Exploring the Critical Barriers to the Implementation of Renewable Technologies in Existing University Buildings
Abstract
:1. Introduction
2. Literature Review
3. Methodology
- What is your opinion on Directive 2012/27/EU of the European Parliament where it establishes the reduction of CO2 emissions by 20% and the increase in the use of renewable energies by 20%?
- I am going to ask your opinion about the existence of a series of barriers that can affect the integration of renewable energy technologies in university existing buildings:
- ○
- What are the financial barriers?
- ○
- What are the technological barriers?
- ○
- What are the barriers in connecting to existing networks?
- ○
- What are the regulatory or administrative barriers?
- ○
- What are the social acceptance barriers?
- ○
- What are the architectural barriers?
- ○
- What are the urban planning barriers?
- If you think there are other barriers, please describe them.
4. Results and Discussion
4.1. Opinion on Directive 2012/27/EU of the European Parliament and of the Council of 25 October 2012
4.2. Barriers to the Implementation of TERs in Existing University Buildings
4.2.1. Economic-Financial Barriers
4.2.2. Administrative and Legislative Barriers
4.2.3. Architectural Barriers
4.2.4. Urban Planning Barriers
4.2.5. Technological Barriers
4.2.6. Network Connection Barriers
4.2.7. Social Acceptance Barriers
4.2.8. Institutional Barriers
4.2.9. Other Barriers
- Lack of training and/or experience in RETs.
- Lack of information.
- High daily workload.
- Recent actions on heating installations in buildings.
5. Conclusions
Limitations and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPCC. Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report for the Intergobernmental Panel on Climate Change; Cambridge University Press: New York, NY, USA, 2014. [Google Scholar]
- Ruparathna, R.; Hewage, K.; Sadiq, R. Improving the energy efficiency of the existing building stock: A critical review of commercial and institutional buildings. Renew. Sustain. Energy Rev. 2016, 53, 1032–1045. [Google Scholar] [CrossRef]
- Tsemekidi-Tzeiranaki, S.; Labanca, N.; Cuniberti, B.; Toleikyte, A.; Zangheri, P.; Bertoldi, P. Analysis of the Annual Reports 2018 under the Energy Efficiency Directive—Summary Report, EUR 29667 EN.; Publications Office of the European Union: Luxembourg, 2019. [Google Scholar]
- European Parliament. Directive 2010/31/EU of the European Parliament and of the Council of 19 May 2010 on the energy performance of buildings (recast). Off. J. Eur. Union 2010, 153, 13–35. [Google Scholar]
- Burman, E.; Mumovic, D.; Kimpian, J. Towards measurement and verification of energy performance under the framework of the European directive for energy performance of buildings. Energy 2014, 77, 153–163. [Google Scholar] [CrossRef] [Green Version]
- AbdelAzim, A.I.; Ibrahim, A.M.; Aboul-Zahab, E.M. Development of an energy efficiency rating system for existing buildings using Analytic Hierarchy Process—The case of Egypt. Renew. Sustain. Energy Rev. 2017, 71, 414–425. [Google Scholar] [CrossRef]
- Sandoval Fernández, P. Reto Europeo: La Eficiencia Energética en Edificios. La Nueva Directiva Comunitaria 31/2010. Seqüência 2011, 32, 55–77. [Google Scholar]
- Liobikienė, G.; Butkus, M. The European Union possibilities to achieve targets of Europe 2020 and Paris agreement climate policy. Renew. Energy 2017, 106, 298–309. [Google Scholar] [CrossRef]
