The Effect of Density on the Delicate Balance between Structural Requirements and Environmental Issues for AAC Blocks: An Experimental Investigation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Specimen Sampling
2.2. Determination of Physical Parameters: Bulk Density and Moisture Content
2.3. Compression Tests
2.4. Bending Tests
2.5. Fracture Energy Tests
2.6. Elastic Modulus
3. Results and Discussion
3.1. Bulk Density
3.2. Compressive Strength
3.3. Flexural Tensile Strength
3.4. Fracture Energy
3.5. Static Modulus of Elasticity
3.6. Thermal Conductivity
4. Conclusions
- All the investigated properties, which are flexural tensile strength, fracture energy, elastic modulus and thermal conductivity, exhibit an almost linear dependency from density. For compressive strength, an exponential relation with density seems instead more reasonable;
- For a given density class, compressive strength values are quite dispersed since they are influenced by several intrinsic and extrinsic factors, such as the type and amount of raw materials, the autoclaving treatment and specimens’ shape and dimensions. Even for a given product and a given specimen typology, the results are affected by the moisture content at the time of testing, as well as by the curing treatment before test execution. For these reasons, a relation between compressive strength and density with wide applicability can hardly be proposed. The broad range suggested by RILEM [28] confirms its validity, even if it should be revised for lower density values since the improvements in the production process progressively led to an increase in the compressive strength in time;
- Flexural tensile strength and elastic modulus show an almost linear trend with compressive strength and can be quite accurately predicted by using the analytical relations available in the literature.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cordero, A.S.; Melgar, S.G.; Márquez, J.M.A. Green Building Rating Systems and the New Framework Level(s): A Critical Review of Sustainability Certification within Europe. Energies 2019, 13, 66. [Google Scholar] [CrossRef] [Green Version]
- Omrany, H.; Ghaffarianhoseini, A.; Ghaffarianhoseini, A.; Raahemifar, K.; Tookey, J. Application of passive wall systems for improving the energy efficiency in buildings: A comprehensive review. Renew. Sustain. Energy Rev. 2016, 62, 1252–1269. [Google Scholar] [CrossRef]
- Díaz, J.J.V.; Wilby, M.R.; González, A.B.R. Setting up GHG-based energy efficiency targets in buildings: The Ecolabel. Energy Policy 2013, 59, 633–642. [Google Scholar] [CrossRef]
- European Commission. Directive 2012/27/EU of the European Parliament and of the Council of 25 October 2012 on Energy Efficiency, Amending Directives 2009/125/EC and 2010/30/EU and Repealing Directives 2004/8/EC and 2006/32/EC; European Commission: Strasbourg, France, 2012. [Google Scholar]
- European Commission. Proposal for a Directive of the European Parliament and of the Council on Energy Efficiency (Recast); European Commission: Brussels, Belgium, 2021. [Google Scholar]
- Konstantinou, T.; Prieto-Hoces, A. Environmental Design Principles for the Building Envelope and More: Passive and Active Measures. In Energy-Resources and Building Performance; TU Delft Open: Delft, The Netherlands, 2018; pp. 147–180. ISBN 978-94-6366-034-1. [Google Scholar]
- Patel, J. Analyzing a Net Zero Energy Building (NZEB) in the Climate Zone of Australia. Open Sci. J. 2021, 6, 1–19. [Google Scholar] [CrossRef]
- Trigo, T.; Flores-Colen, I.; Silva, L.; Vieira, N.; Raimundo, A.; Borsoi, G. Performance and Durability of Rendering and Basecoat Mortars for ETICS with CSA and Portland Cement. Infrastructures 2021, 6, 60. [Google Scholar] [CrossRef]
