Integrated Fertilizers Synergistically Bolster Temperate Soybean Growth, Yield, and Oil Content
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of Meteorological and Physico-Chemical Characteristics of Experimental Site
2.2. Experimentation Details
2.3. Data Recordings of Response Variables
2.4. Statistical Analyses
3. Results
3.1. Vegetative Growth Attributes
3.2. Reproductive Yield Attributes, Seed Yield, and Biological Yield
3.3. Harvest Index and Seed Oil Content
3.4. Correlation among Yield Attributes, Seed Yield, and Biological Yield
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Arshad, J.; Mahmood, N. Growth, nodulation and yield response of soybean to biofertilizers and organic manures. Pak. J. Bot. 2010, 42, 863–871. [Google Scholar]
- Ozlu, E.; Sandhu, S.S.; Kumar, S.; Francisco, J.A. Soil health indicators impacted by long-term cattle manure and inorganic fertilizer application in a corn-soybean rotation of South Dakota. Sci. Rep. 2019, 9, 11776. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- USDA. Livestock and Poultry: World Markets and Trade. Available online: https://downloads.usda.library.cornell.edu/usda-esmis/files/73666448x/9593vs24n/4m90fs46x/livestock_poultry.pdf (accessed on 11 December 2021).
- Yang, J.; Wei, G.; Shunrong, R. Long-term effects of combined application of chemical nitrogen with organic materials on crop yields, soil organic carbon and total nitrogen in fluvo-aquic soil. Soil Till. Res. 2015, 151, 67–74. [Google Scholar] [CrossRef]
- Panneerselvam, S.; Lourduraj, A. Growth and yield of soybean (Glycine max (L.) Merill) as influenced by organic manures, inorganic fertilizers and weed management practices. Acta Agron. Hung. 2000, 48, 133–140. [Google Scholar] [CrossRef]
- Iqbal, M.A.; Imtiaz, H.; Abdul, H.; Bilal, A.; Saira, I.; Ayman, S.; Celaleddin, B.; Rana, D.K.; Imran, M. Soybean herbage yield, nutritional value and profitability under integrated manures management. An. Acad. Bras. Cienc. 2021, 93, e20181384. [Google Scholar] [CrossRef] [PubMed]
- Mohan, L.; Zhuojun, Z.; Leqi, W.; Xiao, Y. Influences of rice straw biochar and organic manure on forage soybean nutrient and Cd uptake. Int. J. Phytoremediat. 2021, 23, 53–63. [Google Scholar]
- Bali, R.; Pineault, J.; Chagnon, P.-L.; Hijri, M. Fresh Compost Tea Application Does Not Change Rhizosphere Soil Bacterial Community Structure, and Has No Effects on Soybean Growth or Yield. Plants 2021, 10, 1638. [Google Scholar] [CrossRef]
- Piccoli, I.; Sartori, F.; Polese, R.; Borin, M.; Berti, A. Can Long-Term Experiments Predict Real Field N and P Balance and System Sustainability? Results from Maize, Winter Wheat, and Soybean Trials Using Mineral and Organic Fertilisers. Agronomy 2021, 11, 1472. [Google Scholar] [CrossRef]
- Sorour, S.; Amer, M.M.; El Hag, D.; Hasan, E.A.; Awad, M.; Kizilgeci, F.; Ozturk, F.; Iqbal, M.A.; El Sabagh, A. Organic amendments and nano-micronutrients restore soil physico-chemical properties and boost wheat yield under saline environment. Fresenius Environ. Bull. 2021, 30, 10941–10950. [Google Scholar]
- Calderon, R.B.; Jeong, C.; Ku, H.-H.; Coghill, L.M.; Ju, Y.J.; Kim, N.; Ham, J.H. Changes in the Microbial Community in Soybean Plots Treated with Biochar and Poultry Litter. Agronomy 2021, 11, 1428. [Google Scholar] [CrossRef]
