Balantidiasis: A Neglected Tropical Disease Used as a Study Model for a Holistic Approach to Sustainable Development in the Framework of Agenda 2030 Goals
Abstract
:1. From the One Health Umbrella to the Sustainable Development Goals and Back
1.1. One Health Umbrella
1.2. Sustainability in the Developing Countries
1.3. Balantidiasis as a Model of Study for NTDs Sustainability Approach
2. Pillar I: The Social Perspective
3. Pillar II: The Environmental Perspective
4. Pillar III: The Economic Perspective
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kheirallah, K.A.; Al-Mistarehi, A.H.; Alsawalha, L.; Hijazeen, Z.; Mahrous, H.; Sheikali, S.; Al-Ramini, S.; Maayehe, M.; Dodeen, R.; Farajeh, M.; et al. Prioritizing zoonotic diseases utilizing the One Health approach: Jordan’s experience. One Health 2021, 13, 100262. [Google Scholar] [CrossRef] [PubMed]
- Omitola, O.O.; Taylor-Robinson, A.W. Emerging and re-emerging bacterial zoonoses in Nigeria: Current preventive measures and future approaches to intervention. Heliyon 2020, 6, e04095. [Google Scholar] [CrossRef] [PubMed]
- Asokan, G.; Asokan, V. Bradford Hill’s criteria, emerging zoonoses, and One Health. J. Epidemiol. Glob. Health 2015, 6, 125–129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Estrada-Peña, A.; Ostfeld, R.; Peterson, A.T.; Poulin, R.; de la Fuente, J. Effects of environmental change on zoonotic disease risk: An ecological primer. Trends Parasitol. 2014, 30, 205–214. [Google Scholar] [CrossRef]
- Ed-Dra, A.; Nalbone, L.; Filali, F.; Trabelsi, N.; El Majdoub, Y.; Bouchrif, B.; Giarratana, F.; Giuffrida, A. Comprehensive evaluation on the use of Thymus vulgaris essential oil as natural additive against different serotypes of Salmonella enterica. Sustainability 2021, 13, 4594. [Google Scholar] [CrossRef]
- Van Oosterhout, C. Mitigating the threat of emerging infectious diseases; a coevolutionary perspective. Virulence 2021, 12, 1288–1295. [Google Scholar] [CrossRef]
- Otranto, D.; Capelli, G.; Genchi, C. Changing distribution patterns of canine vector borne diseases in Italy: Leishmaniosis vs. dirofilariosis. Parasites Vectors 2009, 2, S2. [Google Scholar] [CrossRef] [Green Version]
- Keesing, F.; Belden, L.K.; Daszak, P.; Dobson, A.; Harvell, C.D.; Holt, R.D.; Hudson, P.; Jolles, A.E.; Jones, K.E.; Mitchell, C.E.; et al. Impacts of biodiversity on the emergence and transmission of infectious diseases. Nature 2010, 468, 647–652. [Google Scholar] [CrossRef] [PubMed]
- Ozili, P.K.; Arun, T. Spillover of COVID-19: Impact on the Global Economy. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3562570 (accessed on 18 November 2021).
- Pearce, J.M. A review of open source ventilators for COVID-19 and future pandemics. F1000research 2020, 9, 218. [Google Scholar] [CrossRef]
- Carter, N. The Politics of the Environment: Ideas, Activism, Policy, 3rd ed.; Cambridge University Press: Cambridge, UK, 2018; p. 215. [Google Scholar]
- Wackernagel, M.; Hanscom, L.; Lin, D. Making the sustainable development goals consistent with sustainability. Front. Energy Res. 2017, 5, 18. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Health in 2015: From MDGs, Millennium Development Goals to SDGs, Sustainable Development Goals. 2015. Available online: https://sdgs.un.org/goals/goal1 (accessed on 1 November 2021).