- Ameli, N.; Brandt, N. What Impedes Household Investment in Energy Efficiency and Renewable Energy? Economics Department Working Papers No. 1222; ECO/WKP(2015)40; Organisation for Economic Cooperation and Development (OECD): Paris, France, 2015. [Google Scholar]
- Ashrafian, T.; Yilmaz, A.Z.; Corgnati, S.P.; Moazzen, N. Methodology to define cost-optimal level of architectural measures for energy efficient retrofits of existing detached residential buildings in Turkey. Energy Build. 2016, 120, 58–77. [Google Scholar] [CrossRef]
- Astiaso Garcia, D.; Cumo, F.; Tiberi, M.; Sforzini, V.; Piras, G. Cost-Benefit Analysis for Energy Management in Public Buildings: Four Italian Case Studies. Energies 2016, 9, 522. [Google Scholar] [CrossRef]
- Gangolells, M.; Casals, M.; Forcada, N.; Macarulla, M.; Cuerva, E. Energy mapping of existing building stock in Spain. J. Clean. Prod. 2016, 112, 3895–3904. [Google Scholar] [CrossRef]
- European Commission. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions Brussels, Energy Efficiency Plan 2011; European Commission: Brussels, Belgium, 2011. [Google Scholar]
- Bertone, E.; Sahin, O.; Stewart, R.A.; Zou, P.; Alam, M.; Blair, E. State-of-the-Art review revealing a roadmap for public building water and energy efficiency retrofit projects. Int. J. Sustain. Built Environ. 2016, 5, 526–548. [Google Scholar] [CrossRef] [Green Version]
- Almeida, R.M.; Ramos, N.M.; Simões, M.L.; de Freitas, V.P. Energy and water consumption variability in school buildings: Review and application of clustering techniques. J. Perform. Constr. Facil. 2015, 29, 04014165. [Google Scholar] [CrossRef]
- Erhorn-Kluttig, H. Overview. Energy Efficient University Campus Projects. The European Portal for Energy Efficiency in Buildings. 2017. Available online: http://www.buildup.eu/en/news/overview-energy-efficient-university-campus-projects-0 (accessed on 27 August 2020).
- Leal Filho, W.; Lange Salvia, A.; do Paço, A.; Anholon, R.; Gonçalves Quelhas, O.L.; Izabela Simon Rampasso, I.; Artie Ng, A.; Balogun, A.; Kondev, B.; Londero Brandli, L. A comparative study of approaches towards energy efficiency and renewable energy use at higher education institutions. J. Clean. Prod. 2019, 237, 117728. [Google Scholar] [CrossRef]
- Wadud, Z.; Royston, S.; Selby, J. Modelling energy demand from higher education institutions: A case study of the UK. Appl. Energy 2019, 233, 816–826. [Google Scholar] [CrossRef]
- General Assembly of the United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development; UN: New York, NY, USA, 2015. [Google Scholar]
- Born, F.J.; Clark, J.A.; Johnstone, C.M.; Kelly, N.J.; Burt, G.; Dysko, A.; McDonald, J.; Hunter, I.B. On the integration of renewable energy systems within the built environment. Build. Serv. Eng. Res. Technol. 2001, 22, 3–13. [Google Scholar] [CrossRef]
- Cooke, R.; Cripps, A.; Irwin, A.; Kolokotroni, M. Alternative energy technologies in buildings: Stakeholder perceptions. Renew. Energy 2007, 32, 2320–2333. [Google Scholar] [CrossRef]
- Woo, J.H.; Menassa, C. Virtual Retrofit Model for aging commercial buildings in a smart grid environment. Energy Build. 2012, 80, 424–435. [Google Scholar] [CrossRef]
- Economidou, M.; Todeschi, V.; Bertoldi, P.; Agostino, D.D.; Zangheri, P.; Castellazzi, L. Review of 50 years of EU energy efficiency policies for buildings. Energy Build. 2020, 225, 110322. [Google Scholar] [CrossRef]
- Reddy, S.; Painuly, J.P. Diffusion of renewable energy technologies—Barriers and stakeholders’ perspectives. Renew. Energy 2004, 29, 1431–1447. [Google Scholar] [CrossRef]