- Koci, V.; Madera, J.; Cerny, R.; Model, A.M. Effect of Environmental Conditions on Energy Efficiency of AAC-Based Building Envelopes. Int. J. Mater. Metall. Eng. 2012, 6, 117–122. [Google Scholar]
- Narayanan, N.; Ramamurthy, K. Microstructural investigations on aerated concrete. Cem. Concr. Res. 2000, 30, 457–464. [Google Scholar] [CrossRef]
- Narayanan, N.; Ramamurthy, K. Structure and properties of aerated concrete: A review. Cem. Concr. Compos. 2000, 22, 321–329. [Google Scholar] [CrossRef]
- Song, Y.; Li, B.; Yang, E.-H.; Liu, Y.; Ding, T. Feasibility study on utilization of municipal solid waste incineration bottom ash as aerating agent for the production of autoclaved aerated concrete. Cem. Concr. Compos. 2015, 56, 51–58. [Google Scholar] [CrossRef]
- Mostafa, N. Influence of air-cooled slag on physicochemical properties of autoclaved aerated concrete. Cem. Concr. Res. 2005, 35, 1349–1357. [Google Scholar] [CrossRef]
- Hauser, A.; Eggenberger, U.; Peters, T. Origin and characterisation of fly ashes from cellulose industries containing high proportions of free lime and anhydrite. Cem. Concr. Res. 1999, 29, 1569–1573. [Google Scholar] [CrossRef]
- El-Didamony, H.; Amer, A.A.; Mohammed, M.S.; El-Hakim, M.A. Fabrication and properties of autoclaved aerated concrete containing agriculture and industrial solid wastes. J. Build. Eng. 2019, 22, 528–538. [Google Scholar] [CrossRef]
- Rafiza, A.R.; Chan, H.Y.; Thongtha, A.; Jettipattaranat, W.; Lim, K.L. An innovative autoclaved aerated concrete (AAC) with recycled AAC powder for low carbon construction. IOP Conf. Ser. Earth and Environ. Sci. 2019, 268, 012050. [Google Scholar] [CrossRef]
- Ferretti, D.; Michelini, E.; Rosati, G. Mechanical characterization of autoclaved aerated concrete masonry subjected to in-plane loading: Experimental investigation and FE modeling. Constr. Build. Mater. 2015, 98, 353–365. [Google Scholar] [CrossRef]
- Ferretti, D.; Michelini, E.; Pongiluppi, N.; Cerioni, R. Damage Assessment of Autoclaved Aerated Concrete Buildings: Some Italian Case Studies. Int. J. Mason. Res. Innov. 2020, 5, 1. [Google Scholar] [CrossRef]
- Woodhead Publishing. Eco-Efficient Masonry Bricks and Blocks—Design, Properties and Durability; Pacheco-Torgal, F., Lourenço, P.B., Labrincha, J.A., Kumar, S., Chindaprasirt, P., Eds.; Woodhead Publishing: Oxford, UK, 2015; ISBN 978-1-78242-305-8. [Google Scholar]
- Radhi, H. Viability of autoclaved aerated concrete walls for the residential sector in the United Arab Emirates. Energy Build. 2011, 43, 2086–2092. [Google Scholar] [CrossRef]
- Hendry, E.A. Masonry walls: Materials and construction. Constr. Build. Mater. 2001, 15, 323–330. [Google Scholar] [CrossRef]
- Drochytka, R.; Zach, J.; Korjenic, A.; Hroudová, J. Improving the energy efficiency in buildings while reducing the waste using autoclaved aerated concrete made from power industry waste. Energy Build. 2013, 58, 319–323. [Google Scholar] [CrossRef]
- Lindberg, R.; Binamu, A.; Teikari, M. Five-year data of measured weather, energy consumption, and time-dependent temperature variations within different exterior wall structures. Energy Build. 2004, 36, 495–501. [Google Scholar] [CrossRef]
- Paleari, M.; Miliani, A. The sustainability of wall solutions: Life Cycle Assessment (LCA) of different solutions for external closures. ce/papers 2018, 2, 489–494. [Google Scholar] [CrossRef]
- Schöndube, T.; Rashid, S.; Carrigan, S.; Schoch, T.; Kornadt, O. Autoclaved aerated concrete: Influence of heat storage capacity on thermal performance and thermal comfort. ce/papers 2018, 2, 97–102. [Google Scholar] [CrossRef]