- Callicott, J.B.; Mumford, K. Ecological sustainability as a conservation concept. Sustentabilidad ecologica como concepto de conservacion. Conserv. Biol. 1997, 11, 32–40. [Google Scholar] [CrossRef]
- Bangert, M.; Molyneux, D.H.; Lindsay, S.W.; Fitzpatrick, C.; Engels, D. The cross-cutting contribution of the end of neglected tropical diseases to the sustainable development goals. Infect. Dis. Poverty 2017, 6, 1–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fitzpatrick, C.; Engels, D. Leaving no one behind: A neglected tropical disease indicator and tracers for the sustainable development goals: Box 1. Int. Health 2016, 8, i15–i18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization. Working to Overcome the Global Impact of Neglected Tropical Diseases: First WHO Report on Neglected Tropical Diseases. Geneva: Department of Reproductive Health and Research, World Health Organization. 2010. Available online: http://apps.who.int/iris/bitstream/handle/10665/44440/9789241564090_eng.pdf?sequence=1 (accessed on 1 April 2021).
- Chaber, A.-L. The era of human-induced diseases. EcoHealth 2017, 15, 8–11. [Google Scholar] [CrossRef] [Green Version]
- Hotez, P.J.; Kamath, A. Neglected tropical diseases in sub-saharan africa: Review of their prevalence, distribution, and disease burden. PLoS Negl. Trop. Dis. 2009, 3, e412. [Google Scholar] [CrossRef] [Green Version]
- Brianti, E.; Napoli, E.; Gaglio, G.; Falsone, L.; Giannetto, S.; Basano, F.S.; Nazzari, R.; Latrofa, M.S.; Annoscia, G.; Tarallo, V.D.; et al. Field evaluation of two different treatment approaches and their ability to control fleas and prevent canine leishmaniosis in a highly endemic area. PLoS Negl. Trop. Dis. 2016, 10, e0004987. [Google Scholar] [CrossRef]
- Brianti, E.; Panarese, R.; Napoli, E.; De Benedetto, G.; Gaglio, G.; Bezerra-Santos, M.A.; Mendoza-Roldan, J.A.; Otranto, D. Dirofilaria immitis infection in the Pelagie archipelago: The southernmost hyperendemic focus in Europe. Transbound. Emerg. Dis. 2021. [Google Scholar] [CrossRef]
- Mendoza-Roldan, J.A.; Gabrielli, S.; Cascio, A.; Manoj, R.R.; Bezerra-Santos, M.A.; Benelli, G.; Brianti, E.; Latrofa, M.S.; Otranto, D. Zoonotic Dirofilaria immitis and Dirofilaria repens infection in humans and an integrative approach to the diagnosis. Acta Trop. 2021, 223, 106083. [Google Scholar] [CrossRef]
- Giarratana, F.; Nalbone, L.; Napoli, E.; Lanzo, V.; Panebianco, A. Prevalence of Balantidium coli (Malmsten, 1857) infection in swine reared in South Italy: A widespread neglected zoonosis. Vet. World 2021, 14, 1044–1049. [Google Scholar] [CrossRef]
- Ahmed, A.; Ijaz, M.; Ayyub, R.M.; Ghaffar, A.; Ghauri, H.N.; Aziz, M.U.; Ali, S.; Altaf, M.; Awais, M.; Naveed, M.; et al. Balantidium coli in domestic animals: An emerging protozoan pathogen of zoonotic significance. Acta Trop. 2020, 203, 105298. [Google Scholar] [CrossRef]
- Ponce-Gordo, F.; García-Rodríguez, J.J. Balantioides coli. Res. Vet. Sci. 2021, 135, 424–431. [Google Scholar] [CrossRef] [PubMed]
- Plutzer, J.; Karanis, P. Neglected waterborne parasitic protozoa and their detection in water. Water Res. 2016, 101, 318–332. [Google Scholar] [CrossRef] [PubMed]
- Thompson, R.; Smith, A. Zoonotic enteric protozoa. Vet. Parasitol. 2011, 182, 70–78. [Google Scholar] [CrossRef] [Green Version]
- Shabih, H.S.; Juyal, P.D. Epidemiological observations of paramphistomosis in ruminants in endemic regions of Punjab and adjoining state. In Proceedings of the 11th International Symposium on Veterinary Epidemiology and Economic, Cairns, Australia, 6–11 August 2006; pp. 1–6. [Google Scholar]
- Yin, D.-M.; Lv, C.-C.; Tan, L.; Zhang, T.-N.; Yang, C.-Z.; Liu, Y.; Liu, W. Prevalence of Balantidium coli infection in sows in Hunan province, subtropical China. Trop. Anim. Health Prod. 2015, 47, 1637–1640. [Google Scholar] [CrossRef] [PubMed]
- Weng, Y.; Hu, Y.; Li, Y.; Li, B.; Lin, R.; Xie, D.; Gasser, R.B.; Zhu, X. Survey of intestinal parasites in pigs from intensive farms in Guangdong Province, People’s Republic of China. Vet. Parasitol. 2005, 127, 333–336. [Google Scholar] [CrossRef]
