Quantifying National-Scale Changes in Agricultural Land Exposure to Fluvial Flooding
Abstract
:1. Introduction
2. Agriculture and Flood Hazards
2.1. Regional Setting
2.2. Flood Hazard Mapping
3. Methods
3.1. National Flood Hazard Zone Map
3.2. Land-Use and Carbon Analysis System (LUCAS) Mapping
3.3. Exposure Analysis
4. Results
4.1. National Agricultural Land Exposure in FHZs
4.2. Regional Exposure
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- MFE. Meeting the Challenges of Future Flooding in New Zealand; Ministry for the Environment: Wellington, New Zealand, 2008; pp. 1–54.
- Smart, G.M.; McKerchar, A.I. More flood disasters in New Zealand. J. Hydrol. 2010, 49, 69–78. [Google Scholar]
- Smith, W.; Davies-Colley, C.; Mackay, A.; Bankoff, G. Social impact of the 2004 Manawatu floods and the ‘hollowing out’of rural New Zealand. Disasters 2011, 35, 540–553. [Google Scholar] [CrossRef] [PubMed]
- Wild, A.; Wilson, T.; Bebbington, M.; Cole, J.; Craig, H. Probabilistic volcanic impact assessment and cost-benefit analysis on network infrastructure for secondary evacuation of farm livestock: A case study from the dairy industry, Taranaki, New Zealand. J. Volcanol. Geoth. Res. 2019, 387, 106670. [Google Scholar] [CrossRef]
- Cradock-Henry, N.A.; Flood, S.; Buelow, F.; Blackett, P.; Wreford, A. Adaptation knowledge for New Zealand’s primary industries: Known, not known and needed. Clim. Risk Manag. 2019, 25, 100190. [Google Scholar] [CrossRef]
- Manning, M.; Lawrence, J.; King, D.N.; Chapman, R. Dealing with changing risks: A New Zealand perspective on climate change adaptation. Reg. Environ. Chang. 2015, 15, 581–594. [Google Scholar] [CrossRef]
- UNDRR. Terminology—Resilience. Available online: https://www.undrr.org/terminology/resilience (accessed on 4 June 2021).
- Jha, A.; Lamond, J.; Bloch, R.; Bhattacharya, N.; Lopez, A.; Papachristodoulou, N.; Bird, A.; Proverbs, D.; Davies, J.; Barker, R. Five Feet High and Rising: Cities and Flooding in the 21st Century; The World Bank: Washington, DC, USA, 2011. [Google Scholar]
- Paulik, R.; Crowley, K.; Cradock-Henry, N.; Wilson, T.; McSporran, A. Flood impacts on dairy farms in the bay of Plenty region, New Zealand. Climate 2021, 9, 30. [Google Scholar] [CrossRef]
- Morris, J.; Brewin, P. The impact of seasonal flooding on agriculture: The spring 2012 floods in Somerset, England. J. Flood Risk Manag. 2014, 7, 128–140. [Google Scholar] [CrossRef]
- Nicholls, R.; Wilson, T. Integrated impacts on coastal areas and river flooding. In Regional Climate Change Impact and Response Studies in East. Anglia and North. West. England (RegIS); Climate Impacts Programme (UKCIP): Oxford, UK, 2001; pp. 54–103. [Google Scholar]
- Chau, V.N.; Holland, J.; Cassells, S.; Tuohy, M. Using GIS to map impacts upon agriculture from extreme floods in Vietnam. Appl. Geogr. 2013, 41, 65–74. [Google Scholar] [CrossRef]
- Wells, J.A.; Wilson, K.A.; Abram, N.K.; Nunn, M.; Gaveau, D.L.; Runting, R.K.; Tarniati, N.; Mengersen, K.L.; Meijaard, E. Rising floodwaters: Mapping impacts and perceptions of flooding in Indonesian Borneo. Environ. Res. Lett. 2016, 11, 064016. [Google Scholar] [CrossRef] [Green Version]
- Kwari, J.W.; Paul, M.K.; Shekarau, L.B. The impacts of flooding on socio-economic development and agriculture in Northern Nigeria: A case study of 2012 flooding in Yola and Numan Areas of Adamawa State Nigeria. Int. J. Sci. Eng. Res. 2015, 6, 1433–1442. [Google Scholar]
- Zhang, Q.; Gu, X.; Singh, V.P.; Kong, D.; Chen, X. Spatiotemporal behavior of floods and droughts and their impacts on agriculture in China. Glob. Planet. Chang. 2015, 131, 63–72. [Google Scholar] [CrossRef]
