Sorghum Production Constraints, Trait Preferences, and Strategies to Combat Drought in Tanzania
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling and Respondents
2.3. Research Design and Data Collection
2.4. Statistical Data Analysis
3. Results
3.1. Socio Economic Characteristics of Smallholder Farmers Growing Sorghum
3.2. Improved Sorghum Varieties Cultivated by Farmers
3.3. Source of Sorghum Seed Adopted by Farmers
3.4. Constraints Facing Sorghum Production
3.5. Ranks of Sorghum Variety Trait Preferences by Respondents
3.6. Factors Influencing Sorghum Productivity
3.7. Factors Influencing Adoption of Improved Sorghum Varieties
3.8. Strategies Used by Sorghum Farmers to Address Drought
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Bongaarts, J. Human population growth and the demographic transition. Phil. Trans. R. Soc. B. 2009, 364, 2985–2990. [Google Scholar] [CrossRef] [Green Version]
- FAO. Climate-Smart Agriculture Training Manual—A Reference Manual for Agricultural Extension Agents; FAO: Rome, Italy, 2018; Volume 106. [Google Scholar]
- FAO; IFAD; UNICEF; WFP; WHO. The State of Food Security and Nutrition in the World. Building Climate Resilience for Food Security and Nutrition; FAO: Rome, Italy, 2018. [Google Scholar]
- Mavhura, E.; Manatsa, D.; Mushore, T. Adaptation to drought in arid and semi-arid environments: Case of the Zambezi Valley, Zimbabwe. JAMBA 2015, 7, 144. [Google Scholar] [CrossRef] [Green Version]
- Tenywa, M.M.; Nyamwaro, S.O.; Kalibwani, R.; Mogabo, J.; Buruchara, R.; Fatunbi, A.O. Innovation opportunities in sorghum production in Uganda. FARA Res. Rep. 2018, 2, 20. [Google Scholar]
- Dial, H.L. Plant Guide for Sorghum (Sorghum bicolor L.); USDA-Natural Resources Conservation Service, Tucson Plant Materials Center: Tucson, AZ, USA, 2012. [Google Scholar]
- Agrama, H.A.; Tuinstra, M.R. Phylogenetic diversity and relationships among sorghum accessions using SSRs and RAPDs. Afr. J. Biotechnol. 2003, 2, 334–340. [Google Scholar] [CrossRef] [Green Version]
- FAOSTAT. Database of Agricultural Production; Food and Agriculture Organization of the United Nations: Rome, Italy, 2018; Available online: http://faostat.fao.org/default.aspx (accessed on 1 August 2021).
- Mrema, E.; Shimelis, H.; Laing, M.; Bucheyeki, T. Farmers’ perceptions of sorghum production constraints and Striga control practices in semi-arid areas of Tanzania. Int. J. Pest. Manag. 2017, 63, 146–156. [Google Scholar] [CrossRef]
- Orr, A.; Mwema, C.; Gierend, A.; Nedumaran, S. Sorghum and Millets in Eastern and Southern Africa. Facts, Trends and Outlook; Working Paper Series No. 62; ICRISAT Research Program, Markets, Institutions and Policies; International Crops Research Institute for the Semi-Arid Tropics: Telangana, India, 2016. [Google Scholar]
- Smale, M.; Assimaa, A.; Kergnab, A.; Thériaulta, V.; Weltzien, E. Farm family effects of adopting improved and hybrid sorghum seed in the Sudan Savanna of West Africa. Food Policy 2018, 74, 162–171. [Google Scholar] [CrossRef]
- Wagaw, K. Review on Mechanisms of Drought Tolerance in Sorghum (Sorghum bicolor (L.) Moench) Basis and Breeding Methods. Acad. Res. J. Agric. Sci. Res. 2019, 7, 87–99. [Google Scholar]
- Cousins, A.B.; Adam, N.R.; Wall, G.W.; Kimball, B.A.; Pinter, P.J., Jr.; Ottman, M.J.; Leavitt, S.W.; Webber, A.N. Development of C4 photosynthesis in sorghum leaves grown under free-air CO2 enrichment (FACE). J. Exp. Bot. 2003, 54, 1969–1975. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muui, C.W.; Muasya, R.M.; Kirubi, D.T. Participatory identification and evaluation of sorghum (Sorghum bicolor (L.) Moench) landraces from lower eastern Kenya. Int. Res. J. Agric. Sci. Soil Sci. 2013, 3, 283–290. [Google Scholar]
