A Comprehensive Thermoeconomic Evaluation and Multi-Criteria Optimization of a Combined MCFC/TEG System
Abstract
:1. Introduction
2. Methods
2.1. Explanation of the System
- Operation of MCFC and TEG under steady-state conditions [1].
- MCFC works under constant and uniform working temperature and pressure [1].
- Reactants are considered ideal gases, and all of them are utilized by MCFC [77].
- Ignoring the electrical power consumption of the utilities of the MCFC sub-system [78].
2.1.1. Molten Carbonate Fuel Cell
2.1.2. Thermoelectric Generator
- MCFC output temperature is equal to hot junction’s one.
- The ambient temperature is equal to the old junction one.
- Thermal conductivity, electrical resistance, and the See-beck coefficient are not dependent on the temperature.
2.1.3. Regenerator
2.2. Energy Analysis
2.3. Exergy Analysis
2.3.1. Exergy Investigation of MCFC
2.3.2. Exergy Investigation of TEG
2.4. Exergoeconomic Analysis
2.5. Multi-Objective Optimization
3. Results
3.1. Validation of the Results
4. Discussions
4.1. Parametric Investigations
4.2. Multi-Criteria Optimization Results
5. Conclusions
- Cell voltage decreases by current density and increases with operating temperature. Furthermore, the dimensionless electrical current of TEG improves by improving current density and reducing operating temperature.
- With increasing current density, PMCFC, PTEG and net electricity of the hybrid system first raise then reduces. Moreover, with growing current density, fuel cell, thermoelectric generator, and hybrid system efficiencies decrease, but at optimum j (2800 < j < 3780 A/m2), efficiency increases.
- Alteration of thermal conductivity is influential in region jC < j < jM and by improving K, the outlet electricity and efficiency of the hybrid system improve.
- Exergy destruction of the TEG, except its working range, is constant in all regions of the current density at any temperature, and only in the working area of the TEG, with increasing temperature, the exergy destruction also increases.
- The suggested integrated systems in the current research have enough flexibility to work with other energy reservoirs such as solar energy and biomass. Advancing this idea can grow the reliability and independence of the recommended configuration.
- There is an overabundance of tools for the deep investigation of innovative energy systems. On top of the approaches, energy investigations and advanced assessments are proposed for scholars in future works. Introduced approaches hold deeper features to inquire about energy systems and can accommodate further information for scholars.
- Adjusting a unit to convert a part of the produced hydrogen and oxygen into hydrogen-peroxide can be regarded as an alluring opportunity for further industrial use.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
A | Area: m2 |
c | Cost, $/Gj |
D | Destruction |
E | Ideal voltage of the cell, V |
E. | Exergy rate, MW |
F | Faraday constant, -/fuel |
Molar enthalpy change, J/mol | |
i | Dimensionless current, |
j | Current density, Am−2 |
K | Coefficient of heat transfer, J/m2Ks |
MCFC | Molten carbonate fuel cell |
m | TEG number, |
N | Cell number |
T | Temperature, C |
P | Power, MW; pressure, bar |
Pkth | Kth element partial pressure |
Q | Rate of heat transfer, kW |
R | Universal gas constant, J/mol.K |
S | Entropy, KJ/kgmoleC |
TEC | Thermoelectric cooler |
TEG | Thermoelectric generator |
U | Over-potential, v |
V | Voltage, v |
Z | The figure of merit, 1/K |
xi | Molar fraction |
Efficiency, % | |
Coefficient of Seebeck, v/k | |
Efficiency of regenerator | |
Subscript | |
0 | Reference condition |
acta | Activation |
ch | Chemical |
D | Destruction |
gen | Generation |
in | inlet |
n | N-type of semiconductor |
ohm | ohmic |
out | outlet |
ph | Physical |
References
- Hasanzadeh, A.; Chitsaz, A.; Mojaver, P.; Ghasemi, A. Stand-alone gas turbine and hybrid MCFC and SOFC-gas turbine systems: Comparative life cycle cost, environmental, and energy assessments. Energy Rep. 2021, 7, 4659–4680. [Google Scholar] [CrossRef]
- Ni, J.; Zhuang, X.; Wahab, M.A. Review on the prediction of residual stress in welded steel components. Comput. Mater. Contin. 2020, 62, 495–523. [Google Scholar] [CrossRef]
- Kang, S.; Park, T. Detecting outlier behavior of game player players using multimodal physiology data. Intell. Autom. Soft Comput. 2020, 26, 205–214. [Google Scholar] [CrossRef]
