The Determination of Priority Areas for the Construction of Green Roofs with Use of the Urban Area Valorisation Method
Abstract
:1. Introduction
2. Literature Review
2.1. Problems of Urban Areas
2.2. Urban Heat Island in Wrocław
2.3. Biologically Active Surfaces and Biodiversity
3. Area and Methodology of the Study
3.1. Research Area
3.2. Gajowice—Analysed Area
3.3. Research Methodology
3.4. Valorisation of Urban Areas
4. Results
5. Discussion
6. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hesslerová, P.; Pokorný, J.; Huryna, H.; Seják, J.; Jirka, V. The impacts of greenery on urban climate and the options for use of thermal data in urban areas. Prog. Plan. 2021, 100545, in press. [Google Scholar] [CrossRef]
- Mell, I.C. Green Infrstructure: Concepts and Planning. FORUM-E-Journal. 2008. Available online: https://www.researchgate.net/publication/228664177_Green_Infrstructure_concepts_and_planning (accessed on 18 August 2021).
- Dumenu, W.; Obeng, E.A. Climate change and rural communities in Ghana: Social vulnerability, impacts, adaptations and policy implications. Environ. Sci. Policy 2016, 55, 208–217. [Google Scholar] [CrossRef]
- Gentle, P.; Maraseni, T.N. Climate change, poverty and livelihoods: Adaptation practices by rural mountain communities in Nepal. Environ. Sci. Policy 2012, 21, 24–34. [Google Scholar] [CrossRef]
- Reckien, D.; Creutzig, F.; Fernandez, B.; Lwasa, S.; Tovar-Restrepo, M.; McEvoy, D.; Satterthwaite, D. Climate change, equity and the Sustainable Development Goals: An urban perspective. Environ. Urban. 2017, 29, 159–182. [Google Scholar] [CrossRef]
- Schroter, D.; Zebisch, M.; Grothmann, T. Climate Change in Germany Vulnerability and Adaptation of Climate-Sensitive Sectors. Klimastatusbericht des DWD. 2005, pp. 44–56. Available online: https://research.fit.edu/media/site-specific/researchfitedu/coast-climate-adaptation-library/europe/germany-amp-poland/Schroter-et-al.-2005.-german-adaptation-of-climate-sensative-sectors.pdf (accessed on 20 October 2021).
- Tol, R.S.J. The Economic Impacts of Climate Change. Rev. Environ. Econ. Policy 2018, 12, 4–25. [Google Scholar] [CrossRef] [Green Version]
- Deely, J.; Hynes, S.; Barquín, J.; Burgess, D.; Finney, G.; Silió, A.; Álvarez-Martínez, J.M.; Bailly, D.; Ballé-Béganton, J. Barrier identification framework for the implementation of blue and green infrastructures. Land Use Policy 2020, 99, 105108. [Google Scholar] [CrossRef]
- Dubicki, A.; Dubicka, M.; Szymanowski, M.; Wrocławia, K. Środowisko Wrocławia–Informator (The Climate of Wrocław. The Environment of Wrocław–Guidebook); Dolnośląska Fundacja Ekorozwoju: Wrocław, Poland, 2002; pp. 9–25. Available online: https://www.researchgate.net/publication/312854324_Klimat_Wroclawia (accessed on 25 July 2021).
- Akbari, H.; Rose, L.S. Urban Surfaces and Heat Island Mitigation Potentials. J. Human-Environ. Syst. 2008, 11, 85–101. [Google Scholar] [CrossRef] [Green Version]
- Landsberg, H.E. The Urban Climate; Academic Press: Cambridge, MA, USA, 1981; p. 285. Available online: https://www.sciencedirect.com/bookseries/international-geophysics/vol/28/suppl/C (accessed on 7 May 2021).
- Żyromski, A.; Biniak-Pieróg, M.; Burszta-Adamiak, E.; Zamiar, Z. Evaluation of Relationship between Air Pollutant Concentration and Meteorological Elements in Winter Months. J. Water Land Dev. 2014, 22, 25–32. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; González, J.E.; Shen, S.; Miao, S.; Dou, J. Impacts of urbanization and air pollution on building energy demands—Beijing case study. Appl. Energy 2018, 225, 98–109. [Google Scholar] [CrossRef]
- Wang, R.; Eckelman, M.J.; Zimmerman, J. Consequential Environmental and Economic Life Cycle Assessment of Green and Gray Stormwater Infrastructures for Combined Sewer Systems. Environ. Sci. Technol. 2013, 47, 11189–11198. [Google Scholar] [CrossRef] [PubMed]
- Arnberger, A.; Allex, B.; Eder, R. Urban Heat Impacts on the Elderly in Vienna: Stakeholder Views and Oping Behaviors of Elderly Residents. Int. Assoc. Urban. Clim. Newsl. 2013, 48, 12. Available online: https://urban-climate.org/newsletters/IAUC048.pdf (accessed on 7 May 2021).