- Rosenow, D.T.; Ejeta, G.; Clark, L.E.; Gilbert, M.L.; Henzell, R.G.; Borrell, A.K.; Muchow, R.C. Breeding for pre- and post-flowering drought stress resistance in sorghum. In Proceedings of the International Conference on Genetic Improvement of Sorghum and Pearl Millet, Lubbock, TX, USA, 22–27 September 1996; INSORMIL in United States of America: Lincoln, NE, USA, 1996; pp. 400–411. [Google Scholar]
- Menezes, C.B.; Saldanha, D.C.; Santos, C.V.; Andrade, L.C.; Júlio, M.P.; Portugal, A.F.; Tardin, F.D. Evaluation of grain yield in sorghum hybrids under water stress. Genet. Mol. Res. 2015, 14, 12675–12683. [Google Scholar] [CrossRef]
- Omoro, W. Factors for Low Sorghum Production: A Case Study of Small-Scale Farmers in East Kano Sub Location, Nyando District, Kenya. Master’s Thesis, University of Applied Sciences, Apeldoorn, The Netherland, 2013. [Google Scholar]
- Bucheyeki, T.L.; Shenkalwa, E.M.; Mapunda, T.X.; Matata, L.W. Yield performance and adaptation of four sorghum cultivars in Igunga and Nzega districts of Tanzania. Commun. Biometry Crop. Sci. 2010, 5, 4–10. [Google Scholar]
- Simtowe, F.; Mausch, K. Who is quitting? An analysis of the dis-adoption of climate smart sorghum varieties in Tanzania. Int. J. Clim. Chang. Strateg. Manag. 2018. [Google Scholar] [CrossRef] [Green Version]
- Diale, N.R. Socio-economic indicators influencing the adoption of hybrid Sorghum: The Sekhukhune District perspective. S. Afr. J. Agric. Ext. 2011, 39, 75–85. [Google Scholar]
- Dicko, M.H.; Gruppen, H.; Traoré, A.S.; Voragen, A.G.J.; van Berkel, W.J.H. Sorghum grain as human food in Africa: Relevance of content of starch and amylase activities. Afr. J. Biotechnol. 2006, 5, 384–395. [Google Scholar]
- Kaliba, A.R.; Mazvimavi, K.; Gregory, T.L.; Mgonja, F.M.; Mgonja, M. Factors affecting adoption of improved sorghum varieties in Tanzania under information and capital constraint. Agric. Food Econ. 2018, 6, 18. [Google Scholar] [CrossRef] [Green Version]
- FAO. Crop Prospects and Food Situation; Quarterly Global Report No. 1; FAO: Rome, Italy, 2021. [Google Scholar] [CrossRef]
- Bhagavatula, S.; Rao, P.P.; Basavaraj, G.; Nagaraj, N. Sorghum and Millet Economies in Asia–Facts, Trends and Outlook; International Crops Research Institute for the Semi-Arid Tropics: Patancheru, India, 2013. [Google Scholar]
- Taro, Y. Statistics, An Introductory Analysis, 2nd ed.; Harper and Row: New York, NY, USA, 1967. [Google Scholar]
- Wuensch, K.L. Binary Logistic Regression with SPSS; 2020; Available online: http://core.ecu.edu/psyc/wuenschk/MV/Multreg/Logistic-SPSS.PDF (accessed on 22 May 2020).
- Penning de Vries, F.W.T.; Rabbinge, R.; Groot, J.J.R. Potential and Attainable Food Production and Food Security in Different Regions. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1997, 352, 917–928. [Google Scholar] [CrossRef] [Green Version]
- Mundia, C.W.; Secchi, S.; Akamani, K.; Wang, G. A Regional Comparison of Factors Affecting Global Sorghum Production: The Case of North America, Asia and Africa’s Sahel. Sustainability 2019, 11, 2135. [Google Scholar] [CrossRef] [Green Version]
- Slakie, E.; Reynolds, T.; Chew, A.; Gebrekidan, B.; Anderson, C.L.; Cullen, A.; Gugerty, M.K. Agriculture-Environment Series: Sorghum/Millet Systems At-A-Glance; EPAR Brief No. 21; Evans School Policy Analysis and Research (EPAR), University of Washington: Seattle, WA, USA, 2013; Available online: https://pdfs.semanticscholar.org/717a/3561264d19087731dad54436186aee4912d5.pdf (accessed on 1 August 2021).