- Zhang, X.; Shen, L.; Chan, S.Y. The diffusión of solar energy use in HK: What are the barriers? Energy Policy 2012, 41, 241–249. [Google Scholar] [CrossRef]
- Aksamija, A. Regenerative design and adaptive reuse of existing commercial buildings for net-zero energy use. Sustain. Cities Soc. 2016, 27, 185–195. [Google Scholar] [CrossRef]
- European Commission. Europe 2020. A Strategy for Smart, Sustainable and Inclusive Growth; Publications Office of the European Union: Brussels, Belgium, 2010. [Google Scholar]
- Kulovesi, K.; Oberthür, S. Assessing the EU’s 2030 Climate and Energy Policy Framework: Incremental change toward radical transformation? RECIEL 2020, 29, 151–166. [Google Scholar] [CrossRef]
- Day, J.K. Survey and Interview Approaches to Studying Occupants. In Exploring Occupant Behavior in Buildings. Methods and Challenges; Wagner, A., O’Brien, W., Dong, B., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 213–238. [Google Scholar]
- Curtius, H.C. The adoption of building-integrated photovoltaics: Barriers and facilitators. Renew. Energy 2018, 126, 783–790. [Google Scholar] [CrossRef]
- European Commission. Communication from the Commission to the Council and the European Parliament. The Renewable Energy Progress Report: Commission Report in Accordance with Article 3 of Directive 2001/77/EC; Article 4(2) of Directive 2003/30/EC and on the Implementation of the EU Biomass Action Plan; European Commission: Brussels, Belgium, 2009. [Google Scholar]
- Mirza, U.K.; Ahmad, N.; Harijan, K.; Majeed, T. Identifying and addressing barriers to renewable energy development in Pakistan. Renew. Sust Energ Rev. 2009, 13, 927–931. [Google Scholar] [CrossRef]
- Nasirov, S.; Silva, C.; Agostini, C.A. Investors’ Perspectives on Barriers to the Deployment of Renewable Energy Sources in Chile. Energies 2015, 8, 3794–3814. [Google Scholar] [CrossRef]
- Beck, F.; Martinot, E. Renewable Energy Policies and Barriers. In Encyclopedia of Energy; Cleveland, C.J., Ed.; Academic Press/Elsevier Science: San Diego, CA, USA, 2004; pp. 365–383. [Google Scholar]
- Sidiras, D.K.; Koukios, E.G. Solar systems diffusion in local markets. Energy Policy 2004, 32, 2007–2018. [Google Scholar] [CrossRef]
- Klessmann, C.; Held, A.; Rathmann, M.; Ragwitz, M. Status and perspectives of renewable energy policy and deployment in the European Union—What is needed to reach the 2020 targets? Energy Policy 2011, 39, 7637–7657. [Google Scholar] [CrossRef]
- Huang, S.; Lo, S.; Lin, Y. To Re-Explore the Causality between Barriers to Renewable Energy Development: A Case Study of Wind Energy. Energies 2013, 6, 4465–4488. [Google Scholar] [CrossRef] [Green Version]
- Moula, M.E.; Maula, J.; Hamdy, M.; Fang, T.; Jung, N.; Lahdelma, R. Researching social acceptability of renewable energy technologies in Finland. Int J. Sustain. Built Environ. 2013, 2, 89–98. [Google Scholar] [CrossRef]
- Eleftheriadis, I.M.; Anagnostopoulou, E.G. Relationship between Corporate Climate change disclosures and firm factors. Bus. Strateg. Environ. 2015, 24, 780–789. [Google Scholar] [CrossRef]
- Pérez-Lombard, L.; Ortiz, J.; Pout, C. A review on building energy consumption information. Energy Build. 2008, 40, 394–398. [Google Scholar] [CrossRef]
- Margolis, R.; Zuboy, J. Nontechnical Barriers to Solar Energy Use: Review of Recent Literature; National Renewable Energy Laboratory: Golden, CO, USA, 2006.