- Kaur, S.; Joshi, V.K. Hybrid soft computing technique based trust evaluation protocol for wireless sensor networks. Intell. Autom. Soft Comput. 2020, 26, 217–226. [Google Scholar] [CrossRef]
- Sharma, M.; Pham, H.; Singh, V. Modeling and analysis of leftover issues and release time planning in multi-release open source software using entropy based measure. Comput. Syst. Sci. Eng. 2019, 34, 33–46. [Google Scholar] [CrossRef]
- Shanmugasundaram, V.; Balasundaram, S.R. Core—An optimal data placement strategy in hadoop for data intentitive applications based on cohesion relation. Comput. Syst. Sci. Eng. 2019, 34, 47–60. [Google Scholar]
- Kenli Li, Wangdong Yang, Keqin Li: A Hybrid Parallel Solving Algorithm on GPU for Quasi-Tridiagonal System of Linear Equations. IEEE Trans. Parallel Distrib. Syst. 2016, 27, 2795–2808. [CrossRef]
- Kenli Li, Xiaoyong Tang, Bharadwaj Veeravalli, Keqin Li: Scheduling Precedence Constrained Stochastic Tasks on Heterogeneous Cluster Systems. IEEE Trans. Comput. 2015, 64, 191–204. [CrossRef]
- Wangdong Yang, Kenli Li, Zeyao Mo, Keqin Li: Performance Optimization Using Partitioned SpMV on GPUs and Multicore CPUs. IEEE Trans. Comput. 2015, 64, 2623–2636. [CrossRef]
- Mei, J.; Li, K.; Ouyang, A.; Li, K. A Profit Maximization Scheme with Guaranteed Quality of Service in Cloud Computing. IEEE Trans. Comput. 2015, 64, 3064–3078. [Google Scholar] [CrossRef]
- Li, K.; Yang, W.; Li, K. Performance Analysis and Optimization for SpMV on GPU Using Probabilistic Modeling. IEEE Trans. Parallel Distrib. Syst. 2015, 26, 196–205. [Google Scholar] [CrossRef]
- Li, K.; Ai, W.; Tang, Z.; Zhang, F.; Jiang, L.; Li, K.; Hwang, K. Hadoop Recognition of Biomedical Named Entity Using Conditional Random Fields. IEEE Trans. Parallel Distrib. Syst. 2015, 26, 3040–3051. [Google Scholar] [CrossRef]
- Xu, Y.; Li, K.; He, L.; Zhang, L.; Li, K. A Hybrid Chemical Reaction Optimization Scheme for Task Scheduling on Heterogeneous Computing Systems. IEEE Trans. Parallel Distrib. Syst. 2015, 26, 3208–3222. [Google Scholar] [CrossRef] [Green Version]
- Li, K.; Zheng, W.; Li, K. A Fast Algorithm With Less Operations for Length-N=q×2m DFTs. IEEE Trans. Signal Process. 2015, 63, 673–683. [Google Scholar] [CrossRef]
- Li, K.; Tang, X.; Li, K. Energy-Efficient Stochastic Task Scheduling on Heterogeneous Computing Systems. IEEE Trans. Parallel Distrib. Syst. 2014, 25, 2867–2876. [Google Scholar] [CrossRef]
- Tang, X.; Li, K.; Zeng, Z.; Veeravalli, B. A Novel Security-Driven Scheduling Algorithm for Precedence-Constrained Tasks in Heterogeneous Distributed Systems. IEEE Trans. Comput. 2011, 60, 1017–1029. [Google Scholar]
- Zhang, D.; Chen, X.; Li, F.; Sangaiah, A.K.; Ding, X. Seam-carved image tampering detection based on the cooccurrence of adjacent lbps. Secur. Commun. Netw. 2020, 2020, 8830310. [Google Scholar] [CrossRef]
- Song, Y.; Zhang, D.; Tang, Q.; Tang, S.; Yang, K. Local and nonlocal constraints for compressed sensing video and multi-view image recovery. Neurocomputing 2020, 406, 34–48. [Google Scholar] [CrossRef]
- Zhou, S.; Qiu, J. Enhanced SSD with interactive multi-scale attention features for object detection. Multimed. Tools Appl. 2021, 80, 11539–11556. [Google Scholar] [CrossRef]
- Ghasemi, A.; Shayesteh, A.A.; Doustgani, A.; Pazoki, M. Thermodynamic assessment and optimization of a novel trigeneration energy system based on solar energy and MSW gasification using energy and exergy concept. J. Therm. Eng. 2021, 7, 349–366. [Google Scholar] [CrossRef]
- Tang, Q.; Wang, K.; Yang, K.; Luo, Y.S. Congestion-balanced and welfare-maximized charging strategies for electric vehicles. IEEE Trans. Parallel Distrib. Syst. 2020, 31, 2882–2895. [Google Scholar] [CrossRef]
- Wang, J.; Chen, W.; Ren, Y.; Alfarraj, O.; Wang, L. Blockchain Based Data Storage Mechanism in Cyber Physical System. J. Internet Technol. 2020, 21, 1681–1689. [Google Scholar]
- Song, Y.; Li, J.; Chen, X.; Zhang, D.; Tang, Q.; Yang, K. An efficient tensor completion method via truncated nuclear norm. J. Vis. Commun. Image Represent. 2020, 70, 102791. [Google Scholar] [CrossRef]
- Wang, J.; Wu, W.; Liao, Z.; Jung, Y.W.; Kim, J.U. An Enhanced PROMOT Algorithm with D2D and Robust for Mobile Edge Computing. J. Internet Technol. 2020, 21, 1437–1445. [Google Scholar]
- Zhang, D.; Wang, S.; Li, F.; Tian, S.; Wang, J.; Ding, X.; Gong, R. An Efficient ECG Denoising Method Based on Empirical Mode Decomposition, Sample Entropy, and Improved Threshold Function. Wirel. Commun. Mob. Comput. 2020, 2020, 8811962. [Google Scholar] [CrossRef]