- Roy, B.; Mondal, M.; Talukder, M.; Majumder, S. Prevalence of Balantidium coli in Buffaloes at different areas of Mymensingh. J. Bangladesh Agric. Univ. 2011, 9, 67–72. [Google Scholar] [CrossRef] [Green Version]
- Napoli, E.; Nalbone, L.; Giarratana, F. Balantidiasis a potential neglected zoonotic disease and the liar paradox. Biosci. Biotechnol. Res. Asia 2021, 18, 5. [Google Scholar]
- Bellanger, A.-P.; Scherer, E.; Cazorla, A.; Grenouillet, F. Dysenteric syndrome due to Balantidium coli: A case report. New Microbiol. 2013, 36, 203–205. [Google Scholar]
- Giarratana, F.; Muscolino, D.; Taviano, G.; Ziino, G. Balantidium coli in pigs regularly slaughtered at abattoirs of the province of Messina: Hygienic observations. Open J. Vet. Med. 2012, 2, 77–80. [Google Scholar] [CrossRef] [Green Version]
- Panebianco, F. Igiene delle Carni e Balantidium coli (Malmsten, 1857). Med. Vet. Messina 1967, 4, 49–64. [Google Scholar]
- Yazar, S.; Altuntas, F.; Sahin, I.; Atambay, M. Dysentery caused by Balantidium coli in a patient with non-Hodgkin’s lymphoma from Turkey. World J. Gastroenterol. 2004, 10, 458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neafie, R.C.; Andersen, E.M.; Klassen-Fischer, M.K. Balantidiasis. In Topics on the Pathology of Protozoan and Invasive Arthropod Diseases; Meyers, W.M., Firpo, A., Wear, D.J., Eds.; Armed Forces Institute of Pathology: Washington, DC, USA, 2011; p. 6. [Google Scholar]
- Reidpath, D.D.; Allotey, P.; Pokhrel, S. Social sciences research in neglected tropical diseases 2: A bibliographic analysis. Health Res. Policy Syst. 2011, 9, 1. [Google Scholar] [CrossRef] [Green Version]
- Atkinson, A.B. Multidimensional deprivation: Contrasting social welfare and counting approaches. J. Econ. Inequal. 2003, 1, 51–65. [Google Scholar] [CrossRef]
- Dooris, M.; Heritage, Z. Healthy cities: Facilitating the active participation and empowerment of local people. J. Urban Health 2013, 90, 74–91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schuster, F.L.; Ramirez-Avila, L. Current world status of Balantidium coli. Clin. Microbiol. Rev. 2008, 21, 626–638. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ponce-Gordo, F.; Jirků-Pomajbíkov´a, K. Balantidium coli. In Global Water Pathogens Project; Rose, J.B., Jim´enez-Cisneros, B., Eds.; UNESCO: Paris, France, 2017; p. 14. [Google Scholar]
- Vasilakopoulou, A.; Dimarongona, K.; Samakovli, A.; Papadimitris, K.; Avlami, A. Balantidium coli pneumonia in an immunocompromised patient. Scand. J. Infect. Dis. 2003, 35, 144–146. [Google Scholar] [CrossRef]
- Lee, K.S.; Park, D.S.; Cho, J.H.; Kim, H.Y.; Lee, Y.J. A case of pneumonia caused by Balantidium coli in an immunocompetent patient. Korean J. Clin. Microbiol. 2010, 13, 178–181. [Google Scholar] [CrossRef] [Green Version]
- Cermeño, J.R.; de Cuesta, I.H.; Uzcátegui, O.; Páez, J.; Rivera, M.; Baliachi, N. Balantidium coli in an HIV-infected patient with chronic diarrhoea. AIDS 2003, 17, 941–942. [Google Scholar] [CrossRef]
- Clyti, E.; Aznar, C.; Couppie, P.; El Guedj, M.; Carme, B.; Pradinaud, R. A case of coinfection by Balantidium coli and HIV in French Guiana. Bull. Soc. Pathol. Exot. 1998, 91, 309–311. [Google Scholar]
- Ferry, T.; Bouhour, D.; De Monbrison, F.; Laurent, F.; Dumouchel-Champagne, H.; Picot, S.; Piens, M.A.; Granier, P. Severe peritonitis due to Balantidium coli acquired in France. Eur. J. Clin. Microbiol. Infect. Dis. 2004, 23, 393–395. [Google Scholar] [CrossRef]
- Young, M.D. Balantidiasis. JAMA 1939, 113, 580–584. [Google Scholar] [CrossRef]
- Esteban, J.G.; Angles, R.; Mas-Coma, S.; Aguirre, C.; Ash, L.R. Balantidiasis in Aymara children from the northern Bolivian Altiplano. Am. J. Trop. Med. Hyg. 1998, 59, 922–927. [Google Scholar] [CrossRef] [PubMed]
- Debuys, L.R. Balantidium coli infection with report of a case in a child. Arch. Pediatr. Adolesc. Med. 1918, 16, 123. [Google Scholar] [CrossRef] [Green Version]