- Khan, A.N.; Khan, B.; Qasim, S.; Khan, S.N. Causes, effects and remedies: A case study of rural flooding in district Charsadda, Pakistan. J. Manag. Sci. 2013, 7, 1–19. [Google Scholar]
- Posthumus, H.; Morris, J.; Hess, T.; Neville, D.; Phillips, E.; Baylis, A. Impacts of the summer 2007 floods on agriculture in England. J. Flood Risk Manag. 2009, 2, 182–189. [Google Scholar] [CrossRef]
- Harvey, R.J.; Chadwick, D.R.; Sánchez-Rodríguez, A.R.; Jones, D.L. Agroecosystem resilience in response to extreme winter flooding. Agric. Ecosyst. Environ. 2019, 279, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Trnka, M.; Semerádová, D.; Novotný, I.; Dumbrovský, M.; Drbal, K.; ek Pavlík, F.; Vopravil, J.; Vizina, A.; Balek, J.; Hlavinka, P. Assessing the combined hazards of drought, soil erosion and local flooding on agricultural land: A Czech case study. Clim. Res. 2016, 70, 231–249. [Google Scholar] [CrossRef] [Green Version]
- Veijalainen, N.; Lotsari, E.; Alho, P.; Vehviläinen, B.; Käyhkö, J. National scale assessment of climate change impacts on flooding in Finland. J. Hydrol. 2010, 391, 333–350. [Google Scholar] [CrossRef]
- Olson, K.R. Impacts of 2008 flooding on agricultural lands in Illinois, Missouri, and Indiana. J. Soil Water Conserv. 2009, 64, 167A–171A. [Google Scholar] [CrossRef] [Green Version]
- Rahmani, V.; Hutchinson, S.L.; Harrington, J.A., Jr.; Hutchinson, J.S. Analysis of frequency and magnitude of extreme rainfall events with potential impacts on flooding: A case study from the central United States. Int. J. Climatol. 2016, 36, 3578–3587. [Google Scholar] [CrossRef]
- Xiao, Y.; Wan, J.; Hewings, G.J. Flooding and the Midwest economy: Assessing the Midwest floods of 1993 and 2008. GeoJournal 2013, 78, 245–258. [Google Scholar] [CrossRef]
- Smith, K.; Lawrence, G.; MacMahon, A.; Muller, J.; Brady, M. The resilience of long and short food chains: A case study of flooding in Queensland, Australia. Agric. Hum. Values 2016, 33, 45–60. [Google Scholar] [CrossRef]
- Dottori, F.; Szewczyk, W.; Ciscar, J.-C.; Zhao, F.; Alfieri, L.; Hirabayashi, Y.; Bianchi, A.; Mongelli, I.; Frieler, K.; Betts, R.A. Increased human and economic losses from river flooding with anthropogenic warming. Nat. Clim. Chang. 2018, 8, 781–786. [Google Scholar] [CrossRef]
- Brémond, P.; Grelot, F.; Agenais, A.-L. Economic evaluation of flood damage to agriculture—Review and analysis of existing methods. Nat. Hazards Earth Syst. Sci. 2013, 13, 2493–2512. [Google Scholar] [CrossRef]
- Li, H.-C.; Hsiao, Y.-H.; Chang, C.-W.; Chen, Y.-M.; Lin, L.-Y. Agriculture adaptation options for flood impacts under climate change—A simulation analysis in the Dajia River Basin. Sustainability 2021, 13, 7311. [Google Scholar] [CrossRef]
- Shrestha, B.B.; Perera, E.D.P.; Kudo, S.; Miyamoto, M.; Yamazaki, Y.; Kuribayashi, D.; Sawano, H.; Sayama, T.; Magome, J.; Hasegawa, A. Assessing flood disaster impacts in agriculture under climate change in the river basins of Southeast Asia. Nat. Hazards 2019, 97, 157–192. [Google Scholar] [CrossRef]
- MacLeod, A.; Korycinska, A. Detailing Köppen–Geiger climate zones at sub-national to continental scale: A resource for pest risk analysis. EPPO Bull. 2019, 49, 73–82. [Google Scholar] [CrossRef]
- Houlbrooke, D.; Paton, R.; Littlejohn, R.; Morton, J. Land-use intensification in New Zealand: Effects on soil properties and pasture production. J. Agric. Sci. 2011, 149, 337–349. [Google Scholar] [CrossRef]
- MWLCR. LUCAS Land Cover Database; Manaaki Whenua Landcare Research: Lincoln, New Zealand, 2016. Available online: https://data.mfe.govt.nz/layer/52375-lucas-nz-land-use-map-1990-2008-2012-2016-v008/ (accessed on 7 March 2021).
