Coupling and Coordination Analysis of Thermal Power Carbon Emission Efficiency under the Background of Clean Energy Substitution
Abstract
:1. Introduction
2. Materials and Methods
2.1. Stochastic Frontier Analysis
2.2. Coupling and Coordination Analysis
2.3. Data Processing Method
3. Analysis of Indicators
3.1. SFA Input–Output Indicators
3.2. Efficiency Influencing Factors
- Energy consumption structure
- 2.
- Clean energy substitution effect
- 3.
- Economic scale
- 4.
- Population size
- 5.
- Industrial structure
- 6.
- Power consumption intensity
- 7.
- Urbanization level
4. Empirical Analysis Results
4.1. Data Source and Processing
4.2. Calculation of Carbon Emission Efficiency of Thermal Power
4.2.1. Production Function Estimation
4.2.2. Technical Inefficiency Estimate
4.2.3. Carbon Emission Efficiency Analysis
4.3. Coupling and Coordination Analysis
5. Conclusions and Suggestions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, Y.; Yao, X.; Yuan, P. Strategic Adjustment of China’s Power Generation Capacity Structure Under the Constraint of Carbon Emission. Comput. Econ. 2015, 46, 421–435. [Google Scholar] [CrossRef]
- Duan, N.; Guo, J.-P.; Xie, B.-C. Is there a difference between the energy and CO2 emission performance for China’s thermal power industry? A bootstrapped directional distance function approach. Appl. Energy 2016, 162, 1552–1563. [Google Scholar] [CrossRef]
- Liu, L.; Zong, H.; Zhao, E.; Chen, C.; Wang, J. Can China realize its carbon emission reduction goal in 2020: From the perspective of thermal power development. Appl. Energy 2014, 124, 199–212. [Google Scholar] [CrossRef]
- Dai, L.; Wang, M. Study on the influence of carbon emission constraints on the performance of thermal power enterprises. Environ. Sci. Pollut. Res. 2020, 27, 30875–30884. [Google Scholar] [CrossRef]
- Lou, L.; Mu, H.; Chen, X.; Li, H. The carbon footprint analysis of thermal power plants. Adv. Mater. Res. 2013, 807, 814–821. [Google Scholar] [CrossRef]
- Grant, D.; Running, K.; Bergstrand, K.; York, R. A sustainable “building block”?: The paradoxical effects of thermal efficiency on US power plants’ CO2 emissions. Energy Policy 2014, 75, 398–402. [Google Scholar] [CrossRef]
- Yamaji, K.; Matsuhashi, R.; Nagata, Y.; Kaya, Y. A study on economic measures for CO2 reduction in Japan. Energy Policy 1993, 21, 123–132. [Google Scholar] [CrossRef]
- Mielnik, O.; Goldemberg, J. Communication The evolution of the “carbonization index” in developing countries. Energy Policy 1999, 27, 307–308. [Google Scholar] [CrossRef]
- Sun, J.W. The decrease of CO2 emission intensity is decarbonization at national and global levels. Energy Policy 2005, 33, 975–978. [Google Scholar] [CrossRef]
- Liu, S.; Xia, X.H.; Tao, F.; Chen, X.Y. Assessing Urban Carbon Emission Efficiency in China: Based on the Global Data Envelopment Analysis. Energy Procedia 2018, 152, 762–767. [Google Scholar] [CrossRef]
- Wang, K.; Wu, M.; Sun, Y.; Shi, X.; Sun, A.; Zhang, P. Resource abundance, industrial structure, and regional carbon emissions efficiency in China. Resour. Policy 2019, 60, 203–214. [Google Scholar] [CrossRef]
- Xu, S.-C.; He, Z.-X.; Long, R.-Y. Factors that influence carbon emissions due to energy consumption in China: Decomposition analysis using LMDI. Appl. Energy 2014, 127, 182–193. [Google Scholar] [CrossRef]
- Zhong, J. Biased Technical Change, Factor Substitution, and Carbon Emissions Efficiency in China. Sustainability 2019, 11, 955. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Zhang, L.; Dang, J. Provincial Carbon Emissions Efficiency and Its Influencing Factors in China. Sustainability 2019, 11, 2355. [Google Scholar] [CrossRef] [Green Version]
