Urban Growth Patterns and Forest Carbon Dynamics in the Metropolitan Twin Cities of Islamabad and Rawalpindi, Pakistan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Satellite Data and Pre-Processing
2.3. Extraction of LULCC Maps and Analysis
2.4. Accuracy Assessment
2.5. Carbon Dynamics
2.6. Normalized Difference Vegetation Index (NDVI)
3. Results
3.1. Urban Growth
3.2. Forest Carbon Dynamics
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bagan, H.; Yamagata, Y. Land-cover change analysis in 50 global cities by using a combination of Landsat data and analysis of grid cells. Environ. Res. Lett. 2014, 9, 064015. [Google Scholar] [CrossRef]
- Sadiq Khan, M.; Ullah, S.; Sun, T.; Rehman, A.U.; Chen, L. Land-Use/Land-Cover Changes and Its Contribution to Urban Heat Island: A Case Study of Islamabad, Pakistan. Sustainability 2020, 12, 3861. [Google Scholar] [CrossRef]
- Moulds, S.; Buytaert, W.; Mijic, A. An open and extensible framework for spatially explicit land use change modelling: The lulcc R package. Geosci. Model Dev. 2015, 8, 3215–3229. [Google Scholar] [CrossRef] [Green Version]
- Nagendra, H.; Bai, X.; Brondizio, E.S.; Lwasa, S. The urban south and the predicament of global sustainability. Nat. Sustain. 2018, 1, 341–349. [Google Scholar] [CrossRef]
- Hanif, I. Impact of fossil fuels energy consumption, energy policies, and urban sprawl on carbon emissions in East Asia and the Pacific: A panel investigation. Energy Strategy Rev. 2018, 21, 16–24. [Google Scholar] [CrossRef]
- Habibi, S.; Asadi, N. Causes, results and methods of controlling urban sprawl. Procedia Eng. 2011, 21, 133–141. [Google Scholar] [CrossRef] [Green Version]
- Angel, S.; Parent, J.; Civco, D.; Blei, A. Atlas of Urban Expansion; Lincoln Institute of Land Policy: Cambridge, MA, USA, 2012. [Google Scholar]
- Seto, K.C.; Güneralp, B.; Hutyra, L.R. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc. Natl. Acad. Sci. USA 2012, 109, 16083–16088. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mukete, B.; Sun, Y. Assessing the Effectiveness of Urban Nature Reserves on Biodiversity Conservation. Appl. Ecol. Environ. Sci. 2014, 2, 130–134. [Google Scholar]
- Khan, T.U.; Mannan, A.; Hacker, C.E.; Ahmad, S.; Amir Siddique, M.; Khan, B.U.; Din, E.U.; Chen, M.; Zhang, C.; Nizami, M. Use of GIS and Remote Sensing Data to Understand the Impacts of Land Use/Land Cover Changes (LULCC) on Snow Leopard (Panthera uncia) Habitat in Pakistan. Sustainability 2021, 13, 3590. [Google Scholar] [CrossRef]
- Camagni, R.; Gibelli, M.C.; Rigamonti, P. Urban mobility and urban form: The social and environmental costs of different patterns of urban expansion. Ecol. Econ. 2002, 40, 199–216. [Google Scholar] [CrossRef]
- Hassan, Z.; Shabbir, R.; Ahmad, S.S.; Malik, A.H.; Aziz, N.; Butt, A.; Erum, S. Dynamics of land use and land cover change (LULCC) using geospatial techniques: A case study of Islamabad Pakistan. SpringerPlus 2016, 5, 812. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Tian, H.; Liu, M.; Zhuang, D.; Melillo, J.M.; Zhang, Z. China’s changing landscape during the 1990s: Large-scale land transformations estimated with satellite data. Geophys. Res. Lett. 2005, 32. [Google Scholar] [CrossRef] [Green Version]
- Negassa, M.D.; Mallie, D.T.; Gemeda, D.O. Forest cover change detection using Geographic Information Systems and remote sensing techniques: A spatio-temporal study on Komto Protected Forest priority area, East Wollega Zone, Ethiopia. Environ. Syst. Res. 2020, 9, 1–14. [Google Scholar] [CrossRef]
- Shah, F.; Wei, L.; Lashari, A.; Islam, A.; Khattak, H.; Rasool, U. Evaluation of land use and land cover Spatio-temporal change during rapid Urban sprawl from Lahore, Pakistan. Urban Clim. 2021, 39, 100931. [Google Scholar] [CrossRef]