- Kaur, R.; Rawat, D.; Kakkar, M.; Uppal, B.; Sharma, V.K. Intestinal parasites in children with diarrhea in Delhi, India. Southeast Asian J. Trop. Med. Public Health 2002, 33, 725–729. [Google Scholar]
- Kaminsky, R.G.; Castillo, R.V.; Flores, C.A. Growth retardation and severe anemia in children with Trichuris dysenteric syndrome. Asian Pac. J. Trop. Biomed. 2015, 5, 591–597. [Google Scholar] [CrossRef] [Green Version]
- Barnish, G.; Ashford, R.W. Occasional parasitic infections of man in Papua New Guinea and Irian Jaya (New Guinea). Ann. Trop. Med. Parasitol. 1989, 83, 121–135. [Google Scholar] [CrossRef]
- O’Sullivan, J.N. The social and environmental influences of population growth rate and demographic pressure deserve greater attention in ecological economics. Ecol. Econ. 2020, 172, 106648. [Google Scholar] [CrossRef]
- Trabelsi, N.; Nalbone, L.; Di Rosa, A.; Ed-Dra, A.; Nait-Mohamed, S.; Mhamdi, R.; Giuffrida, A.; Giarratana, F. Marinated anchovies (Engraulis encrasicolus) prepared with flavored olive oils (Chétoui cv.): Anisakicidal effect, microbiological, and sensory evaluation. Sustainability 2021, 13, 5310. [Google Scholar] [CrossRef]
- Zhao, Q.; Liu, Y. Is anaerobic digestion a reliable barrier for deactivation of pathogens in biosludge? Sci. Total. Environ. 2019, 668, 893–902. [Google Scholar] [CrossRef]
- Remais, J.; Chen, L.; Seto, E. Leveraging rural energy investment for parasitic disease control: Schistosome ova inactivation and energy co-benefits of anaerobic digesters in rural China. PLoS ONE 2009, 4, e4856. [Google Scholar] [CrossRef] [Green Version]
- Williams, D.J.; Faiz, M.A.; Abela-Ridder, B.; Ainsworth, S.; Bulfone, T.C.; Nickerson, A.D.; Habib, A.G.; Junghanss, T.; Fan, H.W.; Turner, M.; et al. Strategy for a globally coordinated response to a priority neglected tropical disease: Snakebite envenoming. PLoS Negl. Trop. Dis. 2019, 13, e0007059. [Google Scholar] [CrossRef] [Green Version]
- Hotez, P.J. Global urbanization and the neglected tropical diseases. PLoS Negl. Trop. Dis. 2017, 11, e0005308. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Perrings, C.; Kinzig, A.; Collins, J.P.; Minteer, B.A.; Daszak, P. Economic growth, urbanization, globalization, and the risks of emerging infectious diseases in China: A review. Ambio 2017, 46, 18–29. [Google Scholar] [CrossRef] [PubMed]
- Sangioni, L.A.; Botton, S.D.A.; Ramos, F.; Cadore, G.C.; Monteiro, S.G.; Pereira, D.I.B.; Vogel, F.S.F. Balantidium coli in pigs of distinct animal husbandry categories and different hygienic-sanitary standards in the central region of Rio Grande do Sul State, Brazil. Acta Sci. Vet. 2017, 45, 6. [Google Scholar] [CrossRef] [Green Version]
- Booth, M. Climate change and the neglected tropical diseases. Adv. Parasitol. 2018, 100, 39–126. [Google Scholar] [CrossRef] [PubMed]
- Tidman, R.; Abela-Ridder, B.; de Castañeda, R.R. The impact of climate change on neglected tropical diseases: A systematic review. Trans. R. Soc. Trop. Med. Hyg. 2021, 115, 147–168. [Google Scholar] [CrossRef]
- Gupta, A.; Singh, N.K.; Singh, H.; Rath, S.S. Prevalence of Balantidium coli infection in dairy animals of different agro-climatic zones of Punjab. J. Vet. Parasitol. 2014, 28, 146–150. [Google Scholar]
- Skírnisson, K.; Richter, S.H.; Eydal, M. Prevalence of human parasites in Iceland. In Parasites of the Colder Climates, 1st ed.; Skírnisson, K., Richter, S.H., Eydal, M., Eds.; CRC Press: Boca Raton, FL, USA, 2002; pp. 34–44. [Google Scholar]
- Svensson, R.M. A survey of human intestinal protozoa in Sweden and Finland. (A preliminary report). Parasitology 1928, 20, 237–249. [Google Scholar] [CrossRef]
- Condemayta, Z.; Condemayta, D.; Ruelas, D.; Ibañez, V. Prevalencia de Balantidium coli en la población humana y porcina asociado a factores socioeconómicos y saneamiento ambiental en el Distrito de Acora Puno Perú. Rev. Investig. Altoandinas 2018, 20, 85–94. [Google Scholar] [CrossRef]
- Walzer, P.D.; English, D.K.; Judson, F.N.; Schultz, M.G.; Healy, G.R.; Murphy, K.B. Balantidiasis outbreak in Truk. Am. J. Trop. Med. Hyg. 1973, 22, 33–41. [Google Scholar] [CrossRef]