- Ogunleye, I.O.; Awogbemi, O. Constraints to the use of solar photovoltaic as a sustainable power source in Nigeria. AJSIR 2010, 2, 11–16. [Google Scholar] [CrossRef]
- Byrnes, L.; Brown, C.; Foster, J.; Wagner, L.D. Australian renewable energy policy: Barriers and challenges. Renew. Energy 2013, 60, 711–721. [Google Scholar] [CrossRef]
- Sharpe, T.; Proven, G. Crossflex: Concept and early development of a true building integrated wind turbine. Energy Build. 2010, 42, 2365–2375. [Google Scholar] [CrossRef] [Green Version]
- Di Giuseppe, E.; Iannaccone, M.; Telloni, M.; D’Orazio, M.; Di Perna, C. Probabilistic life cycle costing of existing buildings retrofit interventions towards nZE target: Methodology and application example. Energy Build. 2017, 144, 416–432. [Google Scholar] [CrossRef]
- European Commission. Report from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions; Renewable energy progress report; European Commission: Brussels, Belgium, 2015. [Google Scholar]
- Evans, B.; Parks, J.; Theobald, K. Urban wind power and the private sector: Community benefits, social acceptance and public engagement. J. Environ. Plan. Manag. 2011, 54, 227–244. [Google Scholar] [CrossRef] [Green Version]
- Baker, S.E.; Edwards, R. How Many Qualitative Interviews is Enough? Expert Voices and Early Career Reflections on Sampling and Cases in Qualitative Research; National Centre for Research Methods (NCRM): Southhampton, UK, 2012. [Google Scholar]
- Galvin, R. How many interviews are enough? Do qualitative interviews in building energy consumption research produce reliable knowledge? J. Build. Eng. 2015, 1, 2–12. [Google Scholar] [CrossRef]
- Sommerfeld, J.; Buys, L.; Vine, D. Residential consumers’ experiences in the adoption and use of solar PV. Energy Policy 2017, 105, 10–16. [Google Scholar] [CrossRef] [Green Version]
- Hai, M.A. Rethinking the social acceptance of solar energy: Exploring “states of willingness” in Finland. Energy Res. Soc. Sci 2019, 51, 96–106. [Google Scholar] [CrossRef]
- Bavaresco, M.V.; D’Oca, S.; Ghisi, E.; Lamberts, R. Methods used in social sciences that suit energy research: A literature review on qualitative methods to assess the human dimension of energy use in buildings. Energy Build. 2020, 209, 1–19. [Google Scholar] [CrossRef]
- Ugulu, A.I. Barriers and motivations for solar photovoltaic (PV) adoption in urban Nigeria. IJSEPM 2019, 21, 19–34. [Google Scholar]
- Painuly, J.P.; Fenhann, J.V. Implementation of Renewable Energy Technologies—Opportunities and Barriers: Summary of Country Studies; UNEP Collaborating Centre on Energy and Environment, Risø National Laboratory: Roskilde, Denmark, 2002. [Google Scholar]
- Font Tullot, I. Climatología de España y Portugal. Nueva Versión; Ediciones Universidad de Salamanca: Salamanca, Spain, 2007. [Google Scholar]
- Sequeiros Tizón, J.S. Integración económica y comercio internacional. REM 2000, 2, 151–177. [Google Scholar]
- Ahlborg, H.; Hammar, L. Drivers and barriers to rural electrification in Tanzania and Mozambique–Grid-extension, off-grid, and renewable energy technologies. Renew. Energy 2014, 61, 117–124. [Google Scholar] [CrossRef]
- Caven, V. Agony aunt, hostage, intruder or friend? The multiple personas of the interviewer during fieldwork. Intang. Cap. 2012, 8, 548–563. [Google Scholar]
- Denzin, N.K.; Lincoln, Y.S. The SAGE Handbook of Qualitative Research, 4th ed.; Sage: Thousand Oaks, CA, USA, 2011. [Google Scholar]
- Guest, G.; Bunce, A.; Johnson, L. How many interviews are enough? An experiment with data saturation and variability. Field Methods 2006, 18, 59–82. [Google Scholar] [CrossRef]
- Von Wirth, T.; Gislason, L.; Seidl, R. Distributed energy systems on a neighborhood scale: Reviewing drivers of and barriers to social acceptance. Renew. Sustain. Energy Rev. 2018, 82, 2618–2628. [Google Scholar] [CrossRef]
- Creswell, J. Research Design: Qualitative, Quantitative, and Mixed Methods Approaches; Sage: Thousand Oaks, CA, USA, 2009. [Google Scholar]