- Gawuć, L. Dobowa Zmienność Powierzchniowej Miejskiej Wyspy Ciepła Wybra Nych Miast w Polsce Podczas fali upałów w Sierpniu 2013 na Podstawie Danych Satelitarnych (Diurnal Variability of Surface Urban Heat Island during a Heat Wave in Selected Cities in Poland in August 2013 by Means of Satellite Imagery). Prace Naukowe Politechniki Warszawskiej. Inżynieria Środowiska. 2014, pp. 19–34. Available online: https://www.researchgate.net/publication/290433718_Dobowa_zmiennosc_Powierzchniowej_Miejskiej_Wyspy_Ciepla_wybranych_miast_w_Polsce_podczas_fali_upalow_w_sierpniu_2013_na_podstawie_danych_satelitarnych (accessed on 7 May 2021).
- United Nations Development Programme. Sustainable Urbanization Strategy UN DP’s Support. to Sustainable, Inclusive and Resilient Cities in the Developing World; United Nations: New York, NY, USA, 2016; Available online: https://www.undp.org/publications/sustainable-urbanization-strategy (accessed on 7 May 2021).
- Francis, L.F.M.; Jensen, M.B. Benefits of green roofs: A systematic review of the evidence for three ecosystem services. Urban For. Urban Green. 2017, 28, 167–176. [Google Scholar] [CrossRef]
- Oberndorfer, E.; Lundholm, J.; Bass, B.; Coffman, R.R.; Doshi, H.; Dunnett, N.; Gaffin, S.; Köhler, M.; Liu, K.K.Y.; Rowe, B. Green Roofs as Urban Ecosystems: Ecological Structures, Functions, and Services. BioScience 2007, 57, 823–833. [Google Scholar] [CrossRef]
- Hopkins, G.; Goodwin, C. Living Architecture. Green Roof and Walls. International Green Roof Association, 2006, Global Networking for Green Roofs, Green Roof News; CSIRO Publishing: Clayton, Australia, 2011. [Google Scholar]
- Pawłowska, K. Chinese Cities Extensive and Semi-Intensive Green Roofs, Green Roofs and Walls as a Solutions Supporting Urban Green Infrastructure, Zielone Dachy IrośLinne ściany Jako Rozwiązania Wspomagające Zieloną Infrastrukturę miast, Monografianaukowa Uniwersytetu Przyrodniczego we Wrocławiu, 2020, p. 59. Available online: https://doi.org/10.30825/1.17.2020 (accessed on 12 September 2021).
- European Commission. Building a Green Infrastructure for Europe; Publications Office of the European Union: Luxembourg, 2013; Available online: https://doi.org/10.2779/54125 (accessed on 18 August 2021).
- Schneider, P.; Gottschalk, N.; Löser, R.; Scharbrodt, T. Integrated Climate Protection Program for the City of Chemnitz—Climate Diagnosis, Climate Change Prognosis and Conception of Adaptation Measures in the Urban Area. In Resilient Cities: Cities and Adaptation to Climate Change—Proceedings of the Global Forum 2010; Local Sustainability; Springer: Bonn, Germany, 2011; Volume 1, pp. 299–310. Available online: https://scholar.google.com/scholar_lookup?title=Integrated+Climate+Protection+Program+for+the+City+of+Chemnitz%E2%80%94Climate+Diagnosis,+Climate+Change+Prognosis+and+Conception+of+Adaptation+Measures+in+the+Urban+Area&author=Schneider,+P.&author=Gottschalk,+N.&author=L%C3%B6ser,+R.&author=Scharbrodt,+T.&publication_year=2011&pages=299%E2%80%93310 (accessed on 18 August 2021).