- Gao, P.; Yue, S.; Chen, H. Carbon emission efficiency of China’s industry sectors: From the perspective of embodied carbon emissions. J. Clean. Prod. 2021, 283, 124655. [Google Scholar] [CrossRef]
- Cheng, Z.; Li, L.; Liu, J.; Zhang, H. Total-factor carbon emission efficiency of China’s provincial industrial sector and its dynamic evolution. Renew. Sustain. Energy Rev. 2018, 94, 330–339. [Google Scholar] [CrossRef]
- Zhang, C.; Chen, P. Industrialization, urbanization, and carbon emission efficiency of Yangtze River Economic Belt-empirical analysis based on stochastic frontier model. Environ. Sci. Pollut. Res. 2021. [Google Scholar] [CrossRef] [PubMed]
- Jin, T.; Kim, J. A comparative study of energy and carbon efficiency for emerging countries using panel stochastic frontier analysis. Sci. Rep. 2019, 9, 6647. [Google Scholar] [CrossRef]
- Wang, L.; Chen, Z.; Ma, D.; Zhao, P. Measuring Carbon Emissions Performance in 123 Countries: Application of Minimum Distance to the Strong Efficiency Frontier Analysis. Sustainability 2013, 5, 5319–5332. [Google Scholar] [CrossRef] [Green Version]
- Yan, D.; Lei, Y.; Li, L.; Song, W. Carbon emission efficiency and spatial clustering analyses in China’s thermal power industry: Evidence from the provincial level. J. Clean. Prod. 2017, 156, 518–527. [Google Scholar] [CrossRef]
- Grigore, R.; Capat, C.; Hazi, A.; Hazi, G. Eco-efficiency indicators in the evaluation of environmental performance of thermal power plants. Environ. Eng. Manag. J. 2016, 15, 143–149. [Google Scholar] [CrossRef]
- Wang, X.H.; Li, G. Calculation and policy responses of thermal power carbon emissions in 1995–2015 in Shaanxi province, China. Appl. Ecol. Environ. Res. 2019, 17, 8435–8448. [Google Scholar] [CrossRef]
- Wu, C.; Oh, K.; Long, X.; Zhang, J. Effect of installed capacity size on environmental efficiency across 528 thermal power stations in North China. Environ. Sci. Pollut. Res. 2019, 26, 29822–29833. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Sun, H.; Zhou, D.; Peng, L.; Sun, C. Carbon emission efficiency of thermal power in different regions of China and spatial correlations. Mitig. Adapt. Strateg. Glob. Chang. 2020, 25, 1221–1242. [Google Scholar] [CrossRef]
- Zhou, D.; Zhang, X.; Wang, X. Research on coupling degree and coupling path between China’s carbon emission efficiency and industrial structure upgrading. Environ. Sci. Pollut. Res. 2020, 27, 25149–25162. [Google Scholar] [CrossRef]
- Chen, J.; Li, Z.; Dong, Y.; Song, M.; Shahbaz, M.; Xie, Q. Coupling coordination between carbon emissions and the eco-environment in China. J. Clean. Prod. 2020, 276, 123848. [Google Scholar] [CrossRef]
- Shen, L.; Huang, Y.; Huang, Z.; Lou, Y.; Ye, G.; Wong, I.S. Improved coupling analysis on the coordination between socio-economy and carbon emission. Ecol. Indic. 2018, 94, 357–366. [Google Scholar] [CrossRef]
- Song, Q.; Zhou, N.; Liu, T.; Siehr, S.A.; Qi, Y. Investigation of a “coupling model” of coordination between low-carbon development and urbanization in China. Energy Policy 2018, 121, 346–354. [Google Scholar] [CrossRef] [Green Version]
- Lu, C.; Wang, D.; Li, H.; Cheng, W.; Tang, X.; Liu, W. Measurement of the Degree of Coordination in Regard to Carbon Emissions, Economic Development, and Environmental Protection in China. Appl. Sci. 2021, 11, 1750. [Google Scholar] [CrossRef]
- Yan, Q.; Wang, Y.; Li, Z.; Baležentis, T.; Streimikiene, D. Coordinated development of thermal power generation in Beijing-Tianjin-Hebei region: Evidence from decomposition and scenario analysis for carbon dioxide emission. J. Clean. Prod. 2019, 232, 1402–1417. [Google Scholar] [CrossRef]
