef]
- Tian, L.; Yuan, S.; Quiring, S.M. Evaluation of six indices for monitoring agricultural drought in the south-central United States. Agric. For. Meteorol. 2018, 249, 107–119. [Google Scholar] [CrossRef]
- Tan, C.; Yang, J.; Li, M. Temporal-spatial variation of drought indicated by SPI and SPEI in Ningxia Hui Autonomous Region, China. Atmosphere 2015, 6, 1399–1421. [Google Scholar] [CrossRef] [Green Version]
- Karunaratne, A.S.; Wheeler, T. Observed relationships between maize yield and climate in Sri Lanka. Agron. J. 2015, 107, 395–405. [Google Scholar] [CrossRef]
- Tunde, A.M.; Usman, B.A.; Olawepo, V.O. Effects of climatic variables on crop production in Patigi L. G. A., Kwara State, Nigeria. J. Geogr. Reg. Plan. 2011, 4, 695–700. [Google Scholar]
- Alemayehu, A.; Bewket, W. Local climate variability and crop production in the central highlands of Ethiopia. Environ. Dev. 2016, 19, 36–48. [Google Scholar] [CrossRef]
- Poudel, S.; Shaw, R. The relationships between climate variability and crop yield in a mountainous environment: A case study in Lamjung District, Nepal. Climate 2016, 4. [Google Scholar] [CrossRef] [Green Version]
- Prabnakorn, S.; Maskey, S.; Suryadi, F.X.; de Fraiture, C. Rice yield in response to climate trends and drought index in the Mun River Basin, Thailand. Sci. Total Environ. 2018, 621, 108–119. [Google Scholar] [CrossRef]
- Shiru, M.S.; Shahid, S.; Dewan, A.; Chung, E.S.; Alias, N.; Ahmed, K.; Hassan, Q.K. Projection of meteorological droughts in Nigeria during growing seasons under climate change scenarios. Sci. Rep. 2020, 10, 1–18. [Google Scholar] [CrossRef]
- Ahammed, S.J.; Homsi, R.; Khan, N.; Shahid, S.; Shiru, M.S.; Mohsenipour, M.; Ahmed, K.; Nawaz, N.; Alias, N.E.; Yuzir, A. Assessment of changing pattern of crop water stress in Bangladesh. Environ. Dev. Sustain. 2020, 22, 4619–4637. [Google Scholar] [CrossRef]
- Sediqi, M.N.; Shiru, M.S.; Nashwan, M.S.; Ali, R.; Abubaker, S.; Wang, X.; Ahmed, K.; Shahid, S.; Asaduzzaman, M.; Manawi, S.M.A. Spatio-temporal pattern in the changes in availability and sustainability ofwater resources in Afghanistan. Sustainability 2019, 11, 5836. [Google Scholar] [CrossRef] [Green Version]
- Cao, Y.; Chen, S.; Wang, L.; Zhu, B.; Lu, T.; Yu, Y. An agricultural drought index for assessing droughts using awater balance method: A case study in Jilin Province, Northeast China. Remote Sens. 2019, 11, 66. [Google Scholar] [CrossRef] [Green Version]
- Adhikari, U.; Nejadhashemi, A.P.; Woznicki, S. Climate change and eastern Africa: A review of impact on major crops. Food Energy Secur. 2015, 4, 110–132. [Google Scholar] [CrossRef]
- Zhou, L.; Dickinson, R.E.; Tian, Y.; Fang, J.; Li, Q.; Kaufmann, R.K.; Tucker, C.J.; Myneni, R.B. Evidence for a significant urbanization effect on climate in China. Proc. Natl. Acad. Sci. USA 2004, 101, 9540–9544. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Padma Kumari, B.; Londhe, A.L.; Daniel, S.; Jadhav, D.B. Observational evidence of solar dimming: Offsetting surface warming over India. Geophys. Res. Lett. 2007, 34, 1–5. [Google Scholar] [CrossRef]