- Ambrey, C.; Byrne, J.; Matthews, T.; Davison, A.; Portanger, C.; Lo, A. Cultivating climate justice: Green infrastructure and suburban disadvantage in Australia. Appl. Geogr. 2017, 89, 52–60. [Google Scholar] [CrossRef] [Green Version]
- Kłysik, K.; Fortuniak, K. Temporal and Spatial Characteristics of the Urban Heat island of Łódź, Poland. Atmos. Environ. 1999, 33, 3885–3895. Available online: https://scholar.google.com/citations?view_op=view_citation&hl=en&user=MBwgzTsAAAAJ&citation_for_view=MBwgzTsAAAAJ:eMMeJKvmdy0C (accessed on 12 September 2021). [CrossRef]
- Dubicka, M. Wpływ Cyrkulacji Atmosferyna Kształtowanie Warunków Klimatu (na Przykładzie Wrocławia) (The Influence of the Circulation of the Atmosphere on the Shaping of Climate Conditions (Based on the Example of Wrocław)); St. Geogr. LX: Wrocław, Poland, 1994; p. 296. [Google Scholar]
- Dubicka, M.; Szymanowski, M. Struktura miejskiej wispy ciepła I jej związek z warunkami pogodowymii urbanistycznymi Wrocławia (The structure of the urban heat island and its relation to the weather and urban conditions of Wrocław). Acta Univ. Wratislav. 2000, 22, 99–118. [Google Scholar]
- Dubicka, M.; Szymanowski, M. Modyfikowanie Klimatu Lokalnego Przez Obszary Zurbanizowane (Modifying the Local Climate by Urbanized Areas). In Kształtowanie Przestrzeni Zurbanizowanej w Myśl Zasad Ekorozwoju; Polski Klub Ekologiczny: Wrocław, Poland, 2001; pp. 41–53. [Google Scholar]
- The Gran Canaria Declaration, Las Palmas 2000, The Gran Canaria Declaration Calling for a Global Program for Plant Conservation. Available online: https://www.researchgate.net/publication/340332856_The_Gran_Canaria_Declaration_calling_for_a_Global_Program_for_Plant_Conservation (accessed on 18 August 2021).
- Plant Conservation Report 2020: A review of progress towards the Global Strategy for Plant Conservation 2011–2020, CBD Technical Series No.95. 2020. Available online: https://www.cbd.int/doc/publications/cbd-ts-95-en-lr.pdf (accessed on 18 August 2021).
- Drapella-Hermansdorfer, A.; Dyraga, A.; Pancewicz, A.; Rostański, K.; Szulczewska, B.; Zachariasz, A. Zielona Infrastruktura Miasta (Green City Infrastructure), Monografia; Wydawnictwo Politechniki Śląskiej: Gliwice, Poland, 2014; Available online: http://polsl.expertus.com.pl/expertusbin/expertus.cgi?KAT=%2Fvar%2Fwww%2Fbibgl%2Fexpertusdata%2Fpar%2F&FST=data.fst&FDT=data01.fdt&ekran=ISO&lnkmsk=2&cond=AND&mask=2&F_00=02&V_00=Zachariasz+A+ (accessed on 18 August 2021).
- Rozporządzenie Ministra Infrastruktury z dnia 12 Kwietnia 2002 r. w Sprawie Warunków Technicznych, Jakim Powinny Odpowiadać Budynki i Ich usytuowanie (z późn. Zm.) (Regulation of the Minister of Infrastructure of April 12, 2002 on Technical Conditions to be Met by Buildings and their Location). Available online: https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20020750690 (accessed on 18 August 2021).
- Tan, Y.; Xu, H.; Zhang, X. Sustainable urbanization in China: A comprehensive literature review. Cities 2016, 55, 82–93. [Google Scholar] [CrossRef]
- Stacherzak, A.; Hełdak, M.; Raszka, B. Planning documents and sustainable development of a commune in Poland. WIT Trans. Ecol. Environ. 2012, 162, 23–34. [Google Scholar] [CrossRef] [Green Version]
- Lu, X.-H.; Ke, S.-G. Evaluating the effectiveness of sustainable urban land use in China from the perspective of sustainable urbanization. Habitat Int. 2018, 77, 90–98. [Google Scholar] [CrossRef]
- Berlin Biotope Area of Factor-Implementation Guidelines Helping to Control Temperature and Runoff Climate Adapt. Available online: https://climate-adapt.eea.europa.eu/metadata/case-studies/berlinbiotope-area-factor-2013implementation-of-guidelines-helping-to-control-temperatureandrunoff/#challenges_anchor (accessed on 5 November 2020).
- Szulczewska, B.; Giedych, R. Ekologiczno-Przestrzenne Wskaźniki Stosowane w Planowaniui Projektowaniu Terenów Osiedli Mieszkaniowych (Ecological and Spatial Indicators Used in Planning and Designing Areas of Housing Estates). In Zieleń Osiedlowa Stan Obecnyi Wskazania Poprawy; Kosmala, M., Ed.; Polskie Zrzeszenie Inżynierówi Techników Sanitarnych Oddział Toruń: Toruń, Poland, 2010; pp. 46–59. Available online: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwjeta60wLP0AhXFwosKHUmAC7oQFnoECAQQAQ&url=http%3A%2F%2Fkak.sggw.pl%2Fimages%2Fstories%2FPublikacje%2FOsiedla%2520mieszkaniowe%2520w%2520strukturze%2520przyrodniczej%2520miasta.pdf&usg=AOvVaw2RuLLehzNYRlBVEaj8j3JD (accessed on 5 November 2020).