- Marcotullio, P.J.; Braimoh, A.K.; Onishi, T. The impact of urbanization on soils. In Land Use and Soil Resources; Springer: Berlin/Heidelberg, Germany, 2008; pp. 201–250. [Google Scholar]
- Hansen, V.; Müller-Stöver, D.; Ahrenfeldt, J.; Holm, J.K.; Henriksen, U.B.; Hauggaard-Nielsen, H. Gasification biochar as a valuable by-product for carbon sequestration and soil amendment. Biomass Bioenergy 2015, 72, 300–308. [Google Scholar] [CrossRef] [Green Version]
- Coetzee, D.; Fox, A.; Hearst, M.A.; Hartmann, B. Should your MOOC forum use a reputation system? In Proceedings of the 17th ACM conference on Computer Supported Cooperative Work & Social Computing, Baltimore, MD, USA, 15–19 February 2014; pp. 1176–1187. [Google Scholar]
- Le Roux, D.S.; Ikin, K.; Lindenmayer, D.B.; Blanchard, W.; Manning, A.D.; Gibbons, P. Reduced availability of habitat structures in urban landscapes: Implications for policy and practice. Landsc. Urban Plan. 2014, 125, 57–64. [Google Scholar] [CrossRef]
- Mukete, B.; Sun, Y.; Etongo, D.; Ekoungoulou, R.; Folega, F.; Sajjad, S.; Ngoe, M.; Ndiaye, G. Household characteristics and forest resources dependence in the rumpi hills of Cameroon. Appl. Ecol. Environ. Res. 2018, 16, 2755–2779. [Google Scholar] [CrossRef]
- Chaplin-Kramer, R.; Sharp, R.P.; Mandle, L.; Sim, S.; Johnson, J.; Butnar, I.; Canals, L.M.I.; Eichelberger, B.A.; Ramler, I.; Mueller, C. Spatial patterns of agricultural expansion determine impacts on biodiversity and carbon storage. Proc. Natl. Acad. Sci. USA 2015, 112, 7402–7407. [Google Scholar] [CrossRef] [Green Version]
- Mannan, A.; Feng, Z.; Ahmad, A.; Liu, J.; Saeed, S.; Mukete, B. Carbon dynamic shifts with land use change in Margallah hills national park, Islamabad (Pakistan) from 1990 to 2017. Appl. Ecol. Environ. Res. 2018, 16, 3197–3214. [Google Scholar] [CrossRef]
- Li, M.; Chu, R.; Islam, A.R.M.T.; Shen, S. Characteristics of surface evapotranspiration and its response to climate and land use and land cover in the Huai River Basin of eastern China. Environ. Sci. Pollut. Res. 2021, 28, 683–699. [Google Scholar] [CrossRef] [PubMed]
- Beckline, M.; Yujun, S.; Etongo, D.; Saeed, S.; Mannan, A. Assessing the drivers of land use change in the Rumpi hills forest protected area, Cameroon. J. Sustain. For. 2018, 37, 592–618. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, K.; Fu, Y.; Zhang, H. Examining land-use/land-cover change in the Lake Dianchi Watershed of the Yunnan-Guizhou Plateau of southwest China with remote sensing and GIS techniques: 1974–2008. Int. J. Environ. Res. Public Health 2012, 9, 3843–3865. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beckline, M.; Yujun, S.; Yvette, B.; John, A.B.; Mor-Achankap, B.; Saeed, S.; Richard, T.; Wose, J.; Paul, C. Perspectives of remote sensing and GIS applications in tropical forest management. Am. J. Agric. For. 2017, 5, 33–39. [Google Scholar] [CrossRef] [Green Version]
- Fokeng, M.; Meli, M. Modelling drivers of forest cover change in the Santchou Wildlife Reserve, West Cameroon using remote sensing and land use dynamic degree indexes. Can. J. Trop. Geogr. 2015, 2, 29–42. [Google Scholar]
- Willkomm, M.; Bolten, A.; Bareth, G. Non-Destructive Monitoring of Rice by Hyperspectral In-Field Spectrometry And Uav-Based Remote Sensing: Case Study Of Field-Grown Rice In North Rhine-Westphalia, Germany. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, 41, 1071–1077. [Google Scholar] [CrossRef] [Green Version]
- Haque, N.U. Flawed Urban Development Policies in Pakistan; Pakistan Institute of Development Economics: Islamabad, Pakistan, 2015. [Google Scholar]
- Bilal, M. Operations and Projects Performance and Quality Metrics for Capital Development Authority (CDA) Islamabad. Available online: https://www.academia.edu/8317062/Operations_and_Projects_Performance_and_Quality_Metrics_for_Capital_Development_Authority_CDA_Islamabad (accessed on 5 September 2021).