- Tang, Q.; Wang, K.; Song, Y.; Li, F.; Park, J.H. Waiting time minimized charging and discharging strategy based on mobile edge computing supported by software-defined network. IEEE Internet Things J. 2019, 7, 6088–6101. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, K.; Xiang, L.; Luo, Y.; Xiong, B.; Tang, Q. A self-adaptive regression-based multivariate data compression scheme with error bound in wireless sensor networks. Int. J. Distrib. Sens. Netw. 2013, 9, 913497. [Google Scholar] [CrossRef]
- Zhang, J.; Sun, J.; Wang, J.; Yue, X.G. Visual object tracking based on residual network and cascaded correlation filters. J. Ambient. Intell. Humaniz. Comput. 2020, 12, 8427–8440. [Google Scholar] [CrossRef]
- Gu, K.; Wang, Y.; Wen, S. Traceable Threshold Proxy Signature. J. Inf. Sci. Eng. 2017, 33, 17. [Google Scholar]
- Li, H.; Xu, B.; Lu, G.; Du, C.; Huang, N. Multi-objective optimization of PEM fuel cell by coupled significant variables recognition, surrogate models and a multi-objective genetic algorithm. Energy Convers. Manag. 2021, 236, 114063. [Google Scholar] [CrossRef]
- Açıkkalp, E.; Chen, L.; Ahmadi, M.H. Comparative performance analyses of molten carbonate fuel cell-alkali metal thermal to electric converter and molten carbonate fuel cell-thermo-electric generator hybrid systems. Energy Rep. 2020, 6, 10–16. [Google Scholar] [CrossRef]
- Li, W.; Ding, Y.; Yang, Y.; Sherratt, R.S.; Park, J.H.; Wang, J. Parameterized algorithms of fundamental NP-hard problems: A survey. Hum. Cent. Comput. Inf. Sci. 2020, 10, 1–24. [Google Scholar] [CrossRef]
- Gu, K.; Yang, L.; Wang, Y.; Wen, S. Traceable identity-based group signature. RAIRO Theor. Inform. Appl. 2016, 50, 193–226. [Google Scholar] [CrossRef]
- Yin, B.; Zhou, S.; Lin, Y.; Liu, Y.; Hu, Y. Efficient distributed skyline computation using dependency-based data partitioning. J. Syst. Softw. 2014, 93, 69–83. [Google Scholar] [CrossRef]
- Long, M.; Xiao, X. Outage performance of double-relay cooperative transmission network with energy harvesting. Phys. Commun. 2018, 29, 261–267. [Google Scholar] [CrossRef]
- Xu, Z.; Liang, W.; Li, K.-C.; Xu, J.; Jin, H. A blockchain-based Roadside Unit-assisted authentication and key agreement protocol for Internet of Vehicles. J. Parallel Distrib. Comput. 2021, 149, 29–39. [Google Scholar] [CrossRef]
- Wang, W.; Yang, Y.; Li, J.; Hu, Y.; Luo, Y.; Wang, X. Woodland labeling in chenzhou, China, via deep learning approach. Int. J. Comput. Intell. Syst. 2020, 13, 1393–1403. [Google Scholar] [CrossRef]
- Qu, Y.; Xiong, N. RFH: A Resilient, Fault-Tolerant and High-Efficient Replication Algorithm for Distributed Cloud Storage. In Proceedings of the 41st International Conference on Parallel Processing, Pittsburgh, PA, USA, 10–13 September 2012; pp. 520–529. [Google Scholar]
- Fang, W.; Yao, X.; Zhao, X.; Yin, J.; Xiong, N. A Stochastic Control Approach to Maximize Profit on Service Provisioning for Mobile Cloudlet Platforms. IEEE Trans. Syst. Man, Cybern. Syst. 2016, 48, 522–534. [Google Scholar] [CrossRef]
- Ramandi, M.; Berg, P.; Dincer, I. Three-dimensional modeling of polarization characteristics in molten carbonate fuel cells using peroxide and superoxide mechanisms. J. Power Sources 2012, 218, 192–203. [Google Scholar] [CrossRef]
- Brouwer, J.; Jabbari, F.; Leal, E.M.; Orr, T. Analysis of a molten carbonate fuel cell: Numerical modeling and experimental validation. J. Power Sources 2006, 158, 213–224. [Google Scholar] [CrossRef] [Green Version]
- Roshani, M.; Phan, G.; Roshani, G.H.; Hanus, R.; Nazemi, B.; Corniani, E.; Nazemi, E. Combination of X-ray tube and GMDH neural network as a nondestructive and potential technique for measuring characteristics of gas–oil–water three phase flows. Measurement 2021, 168, 108427. [Google Scholar] [CrossRef]
- Xu, Y.-P.; Ouyang, P.; Xing, S.-M.; Qi, L.-Y.; Jafari, H. Optimal structure design of a PV/FC HRES using amended Water Strider Algorithm. Energy Rep. 2021, 7, 2057–2067. [Google Scholar] [CrossRef]
- Khayatnezhad, M.; Nasehi, F. Industrial pesticides and a methods assessment for the reduction of associated risks: A Review. Adv. Life Sci. 2021, 8, 202–210. [Google Scholar]
- Li, A.; Mu, X.; Zhao, X.; Xu, J.; Khayatnezhad, M.; Lalehzari, R. Developing the non-dimensional framework for water distribution formulation to evaluate sprinkler irrigation. Irrig. Drain. 2021, 70, 659–667. [Google Scholar] [CrossRef]