- Kazmierczak, A.; Carter, J.; Adaptation to climate change using green and blue infrastructure. A Database of Case Studies. Berlin: The Biotope Area Factor Climate Change Impacts Addressed. 2010. Available online: https://orca.cardiff.ac.uk/64906/1/Database_Final_no_hyperlinks.pdf (accessed on 18 August 2021).
- Peroni, F.; Pristeri, G.; Codato, D.; Pappalardo, S.E.; De Marchi, M. Biotope Area Factor: An Ecological Urban Index to Geovisualize Soil Sealing in Padua, Italy. Sustainability 2019, 12, 150. [Google Scholar] [CrossRef] [Green Version]
- Kruuse, A. The Green Space Factor and the Green Points System. Available online: https://nextcity.nl/wp-content/uploads/2017/01/1701256-Malmoe-Tools-c-Annika-Kruuse.pdf (accessed on 5 June 2021).
- Hirst, J. Functional Landscapes: Assessing Elements of Seattle Green Factor. Berg. Partnersh. PS 2008. Available online: https://www.scribd.com/document/180251845/Functional-Landscapes-Assessing-Elements-of-Seattle-Green-Factor (accessed on 21 September 2021).
- Rostański, K.M. Natura Modelowania. Elementy Naturalistyczne w Kompozycji Urbanistycznej (The Nature of Modeling. Naturalistic Elements in an Urban Composition). Wydawnictwo Politechniki Śląskiej, Gliwice 2012. Available online: https://www.researchgate.net/publication/260298027_Natura_modelowana_Elementy_naturalistyczne_w_kompozycji_urbanistycznej (accessed on 19 August 2021).
- Mioduszewski, W. Small (natural) water retention in rural areas/Mała (naturalna) retencja wodna na obszarach wiejskich. J. Water Land Dev. 2014, 20, 19–29. [Google Scholar] [CrossRef] [Green Version]
- Mioduszewski, W.; Querner, E.P.; Kowalewski, Z. The analysis of the impact of small retention on water resources in the catchment/Analiza oddziaływania małej retencji na zasoby wodne zlewni. J. Water Land Dev. 2014, 23, 41–51. [Google Scholar] [CrossRef]
- Mosiej, J.; Bus, A. New challenges in rural water management in Poland–selected problems. In Proceedings of the 7th International Scientific Conference Rural Development 2015, Akademija, Lithuania, 1–20 November 2015; Raupelienė, A., Ed.; Aleksandras Stulginskis University: Kaunas, Lithuania. [Google Scholar] [CrossRef] [Green Version]
- Patro, M.; Zubala, T. Possibilities of shaping the water retention in agricultural landscape. Teka Komisji Ochronyi Kształtowania Środowiska Przyrodniczego 2012, 9, 143–152. [Google Scholar]
- Drabiński, A.; Radczuk, L.; Mokwa, M.; Nyc, K.; Markowska, J.; Jawecki, B.; Malczewska, B. Program Małej Retencji Wodnej w Województwie Dolnośląskim (Small Water Retention Program in the Dolnośląskie Voivodeship); Centrum Modelowania Procesów Hydrologicznych: Wrocław, Poland, 2008. [Google Scholar]
- Baryła, A.; Karczmarczyk, A.; Brandyk, A.; Bus, A. The influence of a green roof drainage layer on retention capacity and leakage quality. Water Sci. Technol. 2018, 77, 2886–2895. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berretta, C.; Poë, S.; Stovin, V. Moisture content behaviour in extensive green roofs during dry periods: The influence of vegetation and substrate characteristics. J. Hydrol. 2014, 511, 374–386. [Google Scholar] [CrossRef]
- Burszta-Adamiak, E.; Mrowiec, M. Modelling of green roofs’ hydrologic performance using EPA’s SWMM. Water Sci. Technol. 2013, 68, 36–42. [Google Scholar] [CrossRef] [PubMed]
- Bouzouidja, R.; Séré, G.; Claverie, R.; Ouvrard, S.; Nuttens, L.; Lacroix, D. Green roof aging: Quantifying the impact of substrate evolution on hydraulic performances at the lab-scale. J. Hydrol. 2018, 564, 416–423. [Google Scholar] [CrossRef]
- Studium Uwarunkowańi Kierunków Zagospodarowania Przestrzennego Wrocławia (Study of the Conditions and Directions of Spatial Development in Wrocław). 2017. Available online: https://geoportal.wroclaw.pl/studium/ (accessed on 22 September 2021).
- Śródmieście Południowe Jednostka Urbanistyczna A11 W Studium Wrocławia Wytyczne Przestrzenne Na Rzecz Osiedla Kompletnego Wrocław, 2019 (Southern Downtown Urban Planning Unit A11 In Wrocław Study Spatial Guidelines for the Complete Housing Estate Wrocław). Available online: https://gis.um.wroc.pl/imap/?gpmap=kompletne (accessed on 22 September 2021).