- Chandio, S.H.; Ahmed, S.M.; Bhutto, S.U.A.; Sanjrani, M.A.; Khaskheli, N.A. Impact of Natural Events and Anthropogenic Activities on the Biodiversity of Margallah Hills National Park Islamabad (MHNP). N. Am. Acad. Res. 2019, 2, 20–32. [Google Scholar]
- Ilmas, B.; Mir, K.A.; Khalid, S. Greenhouse gas emissions from the waste sector: A case study of Rawalpindi in Pakistan. Carbon Manag. 2018, 9, 645–654. [Google Scholar] [CrossRef]
- Gill, M.I.; Saqib, F. A Comparitive analysis of demographic, fertility and urban transition in Pakistan and the world around. Pak. Geogr. Rev. 2019, 74, 33–47. [Google Scholar]
- Adeel, M. The role of Land Use Policy behind unauthorized spatial expansion in rural areas of Islamabad. In Proceedings of the 46th ISOCARP Congress, Nairobi, Kenya, 19–23 September 2010. [Google Scholar]
- Hussain, M.S.; Lee, S.-H. A classification of rainfall regions in Pakistan. J. Korean Geogr. Soc. 2009, 44, 605–623. [Google Scholar]
- Akram, A.; Rais, M.; Asadi, M.A.; Jilani, M.J.; Balouch, S.; Anwar, M.; Saleem, A. Do habitat variables correlate anuran abundance in arid terrain of Rawalpindi–Islamabad Areas, Pakistan? J. King Saud Univ.-Sci. 2015, 27, 278–283. [Google Scholar] [CrossRef] [Green Version]
- Amoatey, P.; Sulaiman, H.; Kwarteng, A.; Al-Reasi, H.A. Above-ground carbon dynamics in different arid urban green spaces. Environ. Earth Sci. 2018, 77, 431. [Google Scholar] [CrossRef]
- Nguyen, H.C.; Jung, J.; Lee, J.; Choi, S.-U.; Hong, S.-Y.; Heo, J. Optimal atmospheric correction for above-ground forest biomass estimation with the ETM+ remote sensor. Sensors 2015, 15, 18865–18886. [Google Scholar] [CrossRef] [Green Version]
- Kaufman, Y.J. Atmospheric effect on spectral signature-measurements and corrections. IEEE Trans. Geosci. Remote Sens. 1988, 26, 441–450. [Google Scholar] [CrossRef] [Green Version]
- Rwanga, S.S.; Ndambuki, J.M. Accuracy assessment of land use/land cover classification using remote sensing and GIS. Int. J. Geosci. 2017, 8, 611. [Google Scholar] [CrossRef] [Green Version]
- Frutuoso, R.; Lima, A.; Teodoro, A.C. Application of remote sensing data in gold exploration: Targeting hydrothermal alteration using Landsat 8 imagery in northern Portugal. Arab. J. Geosci. 2021, 14, 459. [Google Scholar] [CrossRef]
- Payton, I.; Newell, C.L.; Beets, P.N. New Zealand Carbon Monitoring System: Indigenous Forest and Shrubland Data Collection Manual; Manaaki Whenua Landcare Research: Lincoln, New Zealand, 2004.