- Chai, J.; Zhang, L.; Yang, M.; Nie, Q.; Nie, L. Investigation on the Coupling Coordination Relationship between Electric Power Green Development and Ecological Civilization Construction in China: A Case Study of Beijing. Sustainability 2020, 12, 8845. [Google Scholar] [CrossRef]
- Li, W.W.; Yi,, P.T. Assessment of city sustainability-Coupling coordinated development among economy, society and environment. J. Clean. Prod. 2020, 256, 120453. [Google Scholar] [CrossRef]
- Hou, C.; Chen, H.; Long, R. Coupling and coordination of China’s economy, ecological environment and health from a green production perspective. Int. J. Environ. Sci. Technol. 2021. [Google Scholar] [CrossRef]
- Wang, P.; Qi, M.; Liang, Y.; Ling, X.; Song, Y. Examining the Relationship between Environmentally Friendly Land Use and Rural Revitalization Using a Coupling Analysis: A Case Study of Hainan Province, China. Sustainability 2019, 11, 6266. [Google Scholar] [CrossRef] [Green Version]
- Andor, M.; Hesse, F. The StoNED age: The departure into a new era of efficiency analysis? A monte carlo comparison of StoNED and the “oldies” (SFA and DEA). J. Product. Anal. 2014, 41, 85–109. [Google Scholar] [CrossRef] [Green Version]
- Aldamak, A.; Zolfaghari, S. Review of efficiency ranking methods in data envelopment analysis. Measurement 2017, 106, 161–172. [Google Scholar] [CrossRef]
- Cheng, M.; Sun, J.; Bian, J. Reassessment of the DEA Efficient DMUs. In Proceedings of the 10th Euro-Asia Conference on Environment and Corporate Social Responsibility—Tourism, Society and Education Session, Berlin, Germany, 29–30 August 2014; pp. 89–94. [Google Scholar]
- Baten, M.A.; Kasim, M.M.; Rahman, M.M. Cost and Profit Efficiency of Banks: Stochastic Frontier Analysis vs Data Envelopment Analysis. Asia Pac. J. Bus. 2015, 6, 1–16. [Google Scholar]
- Chen, C.; Ren, J.; Tang, L.; Liu, H. Additive integer-valued data envelopment analysis with missing data: A multi-criteria evaluation approach. PLoS ONE 2020, 15, e0234247. [Google Scholar] [CrossRef]
- Malakhov, D.; Pilnik, N. Methods of Estimating of the Efficiency in Stochastic Frontier Models. HSE Econ. J. 2013, 17, 660–686. [Google Scholar]
- Lee, D.; Kim, K.; Choe, C. An analysis of the impact of unionization on efficiency: Evidence from a meta-frontier analysis. Appl. Econ. Lett. 2017, 24, 575–578. [Google Scholar] [CrossRef]
- Wanke, P.; Tsionas, M.G.; Chen, Z.; Antunes, J.J.M. Dynamic network DEA and SFA models for accounting and financial indicators with an analysis of super-efficiency in stochastic frontiers: An efficiency comparison in OECD banking. Int. Rev. Econ. Financ. 2020, 69, 456–468. [Google Scholar] [CrossRef]
- Aigner, D.; Lovell, C.A.K.; Schmidt, P. Formulation and estimation of stochastic frontier production function models. J. Econom. 1977, 6, 21–37. [Google Scholar] [CrossRef]
- Meeusen, W.; van Den Broeck, J. Efficiency estimation from cobb-douglas production functions with composed error. Int. Econ. Rev. 1977, 18, 435–444. [Google Scholar] [CrossRef]
- Battese, G.E.; Coelli, T.J. Frontier production functions, technical efficiency and panel data: With application to paddy farmers in India. J. Product. Anal. 1992, 3, 153–169. [Google Scholar] [CrossRef]
- Paustian, K.; Ravindranath, N.H.; Amstel, A.V. 2006 IPCC Guidelines for National Greenhouse Gas Inventories; International Panel on Climate Change: Geneva, Switzerland, 2006. [Google Scholar]
- Statistics Bureau of the People’s Republic of China. China Industrial Statistical Yearbook, 2009–2018. Available online: http://www.stats.gov.cn/ (accessed on 26 May 2021).