- Blismas, N.G.; Dainty, A.R.J. Computer-Aided qualitative data analysis: Panacea or paradox? BRI 2003, 31, 455–463. [Google Scholar] [CrossRef]
- Bowen, G.A. Preparing a qualitative research-based dissertation: Lessons learned. Qual. Rep. 2005, 10, 208–222. [Google Scholar] [CrossRef]
- Tesch, R. Qualitative Research. Analysis Types & Software Tools; Routledge: New York, NY, USA, 2013. [Google Scholar]
- Charmaz, K. Constructing Grounded Theory. A Practical Guide through Qualitative Analysis; Sage: London, UK, 2006. [Google Scholar]
- European Union. Directive 2012/27/EU of the European Parliament and of the Council of 25 October 2012 on energy efficiency, amending Directives 2009/125/EC and 2010/30/EU and repealing Directives 2004/8/EC and 2006/32/EC. Off. J. Eur. Union. 2012, 315, 1–56. [Google Scholar]
- European Union. Directive 2002/91/EC of the European Parliament and of the Council of 16 December 2002 on the energy performance of buildings. Off. J. Eur. Union 2003, L1, 65–71. [Google Scholar]
- Rosenow, J.; Kern, F. EU energy innovation in policy: The curious case of energy efficiency. In Research Handbook on EU Energy Law and Policy; Leal-Arcas, R., Wouters, J., Eds.; Edward Elgar Publishing Limited: Cheltenham, UK; Northampton, MA, USA, 2017; pp. 501–517. [Google Scholar]
- Ministerio de Industria, Energía y Turismo. Real Decreto 900/2015, de 9 de Octubre, Por el Que se Regulan las Condiciones Administrativas, Técnicas y Económicas de las Modalidades de Suministro de Energía Eléctrica con Autoconsumo y de Producción con Autoconsumo; Ministerio de Industria, Energía y Turismo: Madrid, Spain, 2015; pp. 94874–94917.
- Fernandez, R.M. Conflicting energy policy priorities in EU energy governance. J. Environ. Stud. Sci. 2018, 8, 239–248. [Google Scholar] [CrossRef] [Green Version]
- Abdmouleh, Z.; Alammari, R.A.M.; Gkastli, A. Review of policies encouraging renewable energy integration & best practices. Renew. Sustain. Energy Rev. 2015, 45, 249–262. [Google Scholar]
- Owen, A.D. Renewable energy: Externality costs as market barriers. Energy Policy 2006, 34, 632–642. [Google Scholar] [CrossRef]
- Yaqoot, M.; Diwan, P.; Kandpal, T.C. Review of barriers to the dissemination of decentralized renewable energy systems. Renew. Sustain. Energy Rev. 2016, 58, 477–490. [Google Scholar] [CrossRef]
- Ürge-Vorsatz, D.; Danny Harvey, L.D.; Mirasgedis, S.; Levine, M.D. Mitigating CO2 emissions from energy use in the world’s buildings. BRI 2007, 35, 379–398. [Google Scholar]
- Espejo Marín, C. La energía solar fotovoltaica en España. Nimbus 2004, 13–14, 5–31. [Google Scholar]
- Martínez Montes, G.; Serrano López, M.M.; Rubio Gámez, M.C.; Menéndez Ondina, A. An overview of renewable energy in Spain: The small hydro-power case. Renew. Sustain. Energy Rev. 2005, 9, 521–534. [Google Scholar] [CrossRef]
- Coenraads, R.; Reece, G.; Voogt, M.; Ragwitz, M.; Held, A.; Resch, G.; Faber, T.; Haas, R.; Konstantinaviciute, I.; Juraj Krivošík, J.; et al. Progress, Promotion and Growth of Renewable Energy Sources and Systems; Final report. TREN/D1/42-2005/S07.56988; Ecofys Netherlands: Utrecht, The Netherlands, 2008. [Google Scholar]
- Jefatura del Estado. Ley 9/2017, de 8 de Noviembre, de Contratos del Sector Público, Por la Que se Transponen al Ordenamiento Jurídico Español las Directivas del Parlamento Europeo y del Consejo 2014/23/UE y 2014/24/UE, de 26 de Febrero de 2014; Boletín Oficial del Estado, núm. 272, de 09 de Noviembre de 2017, Referencia: BOE-A-2017-12902; Jefatura del Estado: Madrid, Spain, 2017. [Google Scholar]
- Hirst, E. Improving energy efficiency in the USA: The federal role. Energy Policy 1991, 19, 567–577. [Google Scholar] [CrossRef]
- Ministerio de Transición Ecológica. Real Decreto 244/2019, de 5 de Abril, Por el Que se Regulan las Condiciones Administrativas, Técnicas y Económicas del Autoconsumo de Energía Eléctrica; Boletín Oficial del Estado, núm. 83, de 6 de abril de 2019; Ministerio de Transición Ecológica: Madrid, Spain, 2019; pp. 35674–35719.