- Nizami, S.M. The inventory of the carbon stocks in sub-tropical forests of Pakistan for reporting under Kyoto Protocol. J. For. Res. 2012, 23, 377–384. [Google Scholar] [CrossRef]
- Oliver, G.; Pearce, S.; Graham, J.; Beets, P. Carbon in plantation understorey shrubs. Scion Contract Rep. 2009, 43877. [Google Scholar]
- Change, IPCC Guidelines for National Greenhouse Gas Inventories; The Intergovernmental Panel on Climate Change (IPCC): Geneva, Switzerland, 2006.
- Houghton, R. Revised Estimates of the Annual Net Flux of Carbon to the Atmosphere from Changes in Land Use and Land Management 1850–2000. Tellus B 2003, 55, 378–390. [Google Scholar] [CrossRef] [Green Version]
- Köhl, M.; Lasco, R.; Cifuentes, M.; Jonsson, Ö.; Korhonen, K.T.; Mundhenk, P.; de Jesus Navar, J.; Stinson, G. Changes in forest production, biomass and carbon: Results from the 2015 UN FAO Global Forest Resource Assessment. For. Ecol. Manag. 2015, 352, 21–34. [Google Scholar] [CrossRef] [Green Version]
- Baccini, A.; Walker, W.; Carvalho, L.; Farina, M.; Sulla-Menashe, D.; Houghton, R. Tropical forests are a net carbon source based on aboveground measurements of gain and loss. Science 2017, 358, 230–234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nath, B. Quantitative assessment of forest cover change of a part of Bandarban Hill tracts using NDVI techniques. J. Geosci. Geomat. 2014, 2, 21–27. [Google Scholar]
- Yengoh, G.T.; Dent, D.; Olsson, L.; Tengberg, A.E.; Tucker III, C.J. Use of the Normalized Difference Vegetation Index (NDVI) to Assess Land Degradation at Multiple Scales: Current Status, Future Trends, and Practical Considerations; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Olorunfemi, I.E.; Fasinmirin, J.T.; Olufayo, A.A.; Komolafe, A.A. GIS and remote sensing-based analysis of the impacts of land use/land cover change (LULCC) on the environmental sustainability of Ekiti State, southwestern Nigeria. Environ. Dev. Sustain. 2020, 22, 661–692. [Google Scholar] [CrossRef]
- Xu, X.; Jain, A.K.; Calvin, K.V. Quantifying the biophysical and socioeconomic drivers of changes in forest and agricultural land in South and Southeast Asia. Glob. Chang. Biol. 2019, 25, 2137–2151. [Google Scholar] [CrossRef]
- Linares, J.C.; Camarero, J.J.; Carreira, J.A. Interacting effects of changes in climate and forest cover on mortality and growth of the southernmost European fir forests. Glob. Ecol. Biogeogr. 2009, 18, 485–497. [Google Scholar] [CrossRef]
- Yuan, F.; Sawaya, K.E.; Loeffelholz, B.C.; Bauer, M.E. Land cover classification and change analysis of the Twin Cities (Minnesota) Metropolitan Area by multitemporal Landsat remote sensing. Remote Sens. Environ. 2005, 98, 317–328. [Google Scholar] [CrossRef]
- an Rotmans, J. 9 Indicators for Sustainable Development. In Perspectives on Global Change: The TARGETS Approach; Cambridge University Press: Cambridge, UK, 1997; p. 189. [Google Scholar]
- Zhang, L.; Weng, Q.; Shao, Z. An evaluation of monthly impervious surface dynamics by fusing Landsat and MODIS time series in the Pearl River Delta, China, from 2000 to 2015. Remote Sens. Environ. 2017, 201, 99–114. [Google Scholar] [CrossRef]