- Mofokeng, M.A.; Shimelis, H.; Tongoona, P.; Laing, M.D. Constraints and varietal trait preferences of sorghum producers in South Africa. J. Trop. Agric. 2016, 54, 7–15. [Google Scholar]
- Yapi, A.; Debrah, S.K.; Dehala, G.; Njomaha, C. Impact of Germplasm Research Spill Overs: The Case of Sorghum Variety S 35 in Cameroon and Chad; Impact Series No. 3; International Crops Research Institute for the Semi-Arid Tropics: Andhra Pradesh, India, 1999; p. 30. [Google Scholar]
- Dimkpa, C.O.; Bindraban, P.S. Fortification of micronutrients for efficient agronomic production: A review. Agron. Sustain. Dev. 2016, 36, 7. [Google Scholar] [CrossRef] [Green Version]
- Deb, U.K.; Bantilan, M.C.S.; Roy, A.D.; Parthasarathy, R.P. Global sorghum production scenario. In Sorghum Genetic Enhancement: Research Process, Dissemination and iMpacts; Bantilan, M.C.S., Deb, U.K., Gowda, C.L.L., Reddy, B.V.S., Obilana, A.B., Evenson, R.E., Eds.; International Crops Research Institute for the Semi-Arid Tropics: Andhra Pradesh, India, 2004; pp. 21–38. [Google Scholar]
- IFDC; AFAP. Tanzania Assessment of Fertilizer Distribution and Opportunities for Developing Fertilizer Blends in Tanzania. 2018. Available online: https://agra.org/wp-content/uploads/2020/08/Tanzania-Report_Assessment-of-Fertilizer-Distribution-Systems-and-Opportunities-for-Developing-Fertilizer-Blends.pdf (accessed on 1 October 2021).
- Senkoro, C.J.; Ley, G.J.; Marandu, A.E.; Wortmann, C.; Mzimbiri, M.; Msaky, J.; Umbwe, R.; Lyimo, S.D. Optimizing Fertilizer Use within the Context of Integrated Soil Fertility Management in Tanzania. In Fertilizer Use Optimization in Sub-Saharan Africa; Wortmann, C.S., Sones, K., Eds.; CABI: Wallingford, UK, 2017; pp. 176–192. [Google Scholar]
- Nhamo, L.; Matchaya, G.; Mabhaudhi, T.; Nhlengethwa, S.; Nhemachena, C.; Mpandeli, S. Cereal production trends under climate change: Impacts and adaptation strategies in Southern Africa. Agriculture 2019, 9, 30. [Google Scholar] [CrossRef] [Green Version]
- Basavaraj, G.P.; Rao, P.P.; Lagesh, L.A.; Pokharkarj, V.G.; Gupta, S.K.; Kumar, A.A. Understanding trait preferences of farmers for post-rainy sorghum and pearl millet in India—A conjoint analysis. Indian J. Agric. Econ. 2015, 70, 130–143. [Google Scholar]
- Ajambo, R.; Elepu, G.; Bashaasha, B.; Okori, P. Farmers’ preferences for maize attributes in eastern and western Uganda. Afr. Crop. Sci. J. 2017, 25, 177–187. [Google Scholar] [CrossRef]
- Mafuru, J.M.; Norman, D.W.; Fox, J.S. Consumer Perception of Sorghum Variety Attributes in the Lake Zone Tanzania. In Proceedings of the AAAE Conference, Accra, Ghana, 20–22 August 2007; pp. 171–176. [Google Scholar]
Variable | Frequency | Percent |
---|---|---|
Gender | ||
Male | 85 | 48.3 |
Female | 91 | 51.7 |
Age category | ||
18–28 years | 22 | 12.5 |
29–39 years | 38 | 21.6 |
40–50 years | 53 | 30.1 |
51–60 years | 37 | 21.0 |
Above 60 years | 26 | 14.8 |
Family size category | ||
1–2 members | 12 | 6.8 |
3–4 members | 37 | 21.0 |
5–6 members | 45 | 25.6 |
7–8 members | 49 | 27.8 |
9–10 members | 12 | 6.8 |
Above 10 members | 21 | 11.9 |
Farm size category | ||
1.25–5.0 hectares | 42 | 23.9 |