- Banik, C.; Koziel, J.A.; Bonds, D.; Singh, A.K.; Licht, M.A. Comparing Biochar-Swine Manure Mixture to Conventional Manure Impact on Soil Nutrient Availability and Plant Uptake—A Greenhouse Study. Land 2021, 10, 372. [Google Scholar] [CrossRef]
- Iqbal, M.A.; Rahim, J.; Naeem, W.; Hassan, S.; Khattab, Y.; Sabagh, A. Rainfed winter wheat (Triticum aestivum L.) cultivars respond differently to integrated fertilization in Pakistan. Fresenius Environ. Bull. 2021, 30, 3115–3121. [Google Scholar]
- Khaliq, A.; Iqbal, M.A.; Zafar, M.; Gulzar, A. Appraising economic dimension of maize production under coherent fertilization in Azad Kashmir, Pakistan. Custos Agronegocio 2019, 15, 243–253. [Google Scholar]
- Siddiqui, M.H.; Iqbal, M.A.; Naeem, W.; Hussain, I.; Khaliq, A. Bio-economic viability of rainfed wheat (Triticum aestivum L.) cultivars under integrated fertilization regimes in Pakistan. Custos Agronegocio 2019, 15, 81–96. [Google Scholar]
- Ramesh, P.; Panwar, N.R.; Singh, A.B.; Ramana, S. Production potential, nutrient uptake, soil fertility and economics of soybean (Glycine max)-based cropping systems under organic, chemical and integrated nutrient management practices. Indian J. Agron. 2009, 54, 278–283. [Google Scholar]
- Singh, R.; Prasad, R.; Delaney, D.P.; Watts, D.B. Does Soybean Yield and Seed Nutrient Content Change Due to Broiler Litter Application? Agronomy 2021, 11, 1523. [Google Scholar] [CrossRef]
- Iqbal, M.A. Nano-Fertilizers for Sustainable Crop Production under Changing Climate: A Global Perspective. In SustainableCrop Production, 1st ed.; Hasanuzzaman, M., Ed.; Intechopen Ltd.: London, UK, 2019; pp. 1–10. [Google Scholar]
- Adeli, A.; Sistani, K.R.; Rowe, D.E.; Tewolde, H. Effects of broiler litter on soybean production and soil nitrogen and phosphorus concentrations. Agron. J. 2005, 97, 314–321. [Google Scholar] [CrossRef] [Green Version]
- Acosta-Martinez, V.; Harmel, R.D. Soil microbial communities and enzyme activities under various poultry litter application rates. J. Environ. Qual. 2006, 35, 1309–1318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deeks, L.K.; Chaney, K.; Murray, C.; Sakrabani, R.; Gedara, S.; Le, M.S.; Tyrrel, S.; Pawlett, M.; Read, R.; Smith, G.H. A new sludge-derived organo-mineral fertilizer gives similar crop yields as conventional fertilizers. Agron. Sustain. Dev. 2013, 33, 539–549. [Google Scholar] [CrossRef]
- Morais, F.A.; Gatiboni, L.C. Phosphorus availability and microbial immobilization in a Nitisol with the application of mineral and organo-mineral fertilizers. An. Acad. Bras. Cienc. 2015, 87, 2289–2299. [Google Scholar] [CrossRef] [Green Version]
- Iqbal, M.A.; Hamid, A.; Hussain, I.; Siddiqui, M.H.; Ahmad, T.; Khaliq, A.; Ahmad, Z. Competitive indices in cereal and legume mixtures in a South Asian environment. Agron. J. 2019, 111, 242–249. [Google Scholar] [CrossRef]
- Schmidt, J.P.; Lamb, J.A.; Schmitt, M.A.; Randall, G.W.; Orf, J.H.; Gollany, H.T. Soybean varietal response to liquid swine manure application. Agron. J. 2001, 93, 358–363. [Google Scholar] [CrossRef] [Green Version]