- Szymanowski, M.; Kryza, M. Local regression models for spatial interpolation of urban heat island—An example from Wrocław, SW Poland. Theor. Appl. Clim. 2011, 108, 53–71. [Google Scholar] [CrossRef] [Green Version]
- Szymanowski, M.; Kryza, M. Application of geographically weighted regression for modelling the spatial structure of urban heat island in the city of Wroclaw (SW Poland). Procedia Environ. Sci. 2011, 3, 87–92. Available online: https://www.researchgate.net/publication/289180117_Application_of_the_geographically_weighted_regression_for_spatial_interpolation_of_the_urban_heat_island_in_Wroclaw_SW_Poland (accessed on 25 July 2021). [CrossRef] [Green Version]
- Rubaszek, J.; Szymanowski, M.; Michalski, A.; Tatko, R.; Weber-Siwirska, M. Procedure for the selection and evaluation of prefabricated housing buildings for the implementation of green roofs in the context of Urban Heat Island mitigation. The example of Wrocław, Poland. PLoS ONE 2021, 16, e0258641. [Google Scholar] [CrossRef]
- Kazak, J.K. The Use of a Decision Support System for Sustainable Urbanization and Thermal Comfort in Adaptation to Climate Change Actions—The Case of the Wrocław Larger Urban Zone (Poland). Sustainability 2018, 10, 1083. [Google Scholar] [CrossRef] [Green Version]
- Weber-Siwirska, M.; Rubaszek, J.; Tatko, R. Assessment of the possibility of greening the Large-Panel buildings roofs on the example of the Dorota-Barbara housing estate in Wrocław, Poland. In Redefining Cities in View of Climatic Changes; Politechnika Warszawska: Warszawa, Poland, 2019. [Google Scholar]
- Pawłowski, T. Wartości Estetyczne (Aesthetic Values); Wiedza Powszechna: Warszawa, Poland, 1987. [Google Scholar]
- Janiszek, M.; Majorek, A. Waloryzacja Przestrzeni Miejskiejna Podstawie Projektów Zrealizowanych w Ramach Budżetu Obywatelskiego (Valorization of Urban Space on the Basis of Projects Implemented within the Framework of the Civic Budget), Komitet Przestrzennego Zagospodarowania Kraju Polskiej Akademii Nauk Zeszyt 268, rok 2017. pp. 167–185. Available online: https://www.researchgate.net/publication/326583241_Waloryzacja_przestrzenimiejskiej_na_podstawie_projektow_zrealizowanych_w_ramach_budzetu_obywatelskiego (accessed on 19 September 2021).
- Dudek, T. Ocena Walorów Krajobrazowych Okolic Rzeszowa (Assessment of Landscape Values in the Vicinity of Rzeszów), Acta Scientiarum Polonorum. Administratio Locorum 11/1. pp. 65–71. Available online: https://www.researchgate.net/publication/315797838_Assessment_of_the_landscape_value_of_the_Rzeszow_surroundings_Ocena_walorow_krajobrazowych_okolic_Rzeszowa (accessed on 19 September 2021).
- Połucha, I.; Marks, E. Ocena Walorów Przyrodniczychi Kulturowych Gminy Reszel Pod Kątem Rozwoju Turystyki (Assessment of the Natural and Cultural Values of the Reszel Commune in Terms of Tourism Development), Acta Scientiarum Polonorum. Administratio Locorum 11/2. 2012, pp. 177–197. Available online: https://bazhum.muzhp.pl/media/files/Acta_Scientiarum_Polonorum_Administratio_Locorum/Acta_Scientiarum_Polonorum_Administratio_Locorum-r2012-t11-n2/Acta_Scientiarum_Polonorum_Administratio_Locorum-r2012-t11-n2-s177-197/Acta_Scientiarum_Polonorum_Administratio_Locorum-r2012-t11-n2-s177-197.pdf (accessed on 19 September 2021).
- Kot, R.; Sobiech, M. Ocena Georóżnorodności Rzeźby Terenu Wybranych Fragmentów Krajobrazu Młodoglacjalnego Pojezierza Chełmińsko-Dobrzyńskiego (Assessment of Geodiversity of the Terrain of Selected Fragments of the Young-Glacial Landscape of the Chełmno-Dobrzyń Lake District). Rocznik Świętokrzyski. Ser. B–Nauki Przyr. 2013, 34, 77–92. Available online: https://rocznikswietokrzyski.pl/wp-content/uploads/2016/07/Kot_Sobiech.pdf (accessed on 19 September 2021).