- Sun, Q.; Lin, D.; Khayatnezhad, M.; Taghavi, M. Investigation of phosphoric acid fuel cell, linear Fresnel solar reflector and Organic Rankine Cycle polygeneration energy system in different climatic conditions. Process. Saf. Environ. Prot. 2021, 147, 993–1008. [Google Scholar] [CrossRef]
- Hsu, C.-C.; Zhang, Y.; Ch, P.; Aqdas, R.; Chupradit, S.; Nawaz, A. A step towards sustainable environment in China: The role of eco-innovation renewable energy and environmental taxes. J. Environ. Manag. 2021, 299, 113609. [Google Scholar] [CrossRef] [PubMed]
- Qaderi, J. A brief review on the reaction mechanisms of CO2 hydrogenation into methanol. Int. J. Innov. Res. Sci. Stud. 2020, 3, 33–40. [Google Scholar] [CrossRef]
- Emrani, A.; Davoodnia, A.; Tavakoli-Hoseini, N. Alumina Supported Ammonium Dihydrogenphosphate (NH4H2PO4/Al2O3): Preparation, Characterization and Its Application as Catalyst in the Synthesis of 1,2,4,5-Tetrasubstituted Imidazoles. Bull. Korean Chem. Soc. 2011, 32, 2385–2390. [Google Scholar] [CrossRef] [Green Version]
- Sibuea, M.B.; Sibuea, S.R.; Pratama, I. The impact of renewable energy and economic development on environmental quality of ASEAN countries. AgBioForum 2021, 23, 12–21. [Google Scholar]
- Jassim, T.L. The influence of oil prices, licensing and production on the economic development: An empirical investigation of Iraq economy. AgBioForum 2021, 23, 1–11. [Google Scholar]
- Erol, I.; Velioğlu, M.N. An investigation into sustainable supply chain management practices in a developing country. Int. J. Ebusiness Egovernment Stud. 2019, 11, 104–118. [Google Scholar] [CrossRef]
- Omar, H.A.M.B.B.; Ali, M.A.M.; Bin Jaharadak, A.A. Green supply chain integrations and corporate sustainability. Uncertain Supply Chain Manag. 2019, 7, 713–726. [Google Scholar] [CrossRef]
- Aldousari, A.A.; Robertson, A.; Yajid, M.S.A.; Ahmed, Z.U. Impact of employer branding on organization’s performance. J. Transnatl. Manag. 2017, 22, 153–170. [Google Scholar] [CrossRef]
- Mei, B.; Qin, Y.; Taghavi, M. Thermodynamic performance of a new hybrid system based on concentrating solar system, molten carbonate fuel cell and organic Rankine cycle with CO2 capturing analysis. Process. Saf. Environ. Prot. 2021, 146, 531–551. [Google Scholar] [CrossRef]
- Guo, X.; Zhang, H.; Zhao, J.; Wang, F.; Wang, J.; Miao, H.; Yuan, J. Optimal design and performance evaluation of a cogeneration system based on a molten carbonate fuel cell and a two-stage thermoelectric generator. Int. J. Ambient. Energy 2020, 1–8. [Google Scholar] [CrossRef]
- Watanabe, T. Molten carbonate fuel cells. In Handbook of Climate Change Mitigation and Adaptation, 2nd ed.; Springer Nature: Cham, Switzerland, 2016; ISBN 9783319144092. [Google Scholar]
- Lu, C.; Zhang, R.; Yang, G.; Huang, H.; Cheng, J.; Xu, S. Study and performance test of 10 kW molten carbonate fuel cell power generation system. Int. J. Coal Sci. Technol. 2021, 8, 368–376. [Google Scholar] [CrossRef]
- El-Emam, R.S.; Dincer, I. Energy and exergy analyses of a combined molten carbonate fuel cell—Gas turbine system. Int. J. Hydrogen Energy 2011, 36, 8927–8935. [Google Scholar] [CrossRef]
- Mamaghani, A.H.; Najafi, B.; Shirazi, A.; Rinaldi, F. Exergetic, economic, and environmental evaluations and multi-objective optimization of a combined molten carbonate fuel cell-gas turbine system. Appl. Therm. Eng. 2015, 77, 1–11. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, H.; Ni, M.; Chen, J. Performance evaluation and parametric optimum design of a syngas molten carbonate fuel cell and gas turbine hybrid system. Renew. Energy 2015, 80, 407–414. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, B.; Xu, H.; Ni, M. Thermodynamic assessment of an integrated molten carbonate fuel cell and absorption refrigerator hybrid system for combined power and cooling applications. Int. J. Refrig. 2016, 70, 1–12. [Google Scholar] [CrossRef]
- Mastropasqua, L.; Campanari, S.; Brouwer, J. Electrochemical Carbon Separation in a SOFC–MCFC Polygeneration Plant With Near-Zero Emissions. J. Eng. Gas Turbines Power 2018, 140, 013001. [Google Scholar] [CrossRef]
- Carapellucci, R.; Cipollone, R.; Di Battista, D. Modeling and characterization of molten carbonate fuel cell for electricity generation and carbon dioxide capture. Energy Procedia 2017, 126, 477–484. [Google Scholar] [CrossRef]
- Spinelli, M.; Romano, M.C.; Consonni, S.; Campanari, S.; Marchi, M.; Cinti, G. Application of Molten Carbonate Fuel Cells in Cement Plants for CO2 Capture and Clean Power Generation. Energy Procedia 2014, 63, 6517–6526. [Google Scholar] [CrossRef] [Green Version]