- Varvel, G.E.; Peterson, T.A. Nitrogen fertilizer recovery by soybean in monoculture and rotation systems. Agron. J. 1992, 84, 215–218. [Google Scholar] [CrossRef]
- Quinn, D.; Steinke, K. Comparing high- and low-input management on soybean yield and profitability in Michigan. Crop Forage Turfgrass Manag. 2019, 5, 190029. [Google Scholar] [CrossRef] [Green Version]
- Gates, C.T.; Muller, W.J. Nodule and plant development in the soybean: Growth response to nitrogen, phosphorus, and sulfur. Aust. J. Bot. 1979, 27, 203–215. [Google Scholar] [CrossRef]
- Adeli, A.; Read, J.J.; McCarty, J.; Jenkins, J.N.; Feng, G. Soybean yield and nutrient utilization following long-term pelletized broiler litter application to cotton. Agron. J. 2015, 107, 1128–1134. [Google Scholar] [CrossRef]
- Garcia, J.M.; Blancaver, A.T. Effect of animal manure on the growth and yield of soybean and physical properties of the soil. CMU J. Agric. Food Nutr. 1983, 4, 196–212. [Google Scholar]
- Slaton, N.A.; Roberts, T.L.; Golden, B.R.; Ross, W.J.; Norman, R.J. Soybean response to phosphorus and potassium supplied as inorganic fertilizer or poultry litter. Agron. J. 2013, 105, 812–820. [Google Scholar] [CrossRef]
- Faisal, F.; Iqbal, M.A.; Aydemir, S.K.; Hamid, A.; Rahim, N.; El Sabagh, A.; Khaliq, A.; Siddiqui, M.H. Exogenously foliage applied micronutrients efficacious impact on achene yield of sunflower under temperate conditions. Pak. J. Bot. 2020, 52, 1215–1221. [Google Scholar] [CrossRef]
- Black, C.A. Methods of Soil Analysis, Part II; American Society of Agronomy: Madison, WI, USA, 1965. [Google Scholar]
- Sparks, D.L.; Page, A.L.; Helmke, P.A.; Leoppert, R.H.; Soltanpour, P.N.; Tabatabai, M.A.; Johnston, G.T.; Sumner, M.E. Methods of Soil Analysis; Soil Science Society of America: Madison, WI, USA, 1996. [Google Scholar]
- Naresh, R.K.; Tomar, S.S.; Kumar, D.; Samsher, P.; Singh, S.; Dwivedi, P.; Kumar, A. Experiences with rice grown on permanent raised beds: Effect of crop establishment techniques on water use, productivity, profitability and soil physical properties. Rice Sci. 2014, 21, 170–180. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 17th ed.; Association of Official Analytical Chemists: Arlington, VI, USA, 2003. [Google Scholar]
- Jackson, M.L. Soil Chemical Analysis; Prentice Hall: Englewood Cliffs, NJ, USA, 1962. [Google Scholar]
- Piper, C.S. Soil and Plant Analysis; Press Adelaide: Adelaide, Australia, 1950. [Google Scholar]
- Ryan, J.; Estefan, G.; Rashid, A. Soil and Plant Analysis Laboratory Manual, 2nd ed.; International Center for Agricultural Research in the Dry Areas (ICARDA): Aleppo, Syria; National Agriculture Research Center (NARC): Islamabad, Pakistan, 2001. [Google Scholar]
- Steel, R.G.D.; Torrie, J.H.; Dickey, D. Principles and Procedures of Statistics: A biometrical Approach; McGraw Hill Book Co. Inc.: New York, NY, USA, 1997; pp. 172–177. [Google Scholar]
- SAS Institute. The SAS System for Windows: Version 8.02; SAS Institute Inc.: Cary, NC, USA, 2003. [Google Scholar]
- Watts, D.B.; Torbert, H.A. Long-term tillage and poultry litter impacts on soybean and corn grain yield. Agron. J. 2011, 103, 1479–1486. [Google Scholar] [CrossRef] [Green Version]