- Bennett, M.M.; Smith, L.C. Advances in using multitemporal night-time lights satellite imagery to detect, estimate, and monitor socioeconomic dynamics. Remote Sens. Environ. 2017, 192, 176–197. [Google Scholar] [CrossRef]
- Xu, G.; Jiao, L.; Yuan, M.; Dong, T.; Zhang, B.; Du, C. How does urban population density decline over time? An exponential model for Chinese cities with international comparisons. Landsc. Urban Plan. 2019, 183, 59–67. [Google Scholar] [CrossRef]
- Demographic, P.; Survey, H. MEASURE DHS. ICF International Calverton; National Institute of Population Studies: Islamabad, Pakistan, 2012; pp. 2012–2213. [Google Scholar]
- Frantzeskakis, I. Islamabad, a town planning example for a sustainable city. Sustain. Dev. Plan. IV 2009, 1, 175. [Google Scholar]
- Bokhari, S.; Saqib, Z.; Ali, A.; Zaman-Ul-Haq, M. Perception of residents about urban vegetation: A comparative study of planned versus semi-planned cities of Islamabad and Rawalpindi. Pak. J. Ecosyst. Ecography 2018, 8, 2. [Google Scholar] [CrossRef]
- Sohail, M.T.; Mahfooz, Y.; Azam, K.; Yen, Y.; Genfu, L.; Fahad, S. Impacts of urbanization and land cover dynamics on underground water in Islamabad, Pakistan. Desalination Water Treat. 2019, 159, 402–411. [Google Scholar] [CrossRef]
- Maria, S.I.; Imran, M. Planning of Islamabad and Rawalpindi: What went wrong. In Proceedings of the 42nd ISoCaRP Congress, Istanbul, Turkey, 14–18 September 2006; pp. 14–18. [Google Scholar]
- Dogar, N. The Twin City of Islamabad/Rawalpindi: An Evaluative Study of Twenty-Five Years of Plan Implementation. Master’s Thesis, Asian Institute of Technology, Bangkok, Thailand, 1985. [Google Scholar]
- Malik, R.N.; Hashmi, M.Z. Multivariate statistical techniques for the evaluation of surface water quality of the Himalayan foothills streams, Pakistan. Appl. Water Sci. 2017, 7, 2817–2830. [Google Scholar] [CrossRef]
- Tauhidi, A.; Chohan, U.W. Encroachments & the Mystery of Capital: A Pakistani Context. SSRN Electron. J. 2020. [Google Scholar] [CrossRef]
- Siddique, I.A.Q.; Ahmed, J. Improvement of seed germination in some important multi-purpose leguminous trees of Islamabad Area: An experimental study. Basic Res. J. Agric. Sci. Rev. 2015, 4, 217–224. [Google Scholar]
- Beacco, D. Urban Planning in Islamabad: From the Modern Movement to the Contemporary Urban Development Between Formal and Informal Settlements. In Sustainable Urban Development and Globalization; Springer: Berlin/Heidelberg, Germany, 2018; pp. 65–74. [Google Scholar]
- Chen, X.-W.; Liu, M. Prediction of protein–protein interactions using random decision forest framework. Bioinformatics 2005, 21, 4394–4400. [Google Scholar] [CrossRef]
- Shinwari, M.I.; Khan, M.A. Folk use of medicinal herbs of Margalla hills national park, Islamabad. J. Ethnopharmacol. 2000, 69, 45–56. [Google Scholar] [CrossRef]
- Ashraf, I.; Saeed, U.; Shahzad, N.; Gill, J.; Parvez, S.; Raja, A. Delineating legal forest boundaries to combat illegal forest encroachments: A case study in Murree Forest division, Pakistan. In Forensic GIS; Springer: Berlin/Heidelberg, Germany, 2014; pp. 263–286. [Google Scholar]