- Wee, J.-H. Carbon dioxide emission reduction using molten carbonate fuel cell systems. Renew. Sustain. Energy Rev. 2014, 32, 178–191. [Google Scholar] [CrossRef]
- Kim, T.Y.; Kim, B.S.; Park, T.C.; Yeo, Y.K. Model-based control of a molten carbonate fuel cell (MCFC) process. Korean J. Chem. Eng. 2018, 35, 118–128. [Google Scholar] [CrossRef]
- Peng, W.; Cai, L.; Lin, J.; Zhao, Y.; Chen, J. The optimal operation states and parametric choice strategies of a DCFC-AMTEC coupling system with high efficiency. Energy Convers. Manag. 2019, 195, 360–366. [Google Scholar] [CrossRef]
- Wu, S.-Y.; Guo, G.; Xiao, L.; Chen, Z.-L. A new AMTEC/TAR hybrid system for power and cooling cogeneration. Energy Convers. Manag. 2019, 180, 206–217. [Google Scholar] [CrossRef]
- Ismail, B.I.; Ahmed, W.H. Thermoelectric Power Generation Using Waste-Heat Energy as an Alternative Green Technology. Recent Patents Electr. Eng. 2009, 2, 27–39. [Google Scholar] [CrossRef]
- Yu, S.; Du, Q.; Diao, H.; Shu, G.; Jiao, K. Start-up modes of thermoelectric generator based on vehicle exhaust waste heat recovery. Appl. Energy 2015, 138, 276–290. [Google Scholar] [CrossRef]
- Chen, W.-H.; Wang, C.-C.; Hung, C.-I.; Yang, C.-C.; Juang, R.-C. Modeling and simulation for the design of thermal-concentrated solar thermoelectric generator. Energy 2014, 64, 287–297. [Google Scholar] [CrossRef]
- Zhao, M.; Zhang, H.; Hu, Z.; Zhang, Z.; Zhang, J. Performance characteristics of a direct carbon fuel cell/thermoelectric generator hybrid system. Energy Convers. Manag. 2015, 89, 683–689. [Google Scholar] [CrossRef]
- Discepoli, G.; Cinti, G.; Desideri, U.; Penchini, D.; Proietti, S. Carbon capture with molten carbonate fuel cells: Experimental tests and fuel cell performance assessment. Int. J. Greenh. Gas Control. 2012, 9, 372–384. [Google Scholar] [CrossRef]
- Wu, M.; Zhang, H.; Zhao, J.; Wang, F.; Yuan, J. Performance analyzes of an integrated phosphoric acid fuel cell and thermoelectric device system for power and cooling cogeneration. Int. J. Refrig. 2018, 89, 61–69. [Google Scholar] [CrossRef]
- Zhang, H.; Kong, W.; Dong, F.; Xu, H.; Chen, B.; Ni, M. Application of cascading thermoelectric generator and cooler for waste heat recovery from solid oxide fuel cells. Energy Convers. Manag. 2017, 148, 1382–1390. [Google Scholar] [CrossRef]
- Chen, X.; Wang, Y.; Cai, L.; Zhou, Y. Maximum power output and load matching of a phosphoric acid fuel cell-thermoelectric generator hybrid system. J. Power Sources 2015, 294, 430–436. [Google Scholar] [CrossRef]
- Hasani, M.; Rahbar, N. Application of thermoelectric cooler as a power generator in waste heat recovery from a PEM fuel cell—An experimental study. Int. J. Hydrog. Energy 2015, 40, 15040–15051. [Google Scholar] [CrossRef]
- Hoogers, G. Fuel Cell Technology Handbook; CRC Press: New York, NY, USA, 2002; ISBN 9781420041552. [Google Scholar]
- Hu, L.; Rexed, I.; Lindbergh, G.; Lagergren, C. Electrochemical performance of reversible molten carbonate fuel cells. Int. J. Hydrog. Energy 2014, 39, 12323–12329. [Google Scholar] [CrossRef] [Green Version]
- Duan, L.; Xia, K.; Feng, T.; Jia, S.; Bian, J. Study on coal-fired power plant with CO2 capture by integrating molten carbonate fuel cell system. Energy 2016, 117, 578–589. [Google Scholar] [CrossRef]
- Lee, C.-G. Analysis of impedance in a molten carbonate fuel cell. J. Electroanal. Chem. 2016, 776, 162–169. [Google Scholar] [CrossRef]
- Rashidi, R.; Dincer, I.; Berg, P. Energy and exergy analyses of a hybrid molten carbonate fuel cell system. J. Power Sources 2008, 185, 1107–1114. [Google Scholar] [CrossRef]
- Mehrpooya, M.; Sayyad, S.; Zonouz, M.J. Energy, exergy and sensitivity analyses of a hybrid combined cooling, heating and power (CCHP) plant with molten carbonate fuel cell (MCFC) and Stirling engine. J. Clean. Prod. 2017, 148, 283–294. [Google Scholar] [CrossRef]
- Açıkkalp, E. Performance analysis of irreversible molten carbonate fuel cell—Braysson heat engine with ecological objective approach. Energy Convers. Manag. 2017, 132, 432–437. [Google Scholar] [CrossRef]
- Yang, P.; Zhu, Y.; Zhang, P.; Zhang, H.; Hu, Z.; Zhang, J. Performance evaluation of an alkaline fuel cell/thermoelectric generator hybrid system. Int. J. Hydrogen Energy 2014, 39, 11756–11762. [Google Scholar] [CrossRef]