- Jakiel, M. Ocena Atrakcyjność Wizualnej Krajobrazu Dolinek Krakowskich–Możliwości Zastosowania w Planowaniu Przestrzennym (Assessment of the Visual Attractiveness of the Landscape of the Krakow Valleys-Possible Use in Spatial Planning). Współczesne Problemyi Kierunki Badawcze w Geografii. 2015, 3, 91–107. Available online: https://www.researchgate.net/publication/286933612_Ocena_atrakcyjnosc_wizualnej_krajobrazu_dolinek_krakowskich_-_mozliwosci_zastosowania_w_planowaniu_przestrzennym_Assessment_of_the_visual_attractiveness_of_the_landscape_-_application_in_spatial_plann (accessed on 19 September 2021).
- Czubaszek, R.; Wysocka-Czubaszek, A.; Brzózko, A. Waloryzacja krajobrazu gminy wiejskiej Wysokie Mazowieckie (Valorisation of the landscape of the rural commune of Wysokie Mazowieckie). Problemy Ekologii Krajobrazu 2016, 41, 81–93. [Google Scholar]
- Hong, W.; Guo, R.; Tang, H. Potential assessment and implementation strategy for roof greening in highly urbanized areas: A case study in Shenzhen, China. Cities 2019, 95, 102468. [Google Scholar] [CrossRef]
- Wojtas, L. Próba Waloryzacji Śródmieść Miast Tworzonych Na Przełomie XIX i XX W. (Na Przykładzie Miast Górnośląskich) (Attempt at Valorization of City Centers of Cities Created at the Turn of 19th and 20th W. (On the Example of Upper Silesian Cities), Zeszyty Naukowe Politechniki Śląskiej, Seria: Architektura Z. 19, 1992, Nr Kol. 1110. Available online: https://delibra.bg.polsl.pl/Content/30136/BCPS_33334_1992_Proba-waloryzacji-sr.pdf (accessed on 19 September 2021).
- Bielcki, C. Ciągłość w architekturze (Continuity in architecture). Architektura 1978, 3, 26–75. [Google Scholar]
- Nowakowski, M. Komunikacja a Kształtowanie Centrum Miasta (Communication and Shaping the City Center); Arkady: Warszawa, Poland, 1976; p. 22. [Google Scholar]
- Lamprecht, M. Ewolucja Kwartałów Śródmiejskich Łodzi W Kontekście Kurczenia Się Miasta (Evolution of Łódź City Center Quarters in the Context of City Shrinking). Współczesne Wyzwania, Studia Miejskie Tom 23. 2016. Available online: https://www.studiamiejskie.uni.opole.pl/wp-content/uploads/2017/03/S_Miejskie_23_2016-Lamprecht.pdf (accessed on 10 October 2021).
- Regulation minister of infrastructure of 12 April 2002 on the technical conditions to which the buildings should correspond and their location. J. Laws 2019, 1065. Available online: https://www.global-regulation.com/translation/poland/3353940/regulation-of-the-minister-of-infrastructure-of-12-april-2002-on-technical-conditions%252c-which-should-correspond-to-the-buildings-and-their-location.html (accessed on 10 October 2021).
- Water Law. Journal of Laws 2017, 1566. Act of 20 July 2017 New Water Law (Journal of Laws 2017, item 1566), in Force as of 1 January 2018, Excluding Some Provisions, as Defined by the Act. Available online: https://apgw.gov.pl/en/legal-acts (accessed on 10 October 2021).
- Polish Waters Devise the Drought Effects Counteracting Plan; Parliamentary Document No. 13444. Nr Projektu: POIS.02.01.00-00-0015/16. Available online: https://stopsuszy.pl/en/drought-effects-counteracting-plan-decp/ (accessed on 10 October 2021).