- Addis, H.; Andreas, K.; Theib, O.; Stefan, S. Linking selected soil properties to land use and hill slope—A watershed case study in the Ethiopian highlands. Soil Water Res. 2016, 11, 163–171. [Google Scholar] [CrossRef] [Green Version]
- Abebe, Z.; Deressa, H. The Effect of Organic and Inorganic Fertilizers on the Yield of Two Contrasting Soybean Varieties and Residual Nutrient Effects on a Subsequent Finger Millet Crop. Agronomy 2017, 7, 42. [Google Scholar] [CrossRef] [Green Version]
- Werner, M.W. Soil quality characteristics during conversion to organic orchard management. Appl. Soil Ecol. 1997, 5, 151–167. [Google Scholar] [CrossRef]
- Drinkwater, L.E.; Letourneau, D.K.; Workneh, F.; van Bruggen, A.H.C.; Shennan, C. Fundamental difference between conventional and organic tomato agroecosystems in California. Ecol. Appl. 1995, 5, 1098–1112. [Google Scholar] [CrossRef]
- Carvalhais, L.C.; Dennis, P.G.; Fedoseyenko, D.; Hajirezaei, M.-R.; Borriss, R.; von Wirén, N. Root exudation of sugars, amino acids, and organic acids by maize as affected by nitrogen, phosphorus, potassium, and iron deficiency. J. Plant Nutr. Soil Sci. 2011, 174, 3–11. [Google Scholar] [CrossRef]
- Wang, X.; Yan, X.; Liao, H. Genetic improvement for phosphorus efficiency in soybean: A radical approach. Ann. Bot. 2010, 106, 215–222. [Google Scholar] [CrossRef] [PubMed]
- Ronner, E.; Franke, A.C.; Vanlauwe, B.; Dianda, M.; Edeh, E.; Ukem, B.; Bala, A.; van Heerwaarden, J.; Giller, K.E. Field Crops Research Understanding Variability in Soybean Yield and Response to P-Fertilizer and Rhizobium Inoculants on Farmers’ Fields in Northern Nigeria. Field Crops Res. 2016, 186, 133–145. [Google Scholar] [CrossRef]
- Wang, X.J.; Jia, Z.K.; Liang, L.Y.; Kang, S.Z. Effect of Manure Management on the Temporal Variations of Dryland Soil Moisture and Water Use Efficiency of Maize. J. Agric. Sci. Technol. 2013, 15, 1293–1304. [Google Scholar]
- Elicin, A.K.; Ozturk, F.; Kizilgeci, F.; Koca, Y.K.; Iqbal, M.A.; Imran, M. Soybean (Glycine max. (L.) Merrill) vegetative growth performance under chemical and organic manures nutrient management system. Fresenius Environ. Bull. 2021, 30, 12684–12690. [Google Scholar]
- Elicin, A.K.; Ozturk, F.; Koca, Y.K.; Kizilgeci, F.; Asan, N.T.; Iqbal, M.A. Conjuncted fertilization regimes boost seed yield and chemical composition of sunflower (Helianthus annuus L.). Fresenius Environ. Bull. 2022, 31, 755–761. [Google Scholar]
- Devi, K.J.; Singh, T.B.; Athokpam, H.S.; Singh, N.B.; Shamurailatpam, D. Influence of inorganic, biological and organic manures on nodulation and yield of soybean (Glycine max Merril L.) and soil properties. Aus. J. Crop Sci. 2013, 7, 1407–1415. [Google Scholar]
- Yamika, W.S.D.; Ikawati, K.R. Combination inorganic and organic fertilizer increased yield production of Soybean in Rain-Field Malang, Indonesia. Am.-Eur. J. Sustain. Agric. 2012, 6, 14–17. [Google Scholar]
- Mandal, K.G.; Hati, K.M.; Misra, A.K. Biomass yield and energy analysis of soybean production in relation to fertilizer-NPK and organic manure. Biomass Bioenergy 2009, 33, 1670–1679. [Google Scholar] [CrossRef]