- Yaro, J.A.; Hesselberg, J. Adaptation to Climate Change and Variability in Rural West Africa; Yaro, J.A., Hesselberg, J., Eds.; Springer International Publishing: Cham, Switzerland, 2016; ISBN 978-3-319-31497-6. [Google Scholar]
- Roudier, P.; Sultan, B.; Quirion, P.; Berg, A. The impact of future climate change on West African crop yields: What does the recent literature say? Glob. Environ. Chang. 2011, 21, 1073–1083. [Google Scholar] [CrossRef] [Green Version]
- Lloyd-Hughes, B. A spatio-temporal structure-based approach to drought characterisation. Int. J. Climatol. 2012, 32, 406–418. [Google Scholar] [CrossRef] [Green Version]
- Vondou, D.A.; Guenang, G.M.; Djiotang, T.L.A.; Kamsu-Tamo, P.H. Article trends and interannual variability of extreme rainfall indices over Cameroon. Sustainability 2021, 13, 1–12. [Google Scholar] [CrossRef]
- Hamal, K.; Sharma, S.; Khadka, N.; Haile, G.G.; Joshi, B.B.; Xu, T.; Dawadi, B. Assessment of drought impacts on crop yields across Nepal during 1987–2017. Meteorol. Appl. 2020, 27, 1–18. [Google Scholar] [CrossRef]
- Tao, H.; Borth, H.; Fraedrich, K.; Su, B.; Zhu, X. Drought and wetness variability in the Tarim River Basin and connection to large-scale atmospheric circulation. Int. J. Climatol. 2014, 34, 2678–2684. [Google Scholar] [CrossRef]
- Haile, G.G.; Tang, Q.; Leng, G.; Jia, G.; Wang, J.; Cai, D.; Sun, S.; Baniya, B.; Zhang, Q. Long-term spatiotemporal variation of drought patterns over the Greater Horn of Africa. Sci. Total Environ. 2020, 704, 135299. [Google Scholar] [CrossRef]
- Panthou, G.; Vischel, T.; Lebel, T. Recent trends in the regime of extreme rainfall in the Central Sahel. Int. J. Climatol. 2014, 34, 3998–4006. [Google Scholar] [CrossRef]
- Reay, D.; Sabine, C.; Smith, P.; Hymus, G. Spring-time for sinks. Nature 2007, 446, 727–728. [Google Scholar] [CrossRef]
- Kukal, M.S.; Irmak, S. Climate-Driven Crop Yield and Yield Variability and Climate Change Impacts on the U.S. Great Plains Agricultural Production. Sci. Rep. 2018, 8, 3450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Urban Market Assessment in The Gambia A feasibility study on cash and vouchers September 2011 Table of Contents List of Acronyms Acknowledgments. 2011. Available online: https://reliefweb.int/report/gambia/urban-market-assessment-gambia-feasibility-study-cash-and-vouchers (accessed on 20 October 2021).
- Gibba, A. The Competitiveness of Gambia’s Agricultural Products in International Trade: An Incentive for Economic Progress. Ph.D. Thesis, Doctoral School of Management and Business Administration Sciences, Szent Istvan University, Godollo, Hungary, 2017. [Google Scholar]
- Niang, I.; Ruppel, O.C.; Abdrabo, M.A.; Essel, A.; Lennard, C.; Padgham, J.; Urquhart, P. Africa. In Climate Change 2014 Impacts, Adaptation and Vulnerability; Part B Reg. Asp. Work. Gr. II Contrib. to Fifth Assess. Rep. Intergov. Panel Clim. Chang.: Cambridge University Press: Cambridge, UK, 2015; pp. 1199–1266. [Google Scholar] [CrossRef]
- Traore, B.; Corbeels, M.; van Wijk, M.T.; Rufino, M.C.; Giller, K.E. Effects of climate variability and climate change on crop production in southern Mali. Eur. J. Agron. 2013, 49, 115–125. [Google Scholar] [CrossRef]