- Dwivedi, A.; Mohan, B.K. Impact of green roof on micro climate to reduce Urban Heat Island. Remote. Sens. Appl. Soc. Environ. 2018, 10, 56–69. [Google Scholar] [CrossRef]
- Knyziak, P. The Quality and Reliability in the Structural Design, Production, Execution and Maintenance of the Precast Residential Buildings in Poland in the Past and Now. Key Eng. Mater. 2016, 691, 420–431. [Google Scholar] [CrossRef]
- Kozłowski, A.; Rybka, A.; Plewako, Z. Improving Safety–Safety Evaluation of External Sandwich Panels in Large-panel Buildings. In COST C16 Improving the Quality of Existing Urban Building Envelopes: Structures; Di Giulio, R., Bozinovski, Z., Verhoef, L.G.W., Eds.; IOS Press: Amsterdam, The Netherlands, 2007; pp. 211–220. [Google Scholar] [CrossRef]
- Ligęza, W. Renovation of Large-Panel Buildings in Context of Urban Renewal/Remonty Budynków Wielkopłytowych, Jako Element Rewitalizacji Miast. Civ. Environ. Eng. Rep. 2015, 17, 83–95. [Google Scholar] [CrossRef] [Green Version]
- Tofiluk, A.; Knyziak, P.; Krentowski, J. Revitalization of Twentieth-Century Prefabricated Housing Estates as Interdisciplinary Issue. IOP Conf. Ser. Mater. Sci. Eng. 2019, 471, 112096. [Google Scholar] [CrossRef]
- Chełmicki, J.; Kamiński, S. Wrocławska Wielka Płyta–system budownictwa mieszkaniowego z elementów wielkowymiarowych (Wrocław Large Plate-a system of housing construction made of large-size elements). In Systemy Budownictwa Mieszkaniowego I Ogólnego; Ciołek, W., Ed.; Arkady: Warszawa, Poland, 1974; pp. 225–254. (In Polish) [Google Scholar]
- Dzierżewicz, Z.; Starosolski, W. Systemy budownictwa wielkopłytowego w Polsce w latach 1970–1985. In Przegląd Rozwiązań Materiałowych, Technologicznychi Konstrukcyjnych (Systems of Large-Panel Construction in Poland in the Years 1970–1985. Review of Material, Technological and Design Solutions); Wolters Kluwer: Warszawa, Poland, 2010. (In Polish) [Google Scholar]
- Polish Standard UKD 624.042.42PN-80/B-02010T. Obciążenia w Obliczeniach Statycznych–obciążenie śniegiem [Loads in Static Calculations–Snow Loads]. (In Polish), Sektor Budownictwa i Konstrukcji Budowlanych, 2010. Available online: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwiX9P_W27X0AhWFn4sKHc4ZDwgQFnoECAQQAQ&url=http%3A%2F%2Fpowierzchnie.bejur.com.pl%2Fimages%2Fulotki%2Fnorma.pdf&usg=AOvVaw1K1KlJMB7UgO6EtRAOidB- (accessed on 10 October 2021).
- Polish standard, PN-EN-1991-1-3:2005. Eurokod 1: Oddziaływaniana konstrukcje–Część 1–3: Oddziaływania ogólne–Obciążenie śniegiem [Eurocode 1: Actions on structures–Part 1–3: General actions–Snow loads]. (In Polish), SektorBudownictwa i Konstrukcji Budowlanych, 2005. Available online: https://sklep.pkn.pl/pn-en-1991-1-3-2005p.html (accessed on 10 October 2021).
- Shafique, M.; Luo, X.; Zuo, J. Photovoltaic-green roofs: A review of benefits, limitations, and trends. Sol. Energy 2020, 202, 485–497. [Google Scholar] [CrossRef]
- Sun, Y.; Deng, L.; Pan, S.-Y.; Chiang, P.-C.; Sable, S.S.; Shah, K.J. Integration of green and gray infrastructures for sponge city: Water and energy nexus. Water-Energy Nexus 2020, 3, 29–40. [Google Scholar] [CrossRef]
- He, Y.; Yu, H.; Ozaki, A.; Dong, N.; Zheng, S. Long-term thermal performance evaluation of green roof system based on two new indexes: A case study in Shanghai area. Build. Environ. 2017, 120, 13–28. [Google Scholar] [CrossRef]
- Ng, E.; Chen, L.; Wang, Y.; Yuan, C. A study on the cooling effects of greening in a high-density city: An experience from Hong Kong. Build. Environ. 2012, 47, 256–271. [Google Scholar] [CrossRef]
- Grunwald, L.; Heusinger, J.; Weber, S. A GIS-based mapping methodology of urban green roof ecosystem services applied to a Central European city. Urban For. Urban Green. 2017, 22, 54–63. [Google Scholar] [CrossRef]
- Karteris, M.; Theodoridou, I.; Mallinis, G.; Tsiros, E.; Karteris, A. Towards a green sustainable strategy for Mediterranean cities: Assessing the benefits of large-scale green roofs implementation in Thessaloniki, Northern Greece, using environmental modelling, GIS and very high spatial resolution remote sensing data. Renew. Sustain. Energy Rev. 2016, 58, 510–525. [Google Scholar] [CrossRef]