- Singh, S.R.; Najarand, G.R.; Singh, U. Productivity and nutrient uptake of soybean (Glycine max) as influenced by bio-inoculants and farmyard manure under rainfed conditions. Indian J. Agron. 2007, 52, 325–329. [Google Scholar]
- Onat, B.; Bakal, H.; Güllüoğlu, L.; Arioglu, H. The effects of high temperature at the growing period on yield and yield components of soybean [Glycine Max (L.) Merr] varieties. Turk. J. Field Crops 2017, 22, 178–186. [Google Scholar] [CrossRef]
- Arslanoglu, F.; Aytac, S. Determination of stability and genotype x environment ınteractions of some agronomic properties in the different soybean (Glycine max. (L) Merrill) Cultivars. Bulgarian J. Agric. Sci. 2010, 16, 181–195. [Google Scholar]
- Watts, D.B.; Torbert, H.A.; Prior, S.A.; Huluka, G. Long-term tillage and poultry litter impacts soil carbon and nitrogen mineralization and fertility. Soil Sci. Soc. Am. J. 2010, 74, 1239–1247. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.; Watts, D.B.; Torbert, H.A.; Howe, J.A. Double-crop wheat and soybean yield response to poultry litter application. Crop. Forage Turfgrass Manag. 2019, 5, 180082. [Google Scholar] [CrossRef]
- Tewolde, H.; Adeli, A.; Sistani, K.R.; Rowe, D.E. Mineral nutrition of cotton fertilized with poultry litter or ammonium nitrate. Agron. J. 2011, 103, 1704–1711. [Google Scholar] [CrossRef] [Green Version]
- Blair, R.M.; Savin, M.C.; Chen, P. Composted and formulated poultry litters promote soil nutrient availability but not plant uptake or edamame quality. Agron. Sustain. Dev. 2014, 34, 849–856. [Google Scholar] [CrossRef] [Green Version]
- Ruiz Diaz, D.A.; Sawyer, J.E.; Mallarino, A.P. On-farm evaluation of poultry manure as a nitrogen source for corn. Soil Sci. Soc. Am. J. 2011, 75, 729–737. [Google Scholar] [CrossRef]
- Mitchell, C.C.; Tu, S. Nutrient accumulation and movement from poultry litter. Soil Sci. Soc. Am. J. 2006, 70, 2146–2153. [Google Scholar] [CrossRef]
- Pratt, R.G.; Tewolde, H. Soil fungal population levels in cotton fields fertilized with poultry litter and their relationships to soil nutrient concentrations and plant growth parameters. Appl. Soil Ecol. 2009, 41, 41–49. [Google Scholar] [CrossRef]
- Bhatta, R.D.; Paudel, M.; Ghimire, K.; Dahal, K.R.; Amgain, L.P.; Pokhrel, S.; Acharya, S.; Kandel, B.P.; Aryal, K.; Bishwas, K.C.; et al. Production and Profitability of Hybrid Rice Is Influenced by Different Nutrient Management Practices. Agriculture 2022, 12, 4. [Google Scholar] [CrossRef]
- Cisse, A.; Arshad, A.; Wang, X.; Yattara, F.; Hu, Y. Contrasting Impacts of Long-Term Application of Biofertilizers and Organic Manure on Grain Yield of Winter Wheat in North China Plain. Agronomy 2019, 9, 312. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, P.K.; Bandyopadhyay, K.K.; Manna, M.C.; Mandal, K.G.; Misra, A.K.; Hati, K.M. Comparative Effectiveness of Cattle Manure, Poultry Manure, Phosphocompost, and Fertilizer-NPK on Three Cropping Systems in Vertisols of Semi-Arid Tropics. II. Dry Matter Yield, Nodulation, Chlorophyll Content and Enzyme Activity. Biol. Resour. Technol. 2004, 95, 85–93. [Google Scholar] [CrossRef]