- Kammen, D.M.; Sunter, D.A. City-Integrated renewable energy for urban sustainability. Science 2016, 352, 922–928. [Google Scholar] [CrossRef] [Green Version]
- Dadzie, J.; Runeson, G.; Ding, G.; Bondinuba, F.K. Barriers to Adoption of Sustainable Technologies for Energy-Efficient Building Upgrade—Semi-Structured Interviews. Buildings 2018, 8(4), 57. [Google Scholar] [CrossRef] [Green Version]
- Aronova, E.; Radovic, G.; Murgul, V.; Vatin, N. Solar Power Opportunities in Northern Cities (Case Study of Saint-Petersburg). Appl. Mech. Mater. 2014, 587, 348–354. [Google Scholar] [CrossRef]
- Polo López, C.S.; Frontini, F. Energy efficiency and renewable solar energy integration in heritage historic buildings. Energy Procedia 2014, 48, 1493–1502. [Google Scholar] [CrossRef] [Green Version]
- Webb, A.L. Energy retrofits in historic and traditional buildings: A review of problems and methods. Renew. Sustain. Energy Rev. 2017, 77, 748–759. [Google Scholar] [CrossRef]
- Papamanolis, N. An overview of solar energy applications in buildings in Greece. Int J. Sustain. Energy 2016, 35, 814–823. [Google Scholar] [CrossRef]
- Hayter, S.J.; Kandt, A. Renewable Energy Applications for Existing Buildings (No. NREL/CP-7A40-52172); National Renewable Energy Laboratory (NREL): Golden, CO, USA, 2011.
- De Santoli, L.; Mancini, F.; Clemente, C.; Lucci, S. Energy and tecnological refurbishment of the School of Architecture Valle Giulia, Rome. Energy Procedia 2017, 133, 382–391. [Google Scholar] [CrossRef]
- De Guerrero Manso, C. La clasificación del suelo urbano en el contexto urbanístico actual de regeneración de la ciudad. Rev. Aragonesa De Adm. Pública 2010, 37, 139–185. [Google Scholar]
- Vieites, E.; Vassileva, I.; Arias, J.E. European initiatives towards improving the energy efficiency in existing and historic buildings. Energy Procedia 2015, 75, 1679–1685. [Google Scholar] [CrossRef] [Green Version]
- Imenes, A.G. Performance of BIPV and BAPV installations in Norway. In Proceedings of the 43rd IEEE Photovoltaic Specialists Conference (PVSC), Portland, OR, USA, 5–10 June 2016; pp. 3147–3152. [Google Scholar]
- Aranda Usón, A.; Ortego Bielsa, A. Integración de Energías Renovables en Edificios; Prensas Universitarias: Zaragoza, Spain, 2011. [Google Scholar]
- Verbruggen, A.; Fischedick, M.; Moomaw, W.; Weir, T.; Nadaï, A.; Nilsson, L.J.; Nyboer, J.; Sathaye, J. Renewable energy costs, potentials, barriers: Conceptual issues. Energy Policy 2010, 38, 850–861. [Google Scholar] [CrossRef]
- Lund, P.D.; Lindgren, J.; Mikkola, J.; Salpakari, J. Review of energy system flexibility measures to enable high levels of variable renewable electricity. Renew. Sustain. Energy Rev. 2015, 45, 785–807. [Google Scholar] [CrossRef] [Green Version]
- Boydak, Ö. Commercial Buildings Energy Consumption Survey (CBECS) and Its Comparison with Turkey Applications. J. Clean. Energy Technol. 2017, 5, 69–72. [Google Scholar] [CrossRef] [Green Version]
- Touzani, S.; Granderson, J.; Fernandes, S. Gradient boosting machine for modeling the energy consumption of commercial buildings. Energy Build. 2018, 158, 1533–1543. [Google Scholar] [CrossRef] [Green Version]
- Mbungu, N.T.; Bansal, R.C.; Naidoo, R.; Miranda, V.; Bipath, M. An optimal energy management system for a commercial building with renewable energy generation under real-time electricity prices. Sustain. Cities Soc. 2018, 41, 392–404. [Google Scholar] [CrossRef] [Green Version]
- Ellabban, O.; Abu-Rub, H.; Blaabjerg, F. Renewable energy resources: Current status, future prospects and their enabling technology. Renew. Sustain. Energy Rev. 2014, 39, 748–764. [Google Scholar] [CrossRef]