- Sun, T.; Grimmond, C.S.B.; Ni, G.-H. How do green roofs mitigate urban thermal stress under heat waves? J. Geophys. Res. Atmos. 2016, 121, 5320–5335. [Google Scholar] [CrossRef]
- Berardi, U. The outdoor microclimate benefits and energy saving resulting from green roofs retrofits. Energy Build. 2016, 121, 217–229. [Google Scholar] [CrossRef]
Factor | ||||
---|---|---|---|---|
Element | Berlin | Malmo | Seattle | Poland |
Impermeable surfaces | 0.0 | 0.0 | --- | ---- |
Surfaces with vegetation connected with the ground (e.g., lawns with taller greenery) | 1.0 | 1.0 | 0.1–0.8 (depending on the height of greenery and the size of the occupied area in m2) | 0.7–1.0 * |
Green walls (e.g., with climbers or vertical gardens) | 0.5 | 0.7 | 0.7 | 0.8 |
Green roofs (intensive or extensive) | 0.7 | 0.6 | 0.4–0.7 (depending on substrate thickness) | 0.5 |
* Additionally: | 0.1 Drought-resistant or native plants |
Categories Adopted for the Valorisation of Greenery | ||||
---|---|---|---|---|
Greenery | <25% * | 25–50% | 50–70% | >70% |
Low greenery ** | 4.25 | 4.5 | 4.75 | 5 |
Medium greenery *** | 5.25 | 5.5 | 5.75 | 6 |
High greenery **** | 6.25 | 6.5 | 6.75 | 7 |
* | If the total value of greenery is lower than 5%, assign 0 points in each class | |||
** | If the value exceeds 95%, the score should be multiplied by 1.5% | |||
*** | If the value exceeds 95%, the score should be multiplied by 2.0% | |||
**** | If the value exceeds 95%, the score should be multiplied by 2.5% |
Categories Adopted for the Valorisation of Development | ||||
---|---|---|---|---|
Development | <25% * | 25–50% | 50–70% | >70% |
High-rise/prefabricated “Plattenbau” buildings | 4 | 3.75 | 3.5 | 3.25 |
Single-family/terraced houses | 3 | 2.75 | 2.5 | 2.25 |
Townhouses | 2 | 1.75 | 1.5 | 1.25 |
Paved surfaces | 1 | 0.75 | 0.5 | 0.25 |
* | If the total value of development exceeds 95%, assign 0 points in each class. | |||
** | If the total value of development is lower than 5%, in each group assign 5 points in each class. |
9C | High Greenery | Medium Greenery | Low Greenery | High-Rise/ PREFABRICATED “Plattenbau” Buildings | Single-Family/Terraced Houses | Townhouses | Paved Surfaces | Sum |
---|---|---|---|---|---|---|---|---|
Area m2 | 2234.62 | 11,297.22 | 1862.37 | 357.23 | 0 | 2633.26 | 4115.3 | 22,500 |
Area % | 10 | 50 | 8 | 2 | 0 | 12 | 18 | 100 |
Potential of BAS and Natural Land Retention of Urban Areas for Green and Developed Areas. Author: B.J. | |||
---|---|---|---|
Class | Greenery | Development | |
Large | I | 13.11–17.5 pts | 14.01–20 pts |
Average | II | 9.61–13.1 pts | 9.01–14 pts |
Neutral | III | 7.01–9.60 pts | 5.01–9 pts |
Poor | IV | 5.31–7.0 pts | 2.01–5 pts |
Very poor | V | 0.0–5.3 pts | 0–2 pts |
Building Indicator/Sealing | |||||
---|---|---|---|---|---|
Greening Indicator | 14.01–20 pts | 9.01–14 pts | 5.01–9 pts | 2.01–5 pts | 0–2 pts |
13.11–17.5 pts | I | I | II | III | III |
9.61–13.1 pts | I | II | II | III | IV |
7.01–9.60 pts | II | II | III | IV | IV |
5.31–7.0 pts | II | III | IV | IV | V |
0.0–5.3 pts | III | III | IV | V | V |
Type | |
High greenery | |
Medium greenery | |
Low greenery | |
High/“Plattenbau” buildings | |
Single-family houses | |
Townhouses | |
Paved surfaces |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pawłowska, K.; Jawecki, B. The Determination of Priority Areas for the Construction of Green Roofs with Use of the Urban Area Valorisation Method. Sustainability 2021, 13, 13227. https://doi.org/10.3390/su132313227
Pawłowska K, Jawecki B. The Determination of Priority Areas for the Construction of Green Roofs with Use of the Urban Area Valorisation Method. Sustainability. 2021; 13(23):13227. https://doi.org/10.3390/su132313227
Chicago/Turabian StylePawłowska, Kamila, and Bartosz Jawecki. 2021. "The Determination of Priority Areas for the Construction of Green Roofs with Use of the Urban Area Valorisation Method" Sustainability 13, no. 23: 13227. https://doi.org/10.3390/su132313227
APA StylePawłowska, K., & Jawecki, B. (2021). The Determination of Priority Areas for the Construction of Green Roofs with Use of the Urban Area Valorisation Method. Sustainability, 13(23), 13227. https://doi.org/10.3390/su132313227