- The World Bank. 2021. Available online: https://www.worldbank.org/en/topic/poverty/overview#1 (accessed on 25 April 2021).
- Karou, S.D.; Sanou, D.; Ouermi, D.; Pignatelli, S.; Pietra, V.; Moret, R.; Nikiema, J.B.; Simpore, J. Enteric parasites prevalence at Saint Camille medical centre in Ouagadougou, Burkina Faso. Asian Pac. J. Trop. Med. 2011, 4, 401–403. [Google Scholar] [CrossRef] [Green Version]
- Lilly, A.A.; Mehlman, P.T.; Doran, D. Intestinal parasites in gorillas, chimpanzees, and humans at Mondika research site, Dzanga-Ndoki National Park, Central African Republic. Int. J. Primatol. 2002, 23, 555–573. [Google Scholar] [CrossRef]
- Eriso, F. Screening for opportunistic intestinal parasites in HIV/AIDS patients, attending the services of medical care in three different hospitals, Southern Ethiopia. Afro-Egyptian J. Infect. Endem. Dis. 2015, 5, 15–23. [Google Scholar] [CrossRef]
- Owen, I.; Craig, H.; Craig, P. Parasitic zoonoses in Papua New Guinea. J. Helminthol. 2005, 79, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Cameira, R.M.S. Gastrointestinal Symbionts of Wild Chimpanzees and Sympatric Colobus Monkeys Living in Close Proximity of Humans in Liberia and Uganda. Ph.D. Dissertation, Universidade de Lisboa, Faculdade de Medicina Veterinária, Lisboa, Portugal, 2018. [Google Scholar]
- de Jongh, R.; Laarman, J.J. Two cases of balantidium infection in Liberia. Trop. Geogr. Med. 1961, 13, 203–206. [Google Scholar]
- Pitman, C.; Amali, R.; Kanyerere, H.; Siyasiya, A.; Phiri, S.; Phiri, A.; Chakanika, I.; Kampondeni, S.; Chintolo, F.; Kachenje, E.; et al. Bloody diarrhoea of adults in Malawi: Clinical features, infectious agents, and antimicrobial sensitivities. Trans. R. Soc. Trop. Med. Hyg. 1996, 90, 284–287. [Google Scholar] [CrossRef]
- Chilaule, J.; Moiane-Cossa, I.; Cassocera, M.; Guimarães, E.; Manhique, L.; Sambo, J.; Bero, D.; De Deus, N.; Langa, J.; Langa, J. Etiology of diarrheal disease in children from 0 to 14 years old admitted in Hospital Geral Mavalane, Mozambique. Int. J. Infect. Dis. 2016, 45, 295. [Google Scholar] [CrossRef] [Green Version]
- Danladi, Y.K.; Abubakar, U.; Attah, D.D. Status of intestinal parasites infection in schoolchildren at Yauri Emirate of Kebbi state, northwestern Nigeria. Int. J. Appl. Nat. Sci. 2010, 6, 72–75. [Google Scholar]
- Hodges, M. Diarrhoeal disease in early childhood: Experiences from Sierra Leone. Parasitology 1993, 107, S37–S51. [Google Scholar] [CrossRef]
- Berger, S. Infectious Diseases of Sierra Leone, 2020 ed.; GIDEON Informatics Inc.: Los Angeles, CA, USA, 2020; p. 23. [Google Scholar]
- Cicchitto, A.M. First cases of balantidiosls recorded in Italian Somallland. Arch. Ital. Sci. Med. Trop. e Parassit. 1937, 18, 118–119. [Google Scholar]
- Al-Haddad, A.M.; Baswaid, S.H. Frequency of intestinal parasitic infection among children in Hadhramout governorate (Yemen). J. Egypt. Soc. Parasitol. 2010, 40, 479–488. [Google Scholar]
- The World Bank. 2021. Available online: https://datahelpdesk.worldbank.org/knowledgebase/articles/906519-world-bank-country-and-lending-groups (accessed on 10 April 2021).
- Al Kilani, M.K.; Dahesh, S.; A El Taweel, H. Intestinal parasitosis in Nalout popularity, western Libya. J. Egypt. Soc. Parasitol. 2008, 38, 255–264. [Google Scholar]
- Yu, P.; Rong, J.; Zhang, Y.; Du, J. Dysentery caused by Balantidium coli in China. Korean J. Parasitol. 2020, 58, 47–49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, S.; Harding, G. Necrotizing lung infection caused by the protozoan Balantidium coli. Can. J. Infect. Dis. Med. Microbiol. 2003, 14, 163–166. [Google Scholar] [CrossRef] [Green Version]
- Randhawa, S.N.S.; Singla, L.D.; Randhawa, C.S. Chronic cattle diarrhoea due to Balantidium coli infection-a clinical report. J. Vet. Parasitol. 2010, 24, 197–198. [Google Scholar]
- Bauri, R.; Ranjan, R.; Deb, A. Prevalence and sustainable control of Balantidium coli infection in pigs of Ranchi, Jahrkahnd, India. Vet. World 2012, 5, 94. [Google Scholar] [CrossRef]