- Stats NZ. Which industries contributed to New Zealand’s GDP? Available online: https://www.stats.govt.nz/experimental/which-industries-contributed-to-new-zealands-gdp (accessed on 5 March 2021).
- MPI. Economic Update for the Primary Industries; Economic Update for the Primary Industries: Wellington, New Zealand, 2020; pp. 1–24.
- Webb, T.H.; Wilson, A.D. A Manual of Land Characteristics for Evaluation of Rural Land; Manaaki Whenua Landcare Research: Lincoln, New Zealand, 1995; pp. 1–36.
- MWLCR. FSL Flood Return Interval; LRIS Portal: Lincoln, New Zealand, 2010; Available online: https://lris.scinfo.org.nz/layer/48106-fsl-flood-return-interval/ (accessed on 3 December 2020).
- Newsome, P.; Shepherd, J.; Pairman, D. Establishing New Zealand’s LUCAS Land Use; Manaaki Whenua Landcare Research: Lincoln, New Zealand, 2017; Volume 1667.
- MFE. Land-Use and Carbon Analysis System: Satellite Imagery Interpretation Guide for Land-Use Classes; Ministry for the Environment: Wellington, New Zealand, 2012.
- Beef+LambNZ. Sheep and Beef Farm Survey. Available online: https://beeflambnz.com/data-tools/sheep-beef-farm-survey (accessed on 15 January 2021).
- Daigneault, A.; Greenhalgh, S.; Samarasinghe, O. Economic impacts of multiple agro-environmental policies on New Zealand land use. Environ. Resour. Econ. 2018, 69, 763–785. [Google Scholar] [CrossRef]
- DairyNZ. Mitigation Options to Reduce GHG Emissions on New Zealand Dairy FARMS: GHG mitigation Modelling—Dairy Project; DairyNZ Economic Group: Hamilton, New Zealand, 2017. [Google Scholar]
- DairyNZ. A Comparison of Stocking Rate Approaches to Reduce GHG Emissions: On-Farm Mitigation Options to Reduce GHG Emissions on New Zealand Dairy Farms; DairyNZ Economic Group: Hamilton, New Zealand, 2018. [Google Scholar]
- Djanibekov, U.; Soliman, T.; Stroombergen, A.; Flood, S.; Greenhalgh, S. Assessing the Nationwide Economic Impacts of Farm Level Biological GHG Emission Mitigation Options; Manaaki Whenua Landcare Research: Lincoln, New Zealand, 2018.
- MFE. New Zealand’s Greenhouse Gas Inventory 1990–2015; Ministry for the Environment: Wellington, New Zealand, 2017.