- Mumo, L.; Yu, J.; Fang, K. Assessing Impacts of Seasonal Climate Variability on Maize Yield in Kenya. Int. J. Plant Prod. 2018, 12, 297–307. [Google Scholar] [CrossRef]
- Liu, X.; Pan, Y.; Zhu, X.; Yang, T.; Bai, J.; Sun, Z. Drought evolution and its impact on the crop yield in the North China Plain. J. Hydrol. 2018, 564, 984–996. [Google Scholar] [CrossRef]
- Leng, G.; Huang, M. Crop yield response to climate change varies with crop spatial distribution pattern. Sci. Rep. 2017, 7, 1463. [Google Scholar] [CrossRef] [PubMed]
- Kotir, J.H. Climate change and variability in Sub-Saharan Africa: A review of current and future trends and impacts on agriculture and food security. Environ. Dev. Sustain. 2011, 13, 587–605. [Google Scholar] [CrossRef]
- Lobell, D.B.; Field, C.B. Global scale climate-crop yield relationships and the impacts of recent warming. Environ. Res. Lett. 2007, 2, 2. [Google Scholar] [CrossRef]
- Matiu, M.; Ankerst, D.; Menzel, A. Interactions between temperature and drought in global and regional crop yield variability during 1961–2014. PLoS ONE 2017, 12, e0178339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bapuji Rao, B.; Santhibhushan Chowdary, P.; Sandeep, V.M.; Rao, V.U.M.; Venkateswarlu, B. Rising minimum temperature trends over India in recent decades: Implications for agricultural production. Glob. Planet. Chang. 2014, 117, 1–8. [Google Scholar] [CrossRef]
- Waha, K.; Müller, C.; Rolinski, S. Separate and combined effects of temperature and precipitation change on maize yields in sub-Saharan Africa for mid- to late-21st century. Glob. Planet. Chang. 2013, 106, 1–12. [Google Scholar] [CrossRef]
- Ahmed, K.F.; Wang, G.; Yu, M.; Koo, J.; You, L. Potential impact of climate change on cereal crop yield in West Africa. Clim. Chang. 2015, 133, 321–334. [Google Scholar] [CrossRef]
SPEI Value | SPEI Classification |
---|---|
≥2.00 | Extreme wet (EW) |
1.50 to 1.99 | Severe wet (SW) |
1.49 to 1.00 | Moderate wet (MW) |
0.99 to −0.99 | Normal (N) |
−1.00 to −1.49 | Moderate drought (MD) |
−1.50 to −1.99 | Severe drought (SD) |
≤−2.00 | Extreme drought (ED) |
Tmin | Tmax | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Jun | Jul | Aug. | Sep. | Oct. | Mean | Jun | Jul | Aug. | Sep. | Oct. | Mean | |
S. Guinean | 0.025 | 0.018 | −0.006 | 0.018 | 0.029 * | 0.017 | 0.003 | 0.027 | 0.006 | 0.005 | 0.010 | 0.014 |
S. Sahelian | 0.00 | 0.00 | 0.018 ** | 0.015 * | 0.038 ** | 0.019 * | 0.033 | 0.00 | 0.011 | −0.007 | 0.01 | 0.011 |
Sahelian | 0.008 | 0.006 | 0.000 | 0.016 | 0.017 | 0.010 | 0.041 | 0.025 | −0.023 | −0.018 | 0.013 | 0.010 |
SPEI-1 | SPEI-3 | |||||||||||
Jun | Jul | Aug. | Sep. | Oct. | Mean | Jun | Jul | Aug. | Sep. | Oct. | Mean | |
S. Guinean | 0.011 | 0.004 | 0.036 | 0.013 | 0.008 | 0.013 | 0.003 | 0.009 | 0.025 | 0.029 | 0.036 | 0.021 |
S. Sahelian | −0.003 | 0.029 | 0.049 ** | 0.061 ** | 0.006 | 0.029 * | −0.011 | 0.017 | 0.066 ** | 0.055 ** | 0.047 | 0.034 * |
Sahelian | −0.015 | 0.021 | 0.032 | 0.038 * | −0.008 | 0.010 | −0.016 | 0.016 | 0.037 | 0.042 | 0.034 | 0.021 |