- Conteh, L.; Engels, T.; Molyneux, D.H. Socioeconomic aspects of neglected tropical diseases. Lancet 2010, 375, 239–247. [Google Scholar] [CrossRef]
- Hassan, N.; Randhawa, C.; Randhawa, S.; Narang, D. Chronic diarrhea and therapeutic trial with metronidazole in Balantidium coli infected cattle and buffaloes. Int. J. Livest. Res. 2017, 7, 4–81. [Google Scholar] [CrossRef]
- Sengar, Y.S.; Singh, V. Comparative therapeutic efficacy of tetracycline hydrochloride and metronidazole plus furazolidone against Balantidium coli infection in buffalo calves. Vet. Parasitol. 2006, 20, 89–91. [Google Scholar]
- Schumaker, E. Balantidium coli: Host specificity and relation to the diet of an experimental host. Am. J. Epidemiol. 1930, 12, 341–365. [Google Scholar] [CrossRef]
- Hotez, P.J.; Aksoy, S.; Brindley, P.J.; Kamhawi, S. What constitutes a neglected tropical disease? PLoS Negl. Trop. Dis. 2020, 14, e0008001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schuster, F.L.; Visvesvara, G.S. Amebae and ciliated protozoa as causal agents of waterborne zoonotic disease. Vet. Parasitol. 2004, 126, 91–120. [Google Scholar] [CrossRef] [PubMed]
SDG | Pillar | Linkage between Balantidiasis and SDG | Efforts against the B. Coli Spread and Relative Effects on SDP |
---|---|---|---|
G1: End poverty in all its forms everywhere | III 3 | Economic deprivation makes some basic services less accessible and limits opportunities for access to medical cures and basic hygienic conditions. Moreover, potential debilitating effects of balantidiasis could cause economic failures due to adverse effects on farm productivity or in terms of workforce when humans are affected. | Easy access to medical cures (preventing concomitant diseases that could enhance the severity of balantidiasis). Basic hygiene standards education would contribute to limiting the spread of B. coli infection among animals and humans. |
G2: End hunger, achieve food security and improve nutrition and promote sustainable agriculture | III 3 | B. coli is potentially one of the most neglected food- and waterborne diseases. The parasite displays a direct lifecycle, and in the developing countries, the main transmission route of the disease is the consumption of cysts-contaminated foodstuffs. | Increasing food security in terms of quality and safety reduces significantly the risk of transmission of the disease. |
G3: Ensure healthy lives and promote well-being for all of all ages | I 1 | The main symptom of the B. coli infection is dysentery that determines the suffering of the affected human/animal and increases the cysts shedding and therefore the spread of the disease. Furthermore, B. coli infection can worsen the life quality of animals and humans affected by other debilitating diseases. | Reducing B. coli infection and the relative symptomatology limits its spread and contributes to well-being. |
G4: Ensure inclusive and equitable quality education and promote lifelong learning opportunities for all | I 1 | Debilitating effects of balantidiasis can reduce school attendance and, therefore, the level of education. The low level of schooling negatively impacts social and economic growth. | Basic school education is key to social and economic development. Therefore, limiting the incidence of balantidiasis inevitably favors the possibility of school attendance. |
G5: Achieve gender equality and empower all women and girls | I 1 | Ending discrimination against girls and women can be impeded and exacerbated by B. coli infection. The associated weakening effects limit the ability to carry out all the social activity for their self-determination. | Physical and mental health are essential prerequisites for the emancipation of everyone. Therefore, avoiding any diseases, especially the neglected ones such as balatidiasis, contributes significantly to equal rights between men and women. |