- Dimopoulos, G.G.; Stefanatos, I.C.; Kakalis, N.M.P. Exergy analysis and optimisation of a marine molten carbonate fuel cell system in simple and combined cycle configuration. Energy Convers. Manag. 2016, 107, 10–21. [Google Scholar] [CrossRef]
- Jokar, M.A.; Ahmadi, M.H.; Sharifpur, M.; Meyer, J.P.; Pourfayaz, F.; Ming, T. Thermodynamic evaluation and multi-objective optimization of molten carbonate fuel cell-supercritical CO2 Brayton cycle hybrid system. Energy Convers. Manag. 2017, 153, 538–556. [Google Scholar] [CrossRef]
- Tong, X.; Zhang, F.; Ji, B.; Sheng, M.; Tang, Y. Carbon-Coated Porous Aluminum Foil Anode for High-Rate, Long-Term Cycling Stability, and High Energy Density Dual-Ion Batteries. Adv. Mater. 2016, 28, 9979–9985. [Google Scholar] [CrossRef]
- Peng, X.; Liu, Z.; Jiang, D. A review of multiphase energy conversion in wind power generation. Renew. Sustain. Energy Rev. 2021, 147, 111172. [Google Scholar] [CrossRef]
- Sani, M.M.; Sani, H.M.; Fowler, M.; Elkamel, A.; Noorpoor, A.; Ghasemi, A. Optimal energy hub development to supply heating, cooling, electricity and freshwater for a coastal urban area taking into account economic and environmental factors. Energy 2022, 238, 121743. [Google Scholar] [CrossRef]
- Ghasemi, A.; Moghaddam, M. Thermodynamic and environmental comparative investigation and optimization of landfill vs. incineration for municipal solid waste: A case study in varamin, Iran. J. Therm. Eng. 2020, 6, 226–246. [Google Scholar] [CrossRef]
- Talebizadehsardari, P.; Ehyaei, M.; Ahmadi, A.; Jamali, D.H.; Shirmohammadi, R.; Eyvazian, A.; Ghasemi, A.; Rosen, M.A. Energy, exergy, economic, exergoeconomic, and exergoenvironmental (5E) analyses of a triple cycle with carbon capture. J. CO2 Util. 2020, 41, 101258. [Google Scholar] [CrossRef]
- Cao, Y.; Rad, H.N.; Jamali, D.H.; Hashemian, N.; Ghasemi, A. A novel multi-objective spiral optimization algorithm for an innovative solar/biomass-based multi-generation energy system: 3E analyses, and optimization algorithms comparison. Energy Convers. Manag. 2020, 219, 112961. [Google Scholar] [CrossRef]
- Shayesteh, A.A.; Koohshekan, O.; Ghasemi, A.; Nemati, M.; Mokhtari, H. Determination of the ORC-RO system optimum parameters based on 4E analysis; Water–Energy-Environment nexus. Energy Convers. Manag. 2019, 183, 772–790. [Google Scholar] [CrossRef]
- Golkar, B.; Naserabad, S.N.; Soleimany, F.; Dodange, M.; Ghasemi, A.; Mokhtari, H.; Oroojie, P. Determination of optimum hybrid cooling wet/dry parameters and control system in off design condition: Case study. Appl. Therm. Eng. 2018, 149, 132–150. [Google Scholar] [CrossRef]
- Hashemian, N.; Noorpoor, A.; Heidarnejad, P. Thermodynamic diagnosis of a novel solar-biomass based multi-generation system including potable water and hydrogen production. Energy Equip. Syst. 2019, 7, 81–98. [Google Scholar] [CrossRef]
- Cao, Y.; Dhahad, H.A.; Farouk, N.; Xia, W.F.; Rad, H.N.; Ghasemi, A.; Kamranfar, S.; Sani, M.M.; Shayesteh, A.A. Multi-objective bat optimization for a biomass gasifier integrated energy system based on 4E analyses. Appl. Therm. Eng. 2021, 196, 117339. [Google Scholar] [CrossRef]
- Ghasemi, A.; Heidarnejad, P.; Noorpoor, A. A novel solar-biomass based multi-generation energy system including water desalination and liquefaction of natural gas system: Thermodynamic and thermoeconomic optimization. J. Clean. Prod. 2018, 196, 424–437. [Google Scholar] [CrossRef]
- Xiang, G.; Zhang, Y.; Gao, X.; Li, H.; Huang, X. Oblique detonation waves induced by two symmetrical wedges in hydrogen-air mixtures. Fuel 2021, 295, 120615. [Google Scholar] [CrossRef]
- Cao, Y.; Doustgani, A.; Salehi, A.; Nemati, M.; Ghasemi, A.; Koohshekan, O. The economic evaluation of establishing a plant for producing biodiesel from edible oil wastes in oil-rich countries: Case study Iran. Energy 2020, 213, 118760. [Google Scholar] [CrossRef]
- Jing, L.; Pan, Y.; Wang, T.; Qu, R.; Cheng, P.-T. Transient Analysis and Verification of a Magnetic Gear Integrated Permanent Magnet Brushless Machine with Halbach Arrays. IEEE J. Emerg. Sel. Top. Power Electron. 2021, 1. [Google Scholar] [CrossRef]
- Yang, S.; Wan, X.; Wei, K.; Ma, W.; Wang, Z. Silicon recovery from diamond wire saw silicon powder waste with hydrochloric acid pretreatment: An investigation of Al dissolution behavior. Waste Manag. 2021, 120, 820–827. [Google Scholar] [CrossRef]
- Habibifar, R.; Ranjbar, H.; Shafie-Khah, M.; Ehsan, M.; Catalao, J.P.S. Network-Constrained Optimal Scheduling of Multi-Carrier Residential Energy Systems: A Chance-Constrained Approach. IEEE Access 2021, 9, 86369–86381. [Google Scholar] [CrossRef]