- Straube, B.; Walther, H. AAC with Low Thermal Conductivity. Xella Tech. Rep. 2011, 78–80. [Google Scholar]
- Miccoli, L.; Fontana, P.; Silva, N.; Klinge, A.; Cederqvist, C.; Kreft, O.; Qvaeschning, D.; Sjöström, C. Composite UHPC-AAC/CLC facade elements with modified interior plaster for new buildings and refurbishment. Materials and production technology. J. Facade Des. Eng. 2015, 3, 91–102. [Google Scholar] [CrossRef]
- E&FN Spon. Autoclaved Aerated Concrete-Properties, Testing and Design—RILEM Recommended Practice; Aroni, S., de Groot, G.J., Robinson, M.J., Svanholm, G., Wittman, F.H., Eds.; E&FN Spon: London, UK, 1993; ISBN 1482271192. [Google Scholar]
- CEN (Comitè Europèen de Normalisation). EN 1998-1: Eurocode 8—Design of Structures for Earthquake Resistance; CEN: Belgium, Brussels, 2013. [Google Scholar]
- Bhosale, A.; Zade, N.P.; Davis, R.; Sarkar, P. Experimental Investigation of Autoclaved Aerated Concrete Masonry. J. Mater. Civ. Eng. 2019, 31, 04019109. [Google Scholar] [CrossRef]
- Chen, Y.; Peng, M.; Zhang, Y.; Liu, Y. Mechanical Properties of Autoclaved Aerated Concrete with Different Densities. Adv. Civ. Eng. Mater. 2013, 2, 20130063. [Google Scholar] [CrossRef]
- Argudo, J. Evaluation and Synthesis of Experimental Data for Autoclaved Aerated Concrete. Master’s Thesis, The University of Texas at Austin, Austin, TX, USA, 2003. [Google Scholar]
- Schober, G. The Most Important Aspects of Microstructure Influencing Strength of AAC; Taylor and Francis: London, UK, 2005; pp. 145–153. [Google Scholar]
- Alexanderson, J. Relations between structure and mechanical properties of autoclaved aerated concrete. Cem. Concr. Res. 1979, 9, 507–514. [Google Scholar] [CrossRef]
- Albayrak, M.; Yörükoğlu, A.; Karahan, S.; Atlıhan, S.; Aruntaş, H.Y.; Girgin, I. Influence of zeolite additive on properties of autoclaved aerated concrete. Build. Environ. 2007, 42, 3161–3165. [Google Scholar] [CrossRef]
- Dembowski, J.; Fouad, F.H. Mechanical Properties of Plain AAC Material. ACI Symp. Publ. 2005, 226, 1–16. [Google Scholar] [CrossRef]
- Valore, R.C. Cellular Concretes Part 2 Physical Properties. J. Proc. ACI 1954, 50, 817–836. [Google Scholar]
- Hanezka, K.; Koronthalyova, O.; Matiasovskf, P. The Carbonation of Autoclaved Aerated Concrete. Cem. Concr. Res. 1997, 27, 589–599. [Google Scholar] [CrossRef]
- Isu, N.; Teramura, S.; Ishida, H.; Mitsuda, T. Influence of quartz particle size on the chemical and mechanical properties of autoclaved aerated concrete (II) fracture toughness, strength and micropore. Cem. Concr. Res. 1995, 25, 249–254. [Google Scholar] [CrossRef]
- Qu, X.; Zhao, X. Previous and Present Investigations on the Components, Microstructure and Main Properties of Autoclaved Aerated Concrete–A Review. Constr. Build. Mater. 2017, 135, 505–516. [Google Scholar] [CrossRef]
- Trunk, B.; Schober, G.; Helbling, A.; Wittmann, F. Fracture mechanics parameters of autoclaved aerated concrete. Cem. Concr. Res. 1999, 29, 855–859. [Google Scholar] [CrossRef]
- Ferretti, D.; Michelini, E.; Rosati, G. Cracking in autoclaved aerated concrete: Experimental investigation and XFEM modeling. Cem. Concr. Res. 2015, 67, 156–167. [Google Scholar] [CrossRef]
- Wittmann, F.; Gheorghita, I. Fracture toughness of autoclaved aerated concrete. Cem. Concr. Res. 1984, 14, 369–374. [Google Scholar] [CrossRef]
- Brühwiler, E.; Wang, J.; Wittmann, F.H. Fracture of AAC as Influenced by Specimen Dimension and Moisture. J. Mater. Civ. Eng. 1990, 2, 136–146. [Google Scholar] [CrossRef]
- Tanner, J.E. Design Provisions for Autoclaved Aerated Concrete (AAC) Structural Systems. Ph.D. Thesis, The University of Texas at Austin, Austin, TX, USA, 2003. [Google Scholar]