- Liu, F.; Meyer, A.S.; Hogan, J.F. Mainstreaming Building Energy Efficiency Codes in Developing Countries; The World Bank: Washington, DC, USA, 2010. [Google Scholar]
- Čenejac, A.R.; Bjelaković, R.M.; Anđelković, A.S.; Djaković, D.D. Covering of heating load of object by using ground heat as a renewable energy source. Therm. Sci. 2012, 16, 225–235. [Google Scholar] [CrossRef]
- Scognamiglio, A.; Røstvik, H.N. Photovoltaics and zero energy buildings: A new opportunity and challenge for design. Prog. Photovolt. 2013, 21, 1319–1336. [Google Scholar] [CrossRef]
- Samir, H.; Ali, N.A. Applying building-integrated photovoltaics (BIPV) in existing buildings, opportunities and constraints in Egypt. Procedia Environ. Sci. 2017, 37, 614–625. [Google Scholar] [CrossRef]
- Sovacool, B.K. The intermittency of wind, solar, and renewable electricity generators: Technical barrier or rhetorical excuse? Util. Policy 2009, 17, 288–296. [Google Scholar] [CrossRef]
- Ordoñez García, J.; Jadraque Gago, E.; Alegre Bayo, J.; Martínez Montes, G. The use of solar energy in the buildings construction sector in Spain. Renew. Sustain. Energy Rev. 2007, 11, 2166–2178. [Google Scholar] [CrossRef]
- Jelle, B.P. Building Integrated Photovoltaics: A Concise Description of the Current State of the Art and Possible Research Pathways. Energies 2016, 9, 21. [Google Scholar] [CrossRef] [Green Version]
- Pandey, A.K.; Tyagi, V.V.; Selvaraj, J.A.; Rahim, N.A.; Tyagi, S.K. Recent advances in solar photovoltaic systems for emerging trends and advanced applications. Renew. Sustain. Energy Rev. 2016, 53, 859–884. [Google Scholar] [CrossRef]
- Peng, C.; Huang, Y.; Wu, Z. Building-integrated photovoltaics (BIPV) in architectural design in China. Energy Build. 2011, 43, 3592–3598. [Google Scholar] [CrossRef]
- Lehmann, P.; Creutzig, F.; Ehlers, M.H.; Friedrichsen, N.; Heuson, C.; Hirth, L.; Pietzcker, R. Carbon lock-out: Advancing renewable energy policy in Europe. Energies 2012, 5, 323–354. [Google Scholar] [CrossRef] [Green Version]
- Jobert, A.; Laborgne, P.; Mimler, S. Local acceptance of wind energy: Factors of success identified in French and German case studies. Energy Policy 2007, 35, 751–760. [Google Scholar] [CrossRef]
- Bertsch, V.; Hall, M.; Weinhardt, C.; Fichtner, W. Public acceptance and preferences related to renewable energy and grid expansion policy: Empirical insights for Germany. Energy 2016, 114, 465–477. [Google Scholar] [CrossRef]
- Ramírez Brouchoud, M.F. Las reformas del Estado y la administración pública en América Latina y los intentos de aplicación del New Public Management. Estud. Políticos 2009, 34, 115–141. [Google Scholar]
- Tardío Pato, J.A. ¿Tiene sentido que las universidades públicas dejen de ser administraciones públicas en las nuevas leyes del sector público y de procedimiento administrativo común? Doc. Adm. 2015, 2, 12. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Morabito, M.; Payne, C.T.; Robinson, G. Identifying institutional barriers and policy implications for sustainable energy technology adoption among large organizations in California. Energy Policy 2020, 146, 111768. [Google Scholar] [CrossRef]
- Cooremans, C. The role of formal capital budgeting analysis in corporate investment decision-making: A literature review. In Proceedings of the ECEEE 2009 Summer Study, La Colle sur Loup, France, 1–6 June 2009; pp. 237–245. [Google Scholar]
- Wells, L.; Rismanchi, B.; Aye, L. A review of Net Zero Energy Buildings with reflections on the Australian context. Energy Build. 2018, 158, 616–628. [Google Scholar] [CrossRef]