G6: Ensure availability and sustainable management of water and sanitation for all | III 3 | In the developing countries, the fecal–oral transmission of B. coli occurs mainly through the ingestion of water contaminated with cysts. The lack of adequate sanitation processes favors the spread of the protozoa through contaminated drinking and recreational water. | Water and sanitation play the key role in the spread of the protozoa. Proper management of the sanitation process significantly contributes to reducing the risk of infection. |
G7: Ensure access to affordable, reliable, sustainable and modern energy for all | II 2 | Interest in the development of new forms of sustainable energy is growing. Farm waste is among the most studied and used compounds for the development of bioenergy. In this context, B. coli could cause losses at farms in terms of production performance such that farmers cannot spend time and economic resources for the development of new sustainable energy forms. | Maintaining healthy farms ensures greater productivity and sufficient resources for the research and development of new and renewable energy that can be useful in economic and social growth, especially of the poorest and most marginalized areas. |
G8: Promote inclusive and sustainable economic growth, full and productive employment and decent work for all | III 3 | A neglected zoonotic disease such as balantidiasis can be a significant burden for the economy of small rural areas where livestock farming is the main source of livelihood. Lower livestock productivity and lack of workforce contribute to limitations of economic and social development. | Health education and implementation of control measures for the hygienic management of farms would contribute to reducing the spread of B. coli, decreasing the risks of diseases for animals and humans and also increasing job opportunities. |
G9: Build resilient infrastructure, promote inclusive and sustainable industrialization and foster innovation | II 2 | Inadequately constructed and designed houses and farms inevitably contribute to the spread of the protozoan. A high incidence of the parasite was found at overcrowded farms due to insufficient spaces and a higher incidence in humans related to the presence of animals in the domestic environment due to the lack of separate breeding facilities. | The education for basic architectural principles and rules for the correct management of farms would certainly contribute to raising the quality of the infrastructure and at the same time reducing the possible spread of the parasite as a result of poor hygiene of the environments. |
G10: Reduce inequality within and among countries | I 1 | Nowadays, global health is considered a multidimensional concept and is the result of biological, economic, social, political, cultural, and environmental processes. Therefore, debilitating diseases (such as balantidiasis) and inequality can both be considered mutual causes and effects: the social and economic burden of diseases contributes to increasing inequalities and social stigmas which, in turn, foster indifference towards the most discriminated. | Promoting active participation of the poorest and marginalized people in the economic and social life of the country certainly reduces the inequalities, pushing for a more inclusive approach towards people who are sick or economically deprived by the disease. |
G11: Make cities and human settlements inclusive, safe, resilient and sustainable | II 2 | To cope with increasing urbanization, especially in the developing countries, a more sustainable approach is needed in the management of urban spaces. If this transition is not properly managed (e.g., slum construction), there is a real risk that the incidence of neglected diseases such as balantidiasis could increase as we move from rural to urban areas. | Health education is the most effective way to understand the main risk factors of the spread of balantidiasis and how to manage them. |