- Statistics Bureau of the People’s Republic of China. Provincial Greenhouse Gas Inventory Compilation Guidelines. Available online: http://www.stats.gov.cn/ (accessed on 26 May 2021).
- Statistics Bureau of the People’s Republic of China. China Statistical Yearbook, 2009–2018. Available online: http://www.stats.gov.cn/ (accessed on 26 May 2021).
- Statistics Bureau of the People’s Republic of China. China Electric Power Statistical Yearbook, 2009–2018. Available online: http://www.stats.gov.cn/ (accessed on 26 May 2021).
- Statistics Bureau of the People’s Republic of China. China Energy Statistical Yearbook, 2009–2018. Available online: http://www.stats.gov.cn/ (accessed on 26 May 2021).
Coordination Phase | Coupling and Coordination | Stage Division | Coordination Level |
---|---|---|---|
Low-level coupling stage | 0~0.3 | 0~0.3 | Severe imbalance |
Antagonistic stage | 0.3~0.5 | 0.3~0.5 | Moderate imbalance |
Grinding stage | 0.5~0.8 | 0.5~0.6 | On the verge of imbalance |
0.6~0.7 | Primary coordination | ||
0.7~0.8 | Intermediate coordination | ||
High-level coupling stage | 0.8~1 | 0.8~1 | Highly coordination |
Indicator Name | Indicator Meaning | Calculation Formula |
---|---|---|
Energy consumption structure | Coal consumption as a percentage of total energy consumption | Coal consumption/Total energy consumption |
Clean energy substitution effect | The ratio of clean energy power generation to thermal power generation | Clean energy power generation/Thermal power generation |
Economic scale | GDP per capita | Total GDP/Total population at the end of the year |
Population size | Total population at the end of the year in each region | Total population at the end of the year |
Industrial structure | The ratio of the output value of the tertiary industry to the output value of the secondary industry | Tertiary industry output value/Second industry output value |
Power consumption intensity | Electricity consumption per unit of GDP | Total electricity consumption/Total GDP |
Urbanization level | proportion of urban population in each region | Urbanization rate |
Variable | Coefficient Value | t Statistic | Variable | Coefficient Value | t Statistic |
---|---|---|---|---|---|
Constant term | −63.718 | −5.456 *** | LnK * LnL | 0.052 | 0.891 |
LnK | 6.243 | 5.127 *** | LnK * LnC | −0.215 | −2.668 *** |
LnL | 2.867 | 2.049 ** | LnL * LnC | 0.201 | 2.609 *** |
LnC | −6.943 | −3.467 *** | 0.022 | 9.169 *** | |
(LnK)2 | −21.125 | −4.974 *** | 0.802 | 17.652 *** | |
(LnL)2 | 4.995 | 2.368 ** | Log likelihood function | 238.136 | - |
(LnC)2 | −14.282 | −3.410 *** | LR test of unilateral error | 263.859 | - |
Variable | Coefficient Value | t Statistic | Variable | Coefficient Value | t Statistic |
---|---|---|---|---|---|
Constant term | 0.597 | 4.212 *** | −0.00008 | −6.218 *** | |
−0.005 | −0.353 | 0.001 | 3.519 *** | ||