- Chen, X.; Wang, T.; Ying, R.; Cao, Z. A Fault Diagnosis Method Considering Meteorological Factors for Transmission Networks Based on P Systems. Entropy 2021, 23, 1008. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Liu, W.; Zhao, J.; Guo, X.; Terzija, V. A rough set-based bio-inspired fault diagnosis method for electrical substations. Int. J. Electr. Power Energy Syst. 2020, 119, 105961. [Google Scholar] [CrossRef]
- Wang, T.; Wei, X.; Wang, J.; Huang, T.; Peng, H.; Song, X.; Cabrera, L.V.; Pérez-Jiménez, M.J. A weighted corrective fuzzy reasoning spiking neural P system for fault diagnosis in power systems with variable topologies. Eng. Appl. Artif. Intell. 2020, 92, 103680. [Google Scholar] [CrossRef]
- Huang, Z.; Wang, T.; Liu, W.; Valencia-Cabrera, L.; Pérez-Jiménez, M.J.; Li, P. A Fault Analysis Method for Three-Phase Induction Motors Based on Spiking Neural P Systems. Complexity 2021, 2021, 1–19. [Google Scholar] [CrossRef]
- Luo, G.; Zhang, Q.; Li, M.; Chen, K.; Zhou, W.; Luo, Y.; Li, Z.; Wang, L.; Zhao, L.; Teh, K.S.; et al. A flexible electrostatic nanogenerator and self-powered capacitive sensor based on electrospun polystyrene mats and graphene oxide films. Nanotechnology 2021, 32, 405402. [Google Scholar] [CrossRef]
- Hashemian, N.; Noorpoor, A. Assessment and multi-criteria optimization of a solar and biomass-based multi-generation system: Thermodynamic, exergoeconomic and exergoenvironmental aspects. Energy Convers. Manag. 2019, 195, 788–797. [Google Scholar] [CrossRef]
- Feng, P.; Chang, H.; Liu, X.; Ye, S.; Shu, X.; Ran, Q. The significance of dispersion of nano-SiO2 on early age hydration of cement pastes. Mater. Des. 2020, 186, 108320. [Google Scholar] [CrossRef]
- Luo, G.; Teh, K.S.; Xia, Y.; Luo, Y.; Li, Z.; Wang, S.; Zhao, L.; Jiang, Z. A novel three-dimensional spiral CoNi LDHs on Au@ErGO wire for high performance fiber supercapacitor electrodes. Mater. Lett. 2019, 236, 728–731. [Google Scholar] [CrossRef]
- Syah, R.; Davarpanah, A.; Elveny, M.; Ramdan, D. Natural convection of water and nano-emulsion phase change material inside a square enclosure to cool the electronic components. Int. J. Energy Res. 2021. early view. [Google Scholar] [CrossRef]
- Yousefizadeh Dibazar, S.; Salehi, G.; Davarpanah, A. Comparison of exergy and advanced exergy analysis in three different organic Rankine cycles. Processes 2020, 8, 586. [Google Scholar] [CrossRef]
- Valizadeh, K.; Farahbakhsh, S.; Bateni, A.; Zargarian, A.; Davarpanah, A.; Alizadeh, A.; Zarei, M. A parametric study to simulate the non-Newtonian turbulent flow in spiral tubes. Energy Sci. Eng. 2020, 8, 134–149. [Google Scholar] [CrossRef] [Green Version]
Item | Relation | Ref. |
---|---|---|
Fuel cell voltage | [87] | |
Cell potential equilibrium | [88] | |
Anode overpotential | [89] | |
Cathode overpotential | [89] | |
Ohmic overpotential | [89] |
Parameter | Value | Ref. |
---|---|---|
Working temperature, (C) | 650 | [1] |
Working pressure, (atm) | 1 | [1] |
Anode activation energy, (J/mol) | 53,500 | [1] |
Cathode activation energy, (J/mol) | 77,300 | [1] |
Reference Temperature, (C) | 25 | [76] |
Conductivity of heat, (W/k·m) | 0.02 | [78] |
Thermoelectric materia figure of merit | 1 | |
Anode gas composition Hydrogen: 0.6, Carbon dioxide: 0.15, water: 0.25 | [78] | |
Cathode gas composition Nitrogen: 0.59, Carbon dioxide: 0.08, water: 0.25, Oxygen: 0.08 | [78] |
Flow | Argon | Methane | Etane | Propan | n-Butane | Carbon- Monoxide | Carbon- Dioxide | Hydrogen | Water | Nitrogen | Oxygen | Carbonate |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
2 | 0 | 0.7 | 0 | 0 | 0 | 0 | 0 | 0 | 0.3 | 0 | 0 | 0 |
3 | 0 | 0.7 | 0 | 0 | 0 | 0 | 0 | 0 | 0.3 | 0 | 0 | 0 |
4 | 0 | 0.2 | 0 | 0 | 0 | 0.2 | 0 | 0.6 | 0 | 0 | 0 | 0 |
5 | 0 | 0.2 | 0 | 0 | 0 | 0.2 | 0 | 0.5 | 0 | 0 | 0 | 0 |
6 | 0 | 0.2 | 0 | 0 | 0 | 0.2 | 0 | 0.5 | 0 | 0 | 0 | 0 |
7 | 0 | 0.2 | 0 | 0 | 0 | 0.2 | 0 | 0.5 | 0 | 0 | 0 | 0 |
8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.8 | 0.2 | 0 |
9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.8 | 0.2 | 0 |
10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.8 | 0.2 | 0 |
11 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.8 | 0.2 | 0 |
12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.8 | 0.2 | 0 |
13 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.8 | 0.2 | 0 |
14 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.8 | 0.2 | 0 |