Category | SPEI-1 | SPEI-3 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
S. Guinean | S. Sahelian | Sahelian | S. Guinean | S. Sahelian | Sahelian | |||||||
F | P | F | P | F | P | F | P | F | P | F | P | |
Extreme drought | 1 | 0.006 | 5 | 0.033 | 2 | 0.013 | 5 | 0.033 | 0 | 0.00 | 2 | 0.013 |
Severe drought | 11 | 0.073 | 4 | 0.026 | 3 | 0.02 | 7 | 0.047 | 5 | 0.033 | 5 | 0.033 |
Moderate drought | 18 | 0.12 | 21 | 0.14 | 20 | 0.133 | 13 | 0.086 | 25 | 0.167 | 20 | 0.133 |
Extreme wet | 4 | 0.026 | 2 | 0.013 | 1 | 0.006 | 3 | 0.02 | 2 | 0.013 | 2 | 0.013 |
Severe wet | 3 | 0.020 | 4 | 0.026 | 8 | 0.053 | 8 | 0.053 | 5 | 0.033 | 7 | 0.047 |
Moderate wet | 15 | 0.10 | 18 | 0.12 | 24 | 0.16 | 13 | 0.086 | 22 | 0.147 | 21 | 0.14 |
Normal | 98 | 0.653 | 96 | 0.64 | 92 | 0.613 | 101 | 0.67 | 91 | 0.606 | 93 | 0.62 |
Sorghum | Millet | Maize | Rice | ||||||
---|---|---|---|---|---|---|---|---|---|
Estimate | Sig. | Estimate | Sig. | Estimate | Sig. | Estimate | Sig. | ||
Intercept | 1.57 | −4.86 | −2.843 | −13.1 | |||||
S. Guinean | SPEI−1 | 168.25 | 0.04 * | 72.88 | 0.38 | 108.52 | 0.08 | 93.8 | 0.18 |
Tmin | 6.35 | 0.95 | 162.26 | 0.11 | −72.98 | 0.32 | −168.98 | 0.06 | |
Tmax | 16.37 | 0.89 | −233.3 | 0.07 | −74.148 | 0.42 | 28.6 | 0.78 | |
R2 | 0.2 | 0.26 | 0.32 | 0.27 | |||||
Sig. | 0.13 | 0.05 * | 0.021 * | 0.046 * | |||||
Intercept | 6.763 | −7.53 | −17.6 | −11.357 | |||||
S. Sahelian | SPEI-1 | 44.9 | 0.21 | 72.32 | 0.05 * | 155.5 | 0.002 ** | 96.67 | 0.015 * |
Tmin | −235.68 | 0.027 * | −48.05 | 0.63 | −57.7 | 0.67 | −8.85 | 0.93 | |
Tmax | −167.07 | 0.03 * | −89.54 | 0.23 | −34.21 | 0.72 | −142.97 | 0.07 | |
R2 | 0.44 | 0.29 | 0.38 | 0.41 | |||||
Sig. | 0.001 ** | 0.032 * | 0.007 ** | 0.004 ** | |||||
Intercept | −1.798 | −6.68 | −23.96 | −29.3 | |||||
Sahelian | SPEI-1 | 297.98 | 0.004 ** | 190.7 | 0.016 * | 424.76 | 0.00 ** | 377.49 | 0.03 * |
Tmin | −37.338 | 0.73 | 80.517 | 0.34 | −208.32 | 0.03 * | −456.92 | 0.02 * | |
Tmax | −43.95 | 0.51 | −65.1 | 0.22 | 58.91 | 0.31 | 59.06 | 0.61 | |
R2 | 0.39 | 0.32 | 0.62 | 0.38 | |||||
Sig. | 0.006 ** | 0.02 * | 0.000 ** | 0.006 ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jabbi, F.F.; Li, Y.; Zhang, T.; Bin, W.; Hassan, W.; Songcai, Y. Impacts of Temperature Trends and SPEI on Yields of Major Cereal Crops in the Gambia. Sustainability 2021, 13, 12480. https://doi.org/10.3390/su132212480
Jabbi FF, Li Y, Zhang T, Bin W, Hassan W, Songcai Y. Impacts of Temperature Trends and SPEI on Yields of Major Cereal Crops in the Gambia. Sustainability. 2021; 13(22):12480. https://doi.org/10.3390/su132212480
Chicago/Turabian StyleJabbi, Fanta F., Yu’e Li, Tianyi Zhang, Wang Bin, Waseem Hassan, and You Songcai. 2021. "Impacts of Temperature Trends and SPEI on Yields of Major Cereal Crops in the Gambia" Sustainability 13, no. 22: 12480. https://doi.org/10.3390/su132212480
APA StyleJabbi, F. F., Li, Y., Zhang, T., Bin, W., Hassan, W., & Songcai, Y. (2021). Impacts of Temperature Trends and SPEI on Yields of Major Cereal Crops in the Gambia. Sustainability, 13(22), 12480. https://doi.org/10.3390/su132212480