5.625–9.375 hectares | 26 | 14.8 |
10–13.75 hectares | 40 | 22.7 |
14.375–18.125 hectares | 18 | 10.2 |
Above 18.125 hectares | 50 | 28.4 |
Variety Name | Percentage of Improved Varieties Cultivated per District | Chi-Square | ||
---|---|---|---|---|
Kongwa | Iramba | Ikungi | ||
Serena | 23.2 | 16.4 | 28.8 | 0.266 |
Tegemeo | 35.7 | 4.9 | 5.1 | 0.000 *** |
Macia | 32.1 | 1.6 | 0.0 | 0.000 *** |
NACO-Mtama 1 | 17.9 | 1.6 | 0.0 | 0.000 *** |
Pato | 16.4 | 0.0 | 0.0 | 0.000 *** |
Okoa | 3.6 | 0.0 | 1.7 | 0.329 |
Sila | 3.6 | 0.0 | 0.0 | 0.114 |
Wahi | 0.0 | 1.6 | 1.7 | 0.623 |
Lulu | 0.0 | 3.3 | 0.0 | 0.149 |
Pirila | 1.8 | 0.0 | 0.0 | 0.340 |
Hakika | 0.0 | 1.6 | 0.0 | 0.388 |
Constraint | Percentage of Constraint per District | Chi-Square | ||
---|---|---|---|---|
Kongwa | Iramba | Ikungi | ||
Birds | 96.4 | 68.9 | 94.9 | 0.000 *** |
Problem of market | 1.8 | 4.9 | 1.7 | 0.482 |
Poor soil fertility | 58.9 | 86.9 | 55.9 | 0.000 *** |
Drought | 33.9 | 63.9 | 57.6 | 0.003 ** |
Pest and diseases | 8.9 | 47.5 | 18.6 | 0.000 *** |
Poor agronomic management | 14.3 | 19.7 | 13.6 | 0.607 |
Lack of improved varieties | 17.9 | 23 | 20.5 | 0.792 |
Shortage of fertilizers | 5.4 | 8.2 | 22.0 | 0.012 * |
Few Extension Officers | 7.10 | 0.0 | 3.4 | 0.104 |
Poor mechanization | 1.8 | 3.3 | 2.03 | 0.808 |
Scarce of land | 7.1 | 0.0 | 13.6 | 0.013 * |
Criterion | Rank Sagara A | Rank Laikala | Rank Nkuninkana | Rank Msambu | Rank Nkonkilangi | Rank Mseko |
---|---|---|---|---|---|---|
Disease and pest resistance | 5th | 3rd | 3rd | 5th | † | 5th |
High yield | 3rd | 1st | 1st | 3rd | 2nd | 1st |
Drought tolerance | 1st | 5th | 2nd | 1st | 1st | 2nd |
Striga tolerance | 7th | † | † | † | † | † |
Grain color | † | † | † | † | 4th | † |
Early maturing | 2nd | 4th | † | 2nd | † | † |
Long post-harvest storage life | 6th | † | † | † | † | † |
Market availability | † | † | 5th | 4th | 3rd | † |
Flavor | † | † | 4th | † | † | † |
Tolerance to bird predation | † | † | † | 7th | 5th | 3rd |
Grain weight | 4th | † | † | 6th | † | † |
Shelling | 8th | † | † | † | † | 4th |
Good germination | † | 2nd | † | † | † | † |
Model | Unstandardized Coefficients | Standardized Coefficients | t | p-Values | |
---|---|---|---|---|---|
B | SE | β | |||
(Constant) | −404.4 | 307.9 | −1.313 | 0.237 | |
Gender (1 = male; 0 = otherwise) | −269.2 | 51.2 | −0.46 | −5.254 | 0.002 ** |
Age | −20.7 | 2.5 | −0.96 | −8.212 | 0.000 *** |
Number of men | 143.7 | 15.7 | 1.05 | 9.160 | 0.000 *** |
Number of acres | 41.34 | 9.1 | 0.58 | 4.571 | 0.004 ** |
Acres for sorghum production | −137.7 | 15.9 | −1.37 | −8.663 | 0.000 *** |
Sorghum as a food source | 178.4 | 72.3 | 0.27 | 2.469 | 0.049 * |
Market demand dummy (1 = high; 0 = low) | 244.0 | 58.4 | 0.42 | 4.181 | 0.006 ** |
Low production cost (1 = yes; 0 = no) | 1710.6 | 169.8 | 1.28 | 10.072 | 0.000 *** |
Length of time growing sorghum (y) | 366.0 | 75.6 | 0.55 | 4.838 | 0.003 ** |
Sorghum varieties grown (1 = improved; 0 = local) | 166.7 | 40.2 | 0.49 | 4.144 | 0.006 *** |
Tegemeo (1 = grown; 0 = not grown) | −636.3 | 59.4 | −1.07 | −10.710 | 0.000 *** |
Macia (1 = grown; 0 = not grown) | 195.1 | 63.5 | 0.31 | 3.074 | 0.022 * |