- Chaston, T. Financial Budget Manual 2008; Lincoln University Press: Christchurch, New Zealand, 2008. [Google Scholar]
- Pangborn, J. Financial Budget Manual 2010; Lincoln University Press: Christchurch, New Zealand, 2010. [Google Scholar]
- Askin, D.; Askin, V. Financial Budget Manual 2012; Lincoln University Press: Christchurch, New Zealand, 2012. [Google Scholar]
- Askin, D.; Askin, V. Financial Budget Manual 2016; Lincoln University Press: Christchurch, New Zealand, 2016. [Google Scholar]
- StatsNZ. Business Demography Statistics; Statistics New Zealand: Wellington, New Zealand, 2020.
- Stats NZ. Consumer price index (CPI). Available online: https://www.stats.govt.nz/indicators/consumers-price-index-cpi (accessed on 26 March 2021).
- Poleman, T.T.; Thomas, L.T. Income and dietary change: International comparisons using purchasing-power-parity conversions. Food Policy 1995, 20, 149–159. [Google Scholar] [CrossRef]
- Balassa, B. The purchasing-power parity doctrine: A reappraisal. J. Political Econ. 1964, 72, 584–596. [Google Scholar] [CrossRef]
- RBNZ. Inflation Calculation. Available online: https://www.rbnz.govt.nz/monetary-policy/inflation-calculator (accessed on 30 July 2021).
- Reese, S.; King, A.; Bell, R.; Schmidt, J. Regional RiskScape: A multi-hazard loss modelling tool. In Proceedings of the MODSIM 2007 International Congress on Modelling and Simulation, Christchurch, New Zealand, 10 December 2007; pp. 1681–1687. [Google Scholar]
- Williams, S.; Paulik, R.; Weaving, R.; Bosserelle, C.; Chan Ting, J.; Wall, K.; Simi, T.; Scheele, F. Multiscale quantification of Tsunami Hazard Exposure in a Pacific Small Island Developing State: The case of Samoa. GeoHazards 2021, 2, 63–79. [Google Scholar] [CrossRef]
- Paulik, R.; Craig, H.; Popovich, B. A National-Scale assessment of population and built-environment exposure in Tsunami Evacuation Zones. Geosciences 2020, 10, 291. [Google Scholar] [CrossRef]
- Paulik, R.; Lane, E.; Williams, S.; Power, W. Changes in Tsunami Risk to residential buildings at Omaha Beach, New Zealand. Geosciences 2019, 9, 113. [Google Scholar] [CrossRef] [Green Version]
- Paulik, R.; Williams, S.; Simi, T.; Bosserelle, C.; Ting, J.C.; Simanu, L. Evaluating building exposure and economic loss changes after the 2009 South Pacific Tsunami. Int. J. Disaster Risk Reduct. 2021, 56, 102131. [Google Scholar] [CrossRef]
- Paulik, R.; Stephens, S.A.; Bell, R.G.; Wadhwa, S.; Popovich, B. National-scale built-environment exposure to 100-Year extreme sea levels and sea-level rise. Sustainability 2020, 12, 1513. [Google Scholar] [CrossRef] [Green Version]
- Dowling, L. Farming in Hawke’s Bay. In Proceedings of the 37th Proceedings of the New Zealand Grassland Association, Hastings, New Zealand, January 1975; pp. 6–15. Available online: https://www.grassland.org.nz/publications/nzgrassland_publication_1444.pdf (accessed on 2 November 2021).
- MFE. Preparing for Future Flooding: A Guide for Local Government in New Zealand; Ministry for the Environment: Wellington, New Zealand, 2010; pp. 1–40.
- MFE. National Climate Change Risk Assessment for Aotearoa New Zealand: Main Report—Arotakenga Tūraru mō te Huringa Āhuarangi o Āotearoa: Pūrongo Whakatōpū; Ministry for the Environment: Wellington, New Zealand, 2020; pp. 1–133.