- ESR. ESR-1371 ICC ES Report—Autoclaved Aerated Concrete Block Masonry Units; ESR: Haines City, FL, USA, 2004. [Google Scholar]
- American Concrete Institute. ACI Committee 523 Guide for Design and Construction with Autoclaved Aerated Concrete Panels; ACI 523.R4-09; American Concrete Institute: Farmington Hills, MI, USA, 2009. [Google Scholar]
- Ferretti, D.; Gherri, B.; Michelini, E. Eco-mechanical indexes for sustainability assessment of AAC blocks. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2018; Volume 442, p. 012011. [Google Scholar]
- CEN (Comitè Europèen de Normalisation). EN 772-13: 2002. Methods of Test for Masonry Units—Determination of Net and Gross Dry Density of Masonry Units (Except for Natural Stone); CEN: Belgium, Brussels, 2002. [Google Scholar]
- CEN (Comitè Europèen de Normalisation). EN 772-1: 2015. Methods of Test for Masonry Units—Part 1: Determination of Compressive Strength; CEN: Belgium, Brussels, 2015. [Google Scholar]
- CEN (Comitè Europèen de Normalisation). EN 1351:1997: Determination of Flexural Strength of Autoclaved Aerated Concrete; CEN: Belgium, Brussels, 1997. [Google Scholar]
- Japan Concrete Institute Standard. JCI-S-001-2003 Method of Test for Fracture Energy of Concrete by Use of Notched Beam; Japan Concrete Institute Standard: Tokyo, Japan, 2003. [Google Scholar]
- Mathey, R.G.; Rossiter, W.J., Jr. A Review of Autoclaved Aerated Concrete Products. NBSIR 87-3670; Research Information Center, National Bureau of Standards: Gaithersburg, MD, USA, 1988.
- Blaber, J.; Adair, B.S.; Antoniou, A. Ncorr: Open-Source 2D Digital Image Correlation Matlab Software. Exp. Mech. 2015, 55, 1105–1122. [Google Scholar] [CrossRef]
- Petrov, I.; Schlegel, E. Application of automatic image analysis for the investigation of autoclaved aerated concrete structure. Cem. Concr. Res. 1994, 24, 830–840. [Google Scholar] [CrossRef]
- Holt, E.; Raivio, P. Use of gasification residues in aerated autoclaved concrete. Cem. Concr. Res. 2005, 35, 796–802. [Google Scholar] [CrossRef]
- Rahman, R.A.; Fazlizan, A.; Asim, N.; Thongtha, A. A Review on the Utilization ofWaste Material for Autoclaved Aerated Concrete Production. J. Renew. Mater. 2021, 9, 61–72. [Google Scholar] [CrossRef]
- Isu, N.; Teramura, S.; Ishida, H.; Mitsuda, T. Mechanical Property Evolution during Autoclaving Process of Aerated Concrete Using Slag: II, Fracture Toughness and Microstructure. J. Am. Ceram. Soc. 1994, 77, 2093–2096. [Google Scholar] [CrossRef]
- Chiaia, B.; Fantilli, A.P.; Guerini, A.; Volpatti, G.; Zampini, D. Eco-mechanical index for structural concrete. Constr. Build. Mater. 2014, 67, 386–392. [Google Scholar] [CrossRef]
- Hanuseac, L.; Dumitrescu, L.; Barbuta, M.; Baran, I.; Bejan, G. Eco-Mechanical Index of Lightweight Concrete Mixtures with Recycled Materials. Procedia Manuf. 2020, 46, 667–674. [Google Scholar] [CrossRef]
- Kristiawan, S.A.; Sangadji, S. Sunarmasto Eco-durability index of self-compacting concrete incorporating high volume fly ash. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2019; Volume 615, p. 012017. [Google Scholar]
- Jerman, M.; Keppert, M.; Výborný, J.; Černý, R. Hygric, Thermal and Durability Properties of Autoclaved Aerated Concrete. Constr. Build. Mater. 2013, 41, 352–359. [Google Scholar] [CrossRef]
- CEN (Comitè Europèen de Normalisation). EN 12667:2001. Thermal Performance of Building Materials and Products—Determination of Thermal Resistance by Means of Guarded Hot Plate and Heat Flow Meter Methods. Products of High and Medium Thermal Resistance; CEN: Belgium, Brussels, 2001. [Google Scholar]