Pato (1 = grown; 0 = not grown) | 643.3 | 85.0 | 0.89 | 7.567 | 0.000 *** |
a. Dependent variable: yield of improved varieties per acre | |||||
R2 = 0.977; Adjusted R2 = 0.929; F = 20.042 | p = 0.001 |
Variables | B | SE | Wald | df | p-Values | Exp(B) |
---|---|---|---|---|---|---|
Constant | −1.47 | 0.193 | 57.651 | 1 | 0.000 *** | 0.231 |
Education dummy (1 = primary; 0 = otherwise) | 1.61 | 0.749 | 4.613 | 1 | 0.032 * | 5 |
Age dummy (1 = > 35 y; 0 = otherwise) | 1.1 | 0.534 | 4.252 | 1 | 0.039 * | 3.006 |
Decreasing rainfall trend (1 = yes; 0 = no) | −0.99 | 0.506 | 3.83 | 1 | 0.05 | 0.371 |
Experience dummy (1 = > 3 y; 0 = otherwise) | −2.03 | 0.732 | 7.703 | 1 | 0.006 ** | 0.131 |
Area in acres (farm size) | 0.06 | 0.068 | 0.683 | 1 | 0.409 | 1.058 |
Lack of drought tolerant varieties (1 = yes; 0 = no) | −1.78 | 0.672 | 7.015 | 1 | 0.008 ** | 0.169 |
Rainwater harvesting (1 = adopted; 0 = otherwise) | 1.93 | 1.11 | 3.026 | 1 | 0.082 | 6.899 |
Early maturity | 2.22 | 0.868 | 6.525 | 1 | 0.011 * | 9.171 |
Food security | −0.74 | 0.782 | 0.9 | 1 | 0.343 | 0.476 |
Market accessibility | 1.05 | 0.484 | 4.688 | 1 | 0.030 * | 2.851 |
Decreasing rainfall trend | −0.4 | 0.554 | 0.521 | 1 | 0.47 | 0.671 |
Model Summary | ||||||
−2 log likelihood | Cox and Snell R2 | Nagelkerke R2 | ||||
129.862 | 0.2 | 0.328 |
Technique | Number of Respondents (%) per District | Chi-Square | ||
---|---|---|---|---|
Kongwa | Iramba | Ikungi | ||
Early planting | 14.3 | 18 | 15.3 | 0.895 |
Drought tolerant varieties | 8.9 | 11.5 | 11.9 | 0.860 |
Practice contour farming | 12.5 | 3.3 | 0.0 | 0.007 ** |
Fertilizers application | 7.1 | 0.0 | 0.0 | 0.012 * |
Timely weeding | 1.8 | 1.6 | 0.0 | 0.599 |
Deep cultivation | 7.1 | 0.0 | 0.0 | 0.012 * |
Tied ridging | 12.5 | 9.8 | 5.1 | 0.373 |
Early maturing varieties | 16.1 | 14.8 | 6.8 | 0.259 |
Irrigation | 1.8 | 0.0 | 3.4 | 0.357 |
Cropping calendar | 0.0 | 18 | 0.0 | 0.000 *** |
Intercropping with legumes | 0.0 | 3.3 | 1.7 | 0.392 |
Staggered planting | 1.8 | 0.0 | 0.0 | 0.340 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mwamahonje, A.; Eleblu, J.S.Y.; Ofori, K.; Deshpande, S.; Feyissa, T.; Bakuza, W.E. Sorghum Production Constraints, Trait Preferences, and Strategies to Combat Drought in Tanzania. Sustainability 2021, 13, 12942. https://doi.org/10.3390/su132312942
Mwamahonje A, Eleblu JSY, Ofori K, Deshpande S, Feyissa T, Bakuza WE. Sorghum Production Constraints, Trait Preferences, and Strategies to Combat Drought in Tanzania. Sustainability. 2021; 13(23):12942. https://doi.org/10.3390/su132312942
Chicago/Turabian StyleMwamahonje, Andekelile, John Saviour Yaw Eleblu, Kwadwo Ofori, Santosh Deshpande, Tileye Feyissa, and William Elisha Bakuza. 2021. "Sorghum Production Constraints, Trait Preferences, and Strategies to Combat Drought in Tanzania" Sustainability 13, no. 23: 12942. https://doi.org/10.3390/su132312942
APA StyleMwamahonje, A., Eleblu, J. S. Y., Ofori, K., Deshpande, S., Feyissa, T., & Bakuza, W. E. (2021). Sorghum Production Constraints, Trait Preferences, and Strategies to Combat Drought in Tanzania. Sustainability, 13(23), 12942. https://doi.org/10.3390/su132312942