- Habel, S.; Fletcher, C.H.; Anderson, T.R.; Thompson, P.R. Sea-Level Rise induced Multi-Mechanism flooding and contribution to Urban infrastructure failure. Sci. Rep. 2020, 10, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Foote, K.J.; Joy, M.K.; Death, R.G. New Zealand dairy farming: Milking our environment for all its worth. Environ. Manag. 2015, 56, 709–720. [Google Scholar] [CrossRef]
- Hartig, E.K.; Grozev, O.; Rosenzweig, C. Climate change, agriculture and wetlands in Eastern Europe: Vulnerability, adaptation and policy. Clim. Chang. 1997, 36, 107–121. [Google Scholar] [CrossRef]
- Gaviglio, A.; Corradini, A.; Marescotti, M.E.; Demartini, E.; Filippini, R. A theoretical framework to assess the impact of flooding on dairy cattle farms: Identification of direct damage from an animal welfare perspective. Animals 2021, 11, 1586. [Google Scholar] [CrossRef] [PubMed]
- Gaviglio, A.; Filippini, R.; Molinari, D.; Marescotti, M.E.; Demartini, E. Evaluating the flood damage on dairy farms: A methodological proposal. Aestimum 2020, 75, 163–274. [Google Scholar]
- Radhakrishnan, A.; Gupta, J.; Kumar, R.D. Vulnerability of dairy based livelihoods to climate variability and change-A study of Western Ghat Region-Ratnagiri, Maharashtra, India. Indian J. Anim. Res. 2018, 52, 1378–1382. [Google Scholar] [CrossRef] [Green Version]
- Urruty, N.; Tailliez-Lefebvre, D.; Huyghe, C. Stability, robustness, vulnerability and resilience of agricultural systems. A Review. Agron. Sustain. Dev. 2016, 36, 15. [Google Scholar] [CrossRef] [Green Version]
- Aryal, J.P.; Sapkota, T.B.; Khurana, R.; Khatri-Chhetri, A.; Rahut, D.B.; Jat, M.L. Climate change and agriculture in South Asia: Adaptation options in smallholder production systems. Environ. Dev. Sustain. 2020, 22, 5045–5075. [Google Scholar] [CrossRef] [Green Version]
- Forney, J.; Stock, P.V. Conversion of family farms and resilience in Southland, New Zealand. Int. J. Sociol. Agric. Food 2014, 21, 7–29. [Google Scholar]
- Botha, N.; White, T. Distress and burnout among NZ dairy farmers: Research findings and policy recommendations. Ext. Farming Syst. J. 2013, 9, 160–170. [Google Scholar]
- Poussard, C.; Dewals, B.; Archambeau, P.; Teller, J. Environmental inequalities in flood exposure: A matter of scale. Front. Water 2021, 3, 1–14. [Google Scholar] [CrossRef]
- DairyNZ. Regional Requirements. Available online: https://www.dairynz.co.nz/business/infrastructure-investment/responsible-dairy-conversions/information-gathering/regional-requirements/ (accessed on 6 March 2021).
- Gain, A.K.; Hoque, M. Flood risk assessment and its application in the eastern part of Dhaka City, Bangladesh. J. Flood Risk Manag. 2013, 6, 219–228. [Google Scholar] [CrossRef]
- Ologunorisa, T.; Abawua, M. Flood risk assessment: A review. J. Appl. Sci. Environ. Manag. 2005, 9, 57–63. [Google Scholar]
- Balica, S.; Douben, N.; Wright, N.G. Flood vulnerability indices at varying spatial scales. Water Sci. Technol. 2009, 60, 2571–2580. [Google Scholar] [CrossRef] [Green Version]
LUCAS Land-Use Classes | LUCAS Land-Use Subclasses | Agricultural Land-Use Class | |
---|---|---|---|
Forest land | Pre-1990 planted forest | Unknown; Pinus radiata; Douglas fir; Unspecified exotic species | Forestry |