- Mannan, A.; Liu, J.; Zhongke, F.; Khan, T.U.; Saeed, S.; Mukete, B.; ChaoYong, S.; Yongxiang, F.; Ahmad, A.; Amir, M. Application of land-use/land cover changes in monitoring and projecting forest biomass carbon loss in Pakistan. Glob. Ecol. Conserv. 2019, 17, e00535. [Google Scholar] [CrossRef]
- Fang, J.; Guo, Z.; Piao, S.; Chen, A. Terrestrial vegetation carbon sinks in China, 1981–2000. Sci. China Ser. D Earth Sci. 2007, 50, 1341–1350. [Google Scholar] [CrossRef]
S. No. | Class Name | Description |
---|---|---|
1 | FL | Land cover with forest or reserved for the growth of forest. |
2 | BA | Any artificial infrastructure, commercial areas, residential buildings, roads, factories, industrial zones, towns, villages, and cities. |
3 | AL | Orchards, crop fields, and gardens. |
4 | WB | Rivers, lakes, streams, ponds, and other water reservoirs. |
5 | BM | Mountainous regions with no vegetation. |
6 | BL | Land with no vegetation. |
Land Use Classes | Rawalpindi (ha) | Islamabad (ha) | Change (ha) | ||
---|---|---|---|---|---|
1990 | 2020 | 1990 | 2020 | (1990–2020) | |
Built-up Area | 2561.02 | 15,231.61 | 3018.42 | 27,218.06 | 36,870.23 |
Forest Land | 4930.55 | 1973.82 | 19,973.03 | 25,495.16 | 2564.4 |
Barren Land | 7156.52 | 2671.31 | 8952.93 | 8275.41 | −13,489.3 |
Agricultural Land | 8718.39 | 2999 | 28,697.64 | 19,693.57 | −14,723.5 |
Barren Mountains | 1291.87 | 2907.82 | 28,894.72 | 9222.44 | −18,056.3 |
Water Bodies | 1242 | 117.18 | 1083.15 | 791.9 | −1416.07 |
Rawalpindi | Islamabad | |||
---|---|---|---|---|
Land-Use Classes Land-Use Classes | Total Change (%) | Annual Change (%) | Total Change (%) | Annual Change (%) |
Built-up Area | 494.74 | 16.49 | 801.73 | 26.72 |
Forest Land | −59.96 | −1.99 | 27.64 | 0.92 |
Barren Land | −62.67 | −2.08 | −7.56 | −0.25 |
Agricultural Land | −65.60 | −2.18 | −31.37 | −1.04 |
Barren Mountains | 125.08 | 4.16 | −68.08 | −2.26 |
Water Bodies | −90.564 | −3.018 | −26.886 | −0.899 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mannan, A.; Yongxiang, F.; Khan, T.U.; Nizami, S.M.; Mukete, B.; Ahmad, A.; Amara, U.; Liu, J.; Wali Muhammad, M. Urban Growth Patterns and Forest Carbon Dynamics in the Metropolitan Twin Cities of Islamabad and Rawalpindi, Pakistan. Sustainability 2021, 13, 12842. https://doi.org/10.3390/su132212842
Mannan A, Yongxiang F, Khan TU, Nizami SM, Mukete B, Ahmad A, Amara U, Liu J, Wali Muhammad M. Urban Growth Patterns and Forest Carbon Dynamics in the Metropolitan Twin Cities of Islamabad and Rawalpindi, Pakistan. Sustainability. 2021; 13(22):12842. https://doi.org/10.3390/su132212842
Chicago/Turabian StyleMannan, Abdul, Fan Yongxiang, Tauheed Ullah Khan, Syed Moazzam Nizami, Beckline Mukete, Adnan Ahmad, Ummay Amara, Jincheng Liu, and Mamoona Wali Muhammad. 2021. "Urban Growth Patterns and Forest Carbon Dynamics in the Metropolitan Twin Cities of Islamabad and Rawalpindi, Pakistan" Sustainability 13, no. 22: 12842. https://doi.org/10.3390/su132212842
APA StyleMannan, A., Yongxiang, F., Khan, T. U., Nizami, S. M., Mukete, B., Ahmad, A., Amara, U., Liu, J., & Wali Muhammad, M. (2021). Urban Growth Patterns and Forest Carbon Dynamics in the Metropolitan Twin Cities of Islamabad and Rawalpindi, Pakistan. Sustainability, 13(22), 12842. https://doi.org/10.3390/su132212842