- Goh, C.S.; Jack, L.; Bajracharya, A. Qualitative study of sustainability policies and guidelines in the built environment. J. Leg. Aff. Disput. Resolut. Eng. Constr. 2020, 12, 04520016. [Google Scholar] [CrossRef]
- Alam, S.S.; Nor, N.F.M.; Ahmad, M.; Hashim, N.H.N. A Survey on Renewable Energy Development in Malaysia: Current Status, Problems and Prospects. Environ. Clim. Technol. 2016, 17, 5–17. [Google Scholar] [CrossRef] [Green Version]
- Foxon, T.J.; Gross, R.; Chase, A.; Howes, J.; Arnall, A.; Anderson, D. UK innovation systems for new and renewable energy technologies: Drivers, barriers and systems failures. Energy Policy 2005, 33, 2123–2137. [Google Scholar] [CrossRef]
- Kofoed-Wiuff, A.; Sandholt, K.; Marcus-Møller, C. Renewable Energy Technology Deployment (RETD): Barriers, Challenges and Opportunities: A Synthesis of Various Studies on Barriers, Challenges and Opportunities for Renewable Energy Deployment; EA Energy Analyses: Copenhagen, Denmark, 2006. [Google Scholar]
- Mann, S.; Harris, I.; Harris, J. The development of urban renewable energy at the existential technology research center (ETRC) in Toronto, Canada. Renew. Sustain. Energy Rev. 2006, 10, 576–589. [Google Scholar] [CrossRef]
Country | Face-to-Face Presential | Telephone Interview |
---|---|---|
Spain | University of Castilla-La Mancha Polytechnic University of Madrid University of Valencia University of Zaragoza University Juame I University Carlos III of Madrid University of Córdoba Polytechnic University of Valencia National Distance Learning University (Madrid) | University of Oviedo University of Málaga University of Santiago de Compostela University of Vigo University of Cantabria University of Valladolid Polytechnic University of Catalonia CEU Cardenal Herrera Oria University University of Mondragón University of Las Palmas de Gran Canaria, University of La Coruña University of La Laguna (Tenerife) |
Portugal | University of Porto University of Lisbon Lusófona University |
Age (Years) | Number of Participants |
---|---|
From 30 to 34 | 1 |
From 35 to 39 | 6 |
From 40 to 44 | 5 |
From 45 to 49 | 6 |
From 50 to 54 | 4 |
From 55 to 59 | 4 |
From 60 to 63 | 7 |
Years of Experience in the Position | Number of Participants |
---|---|
Less than 5 | 6 |
From 6 to 10 | 7 |
From 11 to 15 | 3 |
From 16 to 20 | 6 |
From 21 to 25 | 1 |
From 26 to 30 | 7 |
More than 30 | 3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fuentes-del-Burgo, J.; Navarro-Astor, E.; Ramos, N.M.M.; Martins, J.P. Exploring the Critical Barriers to the Implementation of Renewable Technologies in Existing University Buildings. Sustainability 2021, 13, 12662. https://doi.org/10.3390/su132212662
Fuentes-del-Burgo J, Navarro-Astor E, Ramos NMM, Martins JP. Exploring the Critical Barriers to the Implementation of Renewable Technologies in Existing University Buildings. Sustainability. 2021; 13(22):12662. https://doi.org/10.3390/su132212662
Chicago/Turabian StyleFuentes-del-Burgo, Joaquín, Elena Navarro-Astor, Nuno M. M. Ramos, and João Poças Martins. 2021. "Exploring the Critical Barriers to the Implementation of Renewable Technologies in Existing University Buildings" Sustainability 13, no. 22: 12662. https://doi.org/10.3390/su132212662
APA StyleFuentes-del-Burgo, J., Navarro-Astor, E., Ramos, N. M. M., & Martins, J. P. (2021). Exploring the Critical Barriers to the Implementation of Renewable Technologies in Existing University Buildings. Sustainability, 13(22), 12662. https://doi.org/10.3390/su132212662