15 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.8 | 0.2 | 0 |
16 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.8 | 0.2 | 0 |
17 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
18 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.8 | 0.2 | 0 |
19 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
20 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.8 | 0.2 | 0 |
21 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
22 | 0 | 0.2 | 0 | 0 | 0 | 0.2 | 0 | 0.6 | 0 | 0 | 0 | 0 |
23 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.8 | 0.2 | 0 |
24 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.8 | 0.2 | 0 |
Naturalgas | 0 | 0.9 | 0.1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Air | 0.01 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.01 | 0.77 | 0.21 | 0 |
Water | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
Elements | Exergetic Study | Exergy Destruction |
---|---|---|
Regenerator | ||
Catalyst burner and Reformer |
Flow | T (C) | P (bar) | m. (kg/s) |
---|---|---|---|
1 | 103.7 | 1.1 | 0.42 |
2 | 69.6 | 1.1 | 19.25 |
3 | 549.6 | 1.1 | 0.42 |
4 | 790 | 1.03 | 0.42 |
5 | 790 | 1.03 | 1.5 |
6 | 790 | 1.03 | 1.5 |
7 | 790 | 1.03 | 1.51 |
8 | 640 | 1.03 | 0 |
9 | 648.9 | 1.03 | 0.002 |
10 | 648.9 | 1.03 | 1.405 |
12 | 640 | 1.03 | 64,285 |
13 | 640 | 1.03 | 0 |
14 | 640 | 1.03 | 584 |
15 | 640 | 1.03 | 63,718 |
16 | 640 | 1.03 | 63,718 |
17 | 651.1 | 1.03 | 0.01 |
18 | 640 | 1.03 | 64,290 |
19 | 651.1 | 1.03 | 0.01 |
20 | 648.5 | 1.01 | 584 |
21 | 648.4 | 1.01 | 584 |
22 | 660 | 1.03 | 1.384 |
23 | 648.5 | 1.01 | 585 |
24 | 25 | 1.01 | 585 |
Natural gas | 16 | 3.13 | 1 |
Air | 16 | 1.15 | 19.23 |
Water | 33 | 3.13 | 0.42 |
Flow | ||
---|---|---|
1 | 0.20 | 0.01 |
2 | 0.09 | 48.24 |
3 | 0.98 | 48.24 |
4 | 1.94 | 51.3 |
5 | 0 | 0 |
6 | 0.002 | 0.06 |
7 | 2.1 | 51.22 |
8 | 20,504 | 904.55 |
9 | 20,503 | 904.52 |
10 | 0 | 0 |
11 | 20,500 | 904.53 |
12 | 20.5 | 905 |
13 | 0 | 0 |
14 | 186.1 | 8.2 |
15 | 20,324 | 896.4 |
16 | 20,323 | 896.4 |
17 | 0.013 | 0.0001 |
18 | 20,504 | 904.5 |
19 | 0.013 | 0.0001 |
20 | 185.1 | 8.2 |
21 | 185.2 | 8.2 |
22 | 1.43 | 51.2 |
23 | 186.1 | 58.1 |
24 | −0.17 | 57.8 |
Natural gas | 156.8 | 48.3 |
Air | 0.2 | 46.1 |
Water | 0.2 | 0.01 |
Elements | Exergy Destruction (MW) | Exergetic Efficiency (%) |
---|---|---|
MCFC | 13.9 | 69 |
TEG | 0.27 | 97.4 |
Regenerator | 1.5 | 81.3 |
Catalyst burner | 1.1 | 99.5 |
Reformer | 0.9 | 62.4 |
Current Density (A/cm2) | Voltage (V) | Voltage (V) (This Study) | Error (%) |
---|---|---|---|
80.4225 | 408.308 | 410.091 | −0.436 |
82.6452 | 407.231 | 412.301 | −1.245 |
85.1665 | 406.154 | 405.747 | 0.100 |
90.1975 | 403.231 | 405.101 | −0.463 |
93.9104 | 402 | 403.61 | −0.4024 |
96.5763 | 400.615 | 403.233 | −0.653 |
100.425 | 398.462 | 396.659 | 0.4524 |
103.972 | 396.154 | 398.134 | −0.500 |
108.106 | 393.077 | 394.480 | −0.356 |
112.386 | 389.846 | 388.403 | 0.370 |
116.076 | 387.077 | 388.336 | −0.325 |
120.057 | 383.846 | 385.600 | −0.456 |
Variables | Criteria Functions | |||
---|---|---|---|---|
Pressure (bar) | Current Density (A/m2) | Temperature (C) | Cost ($/GJ) | Exergetic Efficiency (%) |
Least cost 1.5 | 3498 | 649 | 24.2 | 64.19 |
Optimal 2.1 | 4199 | 679 | 29.9 | 70.1 |
Maximum exergetic efficiency 3 | 5398 | 698 | 55.1 | 79.9 |
Ideal point | - | - | 24.2 | 79.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Syah, R.; Davarpanah, A.; Nasution, M.K.M.; Tanjung, F.A.; Nezhad, M.M.; Nesaht, M. A Comprehensive Thermoeconomic Evaluation and Multi-Criteria Optimization of a Combined MCFC/TEG System. Sustainability 2021, 13, 13187. https://doi.org/10.3390/su132313187
Syah R, Davarpanah A, Nasution MKM, Tanjung FA, Nezhad MM, Nesaht M. A Comprehensive Thermoeconomic Evaluation and Multi-Criteria Optimization of a Combined MCFC/TEG System. Sustainability. 2021; 13(23):13187. https://doi.org/10.3390/su132313187
Chicago/Turabian StyleSyah, Rahmad, Afshin Davarpanah, Mahyuddin K. M. Nasution, Faisal Amri Tanjung, Meysam Majidi Nezhad, and Mehdi Nesaht. 2021. "A Comprehensive Thermoeconomic Evaluation and Multi-Criteria Optimization of a Combined MCFC/TEG System" Sustainability 13, no. 23: 13187. https://doi.org/10.3390/su132313187
APA StyleSyah, R., Davarpanah, A., Nasution, M. K. M., Tanjung, F. A., Nezhad, M. M., & Nesaht, M. (2021). A Comprehensive Thermoeconomic Evaluation and Multi-Criteria Optimization of a Combined MCFC/TEG System. Sustainability, 13(23), 13187. https://doi.org/10.3390/su132313187