G12: Ensure sustainable consumption and production patterns | II 2 | Balantidium coli is mainly transmitted by ingestion of contaminated water. Chemicals are often used to manage water sanitation. All of this contributes to reducing the availability of drinking water with implications on sustainable growth. | Proper health and hygiene management of farms as well as the disclosure of prophylactic measurements would help to reduce environmental contamination and limit the use of chemicals. |
G13: Take urgent action to combat climate change and its impacts | II 2 | Efforts needed to manage B. coli infection inevitably require consumption of resources that impact the environment, contributing to an increase in climate change. The increase in temperature, rainfall, and humidity supports the spread of the protozoa. | Awareness campaigns for the causes and effects of climate change would help to understand the relationship between climate and animal health. |
G14: Conserve and sustainably use the oceans, seas and marine resources for sustainable development | II 2 | The health of the marine and coastal environments is a prerequisite for the well-being of humans and animals. The freshwater ecosystem can be contaminated with cysts of B. coli due to inadequate sewage management from close farms that can reach the marine environment when carried by rivers. | Clean water bodies are important to maintain food security and good sanitation. Proper construction and management of farms should exclude water contamination by B. coli. |
G15: Protect, restore and promote sustainable use of terrestrial ecosystems, sustainably manage forests, combat desertification, and halt and reverse land degradation and halt biodiversity loss | II 2 | The breeding of native species represents a reasonable alternative given more sustainable development of the farming system. In addition to a wide range of animal species, B. coli was detected in autochthones species, and its potentially debilitating effects raise concerns for the preservation of biodiversity and the development of a more sustainable breeding system. | Increase efforts to enhance local resources and raise awareness of the benefits of proper breeding management. |
G16: Promote peaceful and inclusive societies for sustainable development, provide access to justice for all and build effective, accountable and inclusive institutions at all levels | I 1 | Outbreaks of neglected tropical diseases such as balantidiasis can more easily occur during wars, famines, and crises. | Interventions in crisis-hit places can help improve the local situation and instil peace. |
G17: Strengthen the means of implementation and revitalize the global partnership for sustainable development | I 1 II 2 III 3 | The economic and social strength of partnerships between private companies and public bodies constitute a surely winning approach to the long-term fight against all neglected tropical diseases, including balantidiasis. | Promote new international partnerships based on previous experiences. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nalbone, L.; Giarratana, F.; Napoli, E. Balantidiasis: A Neglected Tropical Disease Used as a Study Model for a Holistic Approach to Sustainable Development in the Framework of Agenda 2030 Goals. Sustainability 2021, 13, 12799. https://doi.org/10.3390/su132212799
Nalbone L, Giarratana F, Napoli E. Balantidiasis: A Neglected Tropical Disease Used as a Study Model for a Holistic Approach to Sustainable Development in the Framework of Agenda 2030 Goals. Sustainability. 2021; 13(22):12799. https://doi.org/10.3390/su132212799
Chicago/Turabian StyleNalbone, Luca, Filippo Giarratana, and Ettore Napoli. 2021. "Balantidiasis: A Neglected Tropical Disease Used as a Study Model for a Holistic Approach to Sustainable Development in the Framework of Agenda 2030 Goals" Sustainability 13, no. 22: 12799. https://doi.org/10.3390/su132212799
APA StyleNalbone, L., Giarratana, F., & Napoli, E. (2021). Balantidiasis: A Neglected Tropical Disease Used as a Study Model for a Holistic Approach to Sustainable Development in the Framework of Agenda 2030 Goals. Sustainability, 13(22), 12799. https://doi.org/10.3390/su132212799