- Walczak, P.; Małolepszy, J.; Reben, M.; Szymański, P.; Rzepa, K. Utilization of Waste Glass in Autoclaved Aerated Concrete. Procedia Eng. 2015, 122, 302–309. [Google Scholar] [CrossRef] [Green Version]
- Yang, R.; Zhu, J.; Wu, Z.; Wu, Z.; Li, M.; Peng, C. Thermal insulation and strength of autoclaved light concrete. J. Wuhan Univ. Technol. Sci. Ed. 2011, 26, 132–136. [Google Scholar] [CrossRef]
- Schober, G. Porosity in Autoclaved Aerated Concrete (AAC): A Review on Pore Structure, Types of Porosity, Measurement Methods and Effects of Porosity on Properties. In Proceedings of the 5th International Conference on Autoclaved Aerated Concrete, Bydgoscsz, Poland, 14–17 September 2011; pp. 351–359. [Google Scholar]
- Pehlivanlı, Z.O.; Uzun, I.; Yücel, Z.P.; Demir, I. The effect of different fiber reinforcement on the thermal and mechanical properties of autoclaved aerated concrete. Constr. Build. Mater. 2016, 112, 325–330. [Google Scholar] [CrossRef]
Test | Standard |
---|---|
Bulk density | EN 772-13:2002 a |
Compressive strength | EN 772-1:2015 b |
Flexural strength (MOR) | EN 1351:1997 c |
Fracture energy | JCI-S-001:2003 d |
Elastic modulus | Rilem Recommended Practice: 1993 e |
Density Class | Moisture Content (%) | Preliminary Surface Treatment | Number of Specimens |
---|---|---|---|
D1 | 6% | None/sandpaper | 6 × 3 |
D2 | 0% | None/sandpaper | 12 × 3 |
0% | Surface grinding | 6 × 3 | |
0% | Cardboard | 6 × 3 | |
6% | None/sandpaper | 12 × 3 | |
15% | None/sandpaper | 6 × 3 | |
20–30% 1 | None/sandpaper | 6 × 3 | |
D3 | 6% | None/sandpaper | 6 × 3 |
D4 | 6% | None/sandpaper | 6 × 3 |
Total= | 198 |
Test | Density Class | Moisture Content (%) | Preliminary Surface Treatment | Number of Specimens |
---|---|---|---|---|
Bending tests | D1 | 6% | None/sandpaper | 6 × 3 |
D2 | 0% | None/sandpaper | 6 × 3 | |
6% | None/sandpaper | 6 × 3 | ||
15% | None/sandpaper | 6 × 3 | ||
20–30% 1 | None/sandpaper | 6 × 3 | ||
D3 | 6% | None/sandpaper | 6 × 3 | |
D4 | 6% | None/sandpaper | 6 × 3 | |
Total= | 126 | |||
Fracture energy tests | D1 | 6% | None/sandpaper | 3 × 1 |
D2 | 0% | None/sandpaper | 3 × 1 | |
6% | None/sandpaper | 3 × 1 | ||
15% | None/sandpaper | 3 × 1 | ||
20–30% 1 | None/sandpaper | 3 × 1 | ||
D3 | 6% | None/sandpaper | 3 × 1 | |
D4 | 6% | None/sandpaper | 3 × 1 | |
Total= | 21 |
Density Class | D1 | D2 | D3 | D4 |
---|---|---|---|---|
Nominal density (kg/m3) | 300 ± 50 | 350 ± 50 | 480 ± 50 | 580 ± 50 |
Average experimental density (kg/m3) | 294.87 | 346.25 | 506.06 | 588.14 |
CV of experimental data (%) | 0.7 | 0.8 | 0.2 | 0.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferretti, D.; Michelini, E. The Effect of Density on the Delicate Balance between Structural Requirements and Environmental Issues for AAC Blocks: An Experimental Investigation. Sustainability 2021, 13, 13186. https://doi.org/10.3390/su132313186
Ferretti D, Michelini E. The Effect of Density on the Delicate Balance between Structural Requirements and Environmental Issues for AAC Blocks: An Experimental Investigation. Sustainability. 2021; 13(23):13186. https://doi.org/10.3390/su132313186
Chicago/Turabian StyleFerretti, Daniele, and Elena Michelini. 2021. "The Effect of Density on the Delicate Balance between Structural Requirements and Environmental Issues for AAC Blocks: An Experimental Investigation" Sustainability 13, no. 23: 13186. https://doi.org/10.3390/su132313186
APA StyleFerretti, D., & Michelini, E. (2021). The Effect of Density on the Delicate Balance between Structural Requirements and Environmental Issues for AAC Blocks: An Experimental Investigation. Sustainability, 13(23), 13186. https://doi.org/10.3390/su132313186