- Bungau, S.; Tapan, B.; Lotfi, A.; Pascale, B.; Badr, A.; Anamaria, L.P.; Areha, A.; Alina, D.S. Expatiating the impact of anthropogenic aspects and climatic factors on long-term soil monitoring and management. Environ. Sci. Pol. Res. 2021. [Google Scholar] [CrossRef]
- Samuel, A.D.; Brejea, R.; Domuta, C.; Bungau, S.; Cenusa, N.; Tit, D.M. Enzymatic indicators of soil quality. J. Environ. Prot. Ecol. 2017, 18, 871–878. [Google Scholar]
Treatments | Plant Height (cm) | Stem Girth (cm) | Number of Branches per Plant | Number of Leaves per Plant | Leaf Area per Plant (cm2) |
---|---|---|---|---|---|
NM | 64.01 d | 8.29 f | 10.10 e | 32.23 f | 717.7 g |
SSP = 60 kg P ha−1 | 71.63 c | 9.31 e | 13.30 de | 38.16 e | 1311.0 f |
DAP = 60 kg P ha−1 | 71.94 c | 9.36 de | 13.66 d | 43.83 d | 1628.3 e |
FYS = 10 tons ha−1 | 70.83 cd | 9.40 d | 14.53 c | 42.60 d | 1626.7 e |
BL = 5 t ha−1 | 71.29 c | 10.05 b | 15.31 b | 48.61 c | 1690.0 d |
SSP + BL = 60 kg P ha−1 + 5 tons ha−1 | 80.85 ab | 10.46 a | 16.60 a | 52.41 b | 1701.8 c |
SSP + FYS = 60 kg P ha−1 + 10 tons ha−1 | 74.80 b | 9.62 c | 15.43 b | 44.82 c | 1715.6 b |
DAP + FYS = 60 kg P ha−1 + 10 tons ha−1 | 74.24 b | 10.04 b | 16.33 a | 65.47 a | 1775.3 ab |
DAP + BL = 60 kg P ha−1 + 5 tons ha−1 | 81.3 a | 10.47 a | 16.73 a | 66.12 a | 1786.4 a |
Treatments | Number of Pods per Plant | Number of Seeds per Pod | 100 Seed Weight (g) | Seed Yield (t ha−1) | Biological Yield (t ha−1) |
---|---|---|---|---|---|
NM | 25.53 f | 2.39 | 13.36 f | 0.93 h | 3.25 f |
SSP = 60 kg P ha−1 | 27.33 f | 2.38 | 14.06 ef | 1.16 g | 3.52 e |
DAP = 60 kg P ha−1) | 31.80 d | 2.41 | 15.36 de | 1.25 f | 3.57 d |
FYS = 10 tons ha−1 | 29.96 e | 2.39 | 14.20 e | 1.35 e | 3.55 de |
BL = 5 tons ha−1 | 31.70 d | 2.45 | 15.10 de | 1.40 d | 3.58 d |
SSP + BL = 60 kg P ha−1 + 5 tons ha−1 ) | 35.80 b | 2.42 | 19.43 b | 1.51 b | 3.96 b |
SSP + FYS = 60 kg P ha−1 + 10 tons ha−1 | 31.33 d | 2.45 | 18.06 c | 1.41 d | 3.78 d |
DAP + FYS = 60 kg P ha−1 + 10 tons ha−1 | 32.90 c | 2.43 | 15.53 d | 1.48 c | 3.88 c |
DAP + BL = 60 kg P ha−1 + 5 tons ha−1 | 37.70 a | 2.46 | 20.40 a | 1.56 a | 4.01 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iqbal, M.A.; Raza, R.Z.; Zafar, M.; Ali, O.M.; Ahmed, R.; Rahim, J.; Ijaz, R.; Ahmad, Z.; Bethune, B.J. Integrated Fertilizers Synergistically Bolster Temperate Soybean Growth, Yield, and Oil Content. Sustainability 2022, 14, 2433. https://doi.org/10.3390/su14042433
Iqbal MA, Raza RZ, Zafar M, Ali OM, Ahmed R, Rahim J, Ijaz R, Ahmad Z, Bethune BJ. Integrated Fertilizers Synergistically Bolster Temperate Soybean Growth, Yield, and Oil Content. Sustainability. 2022; 14(4):2433. https://doi.org/10.3390/su14042433
Chicago/Turabian StyleIqbal, Muhammad Aamir, Rana Zain Raza, Mohsin Zafar, Omar M. Ali, Raees Ahmed, Junaid Rahim, Raina Ijaz, Zahoor Ahmad, and Brandon J. Bethune. 2022. "Integrated Fertilizers Synergistically Bolster Temperate Soybean Growth, Yield, and Oil Content" Sustainability 14, no. 4: 2433. https://doi.org/10.3390/su14042433
APA StyleIqbal, M. A., Raza, R. Z., Zafar, M., Ali, O. M., Ahmed, R., Rahim, J., Ijaz, R., Ahmad, Z., & Bethune, B. J. (2022). Integrated Fertilizers Synergistically Bolster Temperate Soybean Growth, Yield, and Oil Content. Sustainability, 14(4), 2433. https://doi.org/10.3390/su14042433