Post-1989 forest | Unknown; Pinus radiata; Douglas fir; Unspecified exotic species | ||
Grassland | High producing | Unknown; Grazed dairy | Dairy |
Grazed non-dairy | Sheep and Beef | ||
Low producing | Unknown; Grazed non-dairy | Sheep and Beef | |
Grazed dairy | Dairy | ||
Cropland | Perennial | Unknown | Horticulture |
Annual | Unknown | Arable |
Area | Year | Arable | Forestry | Horticulture | Total Pastoral | Dairy | Sheep and Beef | Total |
---|---|---|---|---|---|---|---|---|
National | 1990 | 95,699 | 61,445 | 20,878 | 1,396,083 | 1,574,104 | ||
2008 | 103,463 | 67,372 | 32,396 | 364,351 | 891,211 | 1,458,792 | ||
2012 | 99,979 | 75,257 | 32,193 | 429,278 | 864,307 | 1,501,014 | ||
2016 | 99,991 | 72,810 | 32,524 | 470,579 | 825,800 | 1,501,705 | ||
North Island | 1990 | 36,883 | 24,990 | 12,714 | 644,318 | 718,905 | ||
2008 | 41,290 | 30,392 | 13,659 | 243,679 | 375,380 | 704,400 | ||
2012 | 41,453 | 29,921 | 13,287 | 256,083 | 363,122 | 703,866 | ||
2016 | 41,452 | 29,109 | 13,257 | 272,097 | 347,518 | 703,432 | ||
South Island | 1990 | 58,816 | 36,455 | 8,163 | 751,765 | 855,199 | ||
2008 | 62,174 | 36,980 | 18,737 | 120,672 | 515,831 | 754,393 | ||
2012 | 58,526 | 45,336 | 18,906 | 173,195 | 501,185 | 797,148 | ||
2016 | 58,539 | 43,701 | 19,267 | 198,482 | 478,282 | 798,272 |
Area | Year | Arable | Forestry | Horticulture | Dairy | Sheep and Beef | Total |
---|---|---|---|---|---|---|---|
National | 1990 | 93.16 | 18.10 | 147.92 | 259.15 | ||
2008 | 167.65 | 39.74 | 343.74 | 361.81 | 305.79 | 1218.73 | |
2012 | 143.21 | 32.17 | 418.78 | 783.41 | 198.71 | 1576.28 | |
2016 | 157.75 | 36.79 | 483.18 | 1251.26 | 198.23 | 2127.21 | |
North Island | 1990 | 35.91 | 10.43 | 64.75 | 111.09 | ||
2008 | 65.45 | 26.28 | 57.48 | 237.28 | 136.35 | 522.84 | |
2012 | 57 | 18.81 | 79.48 | 494.92 | 89.9 | 740.11 | |
2016 | 62.12 | 21.49 | 89.82 | 763.01 | 90.14 | 1026.58 | |
South Island | 1990 | 57.26 | 7.63 | 83.17 | 148.06 | ||
2008 | 102.2 | 13.46 | 286.26 | 124.53 | 169.44 | 695.89 | |
2012 | 86.21 | 13.36 | 339.3 | 288.49 | 108.81 | 836.17 | |
2016 | 95.63 | 15.3 | 393.36 | 488.25 | 108.09 | 1100.63 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Craig, H.; Paulik, R.; Djanibekov, U.; Walsh, P.; Wild, A.; Popovich, B. Quantifying National-Scale Changes in Agricultural Land Exposure to Fluvial Flooding. Sustainability 2021, 13, 12495. https://doi.org/10.3390/su132212495
Craig H, Paulik R, Djanibekov U, Walsh P, Wild A, Popovich B. Quantifying National-Scale Changes in Agricultural Land Exposure to Fluvial Flooding. Sustainability. 2021; 13(22):12495. https://doi.org/10.3390/su132212495
Chicago/Turabian StyleCraig, Heather, Ryan Paulik, Utkur Djanibekov, Patrick Walsh, Alec Wild, and Benjamin Popovich. 2021. "Quantifying National-Scale Changes in Agricultural Land Exposure to Fluvial Flooding" Sustainability 13, no. 22: 12495. https://doi.org/10.3390/su132212495
APA StyleCraig, H., Paulik, R., Djanibekov, U., Walsh, P., Wild, A., & Popovich, B. (2021). Quantifying National-Scale Changes in Agricultural Land Exposure to Fluvial Flooding. Sustainability, 13(22), 12495. https://doi.org/10.3390/su132212495