0.117 | 15.479 *** | −0.200 | −6.064 *** | ||
−0.036 | −2.718 *** | −0.251 | 1.929 * |
District Division | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | Mean | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Beijing | E | 0.810 | 0.831 | 0.866 | 0.847 | 0.841 | 0.824 | 0.862 | 0.881 | 0.898 | 0.939 | 0.860 |
Tianjin | E | 0.761 | 0.845 | 0.899 | 0.863 | 0.860 | 0.790 | 0.833 | 0.831 | 0.857 | 0.891 | 0.843 |
Hebei | E | 0.850 | 0.867 | 0.879 | 0.884 | 0.842 | 0.860 | 0.881 | 0.870 | 0.875 | 0.880 | 0.869 |
Shanxi | C | 0.797 | 0.832 | 0.859 | 0.884 | 0.893 | 0.883 | 0.808 | 0.863 | 0.872 | 0.886 | 0.858 |
Inner Mongolia | C | 0.804 | 0.784 | 0.836 | 0.864 | 0.851 | 0.897 | 0.889 | 0.848 | 0.867 | 0.896 | 0.854 |
Liaoning | NE | 0.807 | 0.829 | 0.839 | 0.821 | 0.801 | 0.827 | 0.850 | 0.850 | 0.831 | 0.819 | 0.827 |
Jilin | NE | 0.739 | 0.615 | 0.688 | 0.663 | 0.698 | 0.735 | 0.707 | 0.708 | 0.711 | 0.717 | 0.698 |
Heilongjiang | NE | 0.790 | 0.809 | 0.829 | 0.834 | 0.779 | 0.845 | 0.839 | 0.833 | 0.794 | 0.789 | 0.814 |
Shanghai | E | 0.821 | 0.848 | 0.878 | 0.809 | 0.820 | 0.838 | 0.847 | 0.846 | 0.876 | 0.858 | 0.844 |
Jiangsu | E | 0.962 | 0.975 | 0.979 | 0.987 | 0.948 | 0.966 | 0.986 | 0.983 | 0.977 | 0.976 | 0.974 |
Zhejiang | E | 0.904 | 0.952 | 0.967 | 0.963 | 0.931 | 0.899 | 0.909 | 0.938 | 0.951 | 0.970 | 0.938 |
Anhui | C | 0.925 | 0.937 | 0.959 | 0.979 | 0.944 | 0.956 | 0.931 | 0.934 | 0.949 | 0.958 | 0.947 |
Fujian | E | 0.875 | 0.897 | 0.938 | 0.866 | 0.892 | 0.919 | 0.791 | 0.868 | 0.931 | 0.944 | 0.892 |
Jiangxi | C | 0.750 | 0.803 | 0.866 | 0.779 | 0.879 | 0.895 | 0.903 | 0.821 | 0.866 | 0.879 | 0.844 |
Shandong | E | 0.947 | 0.958 | 0.947 | 0.934 | 0.918 | 0.967 | 0.986 | 0.980 | 0.968 | 0.967 | 0.957 |
Henan | C | 0.857 | 0.875 | 0.894 | 0.970 | 0.946 | 0.961 | 0.958 | 0.954 | 0.946 | 0.957 | 0.932 |
Hubei | C | 0.731 | 0.778 | 0.936 | 0.781 | 0.881 | 0.803 | 0.830 | 0.820 | 0.804 | 0.890 | 0.825 |
Hunan | C | 0.771 | 0.832 | 0.854 | 0.861 | 0.883 | 0.829 | 0.772 | 0.802 | 0.832 | 0.863 | 0.830 |
Guangdong | E | 0.910 | 0.921 | 0.932 | 0.935 | 0.901 | 0.918 | 0.937 | 0.923 | 0.926 | 0.922 | 0.923 |
Guangxi | W | 0.656 | 0.673 | 0.684 | 0.739 | 0.875 | 0.957 | 0.845 | 0.853 | 0.855 | 0.885 | 0.802 |
Hainan | W | 0.592 | 0.701 | 0.743 | 0.723 | 0.753 | 0.831 | 0.805 | 0.679 | 0.662 | 0.709 | 0.720 |
Chongqing | W | 0.727 | 0.749 | 0.782 | 0.768 | 0.812 | 0.697 | 0.633 | 0.700 | 0.756 | 0.793 | 0.742 |
Sichuan | W | 0.649 | 0.687 | 0.659 | 0.630 | 0.699 | 0.668 | 0.667 | 0.567 | 0.507 | 0.630 | 0.636 |
Guizhou | W | 0.761 | 0.751 | 0.737 | 0.702 | 0.729 | 0.666 | 0.814 | 0.822 | 0.751 | 0.781 | 0.752 |
Yunnan | W | 0.359 | 0.291 | 0.297 | 0.390 | 0.506 | 0.436 | 0.495 | 0.653 | 0.651 | 0.692 | 0.477 |
Shaanxi | C | 0.791 | 0.858 | 0.871 | 0.920 | 0.892 | 0.910 | 0.897 | 0.904 | 0.905 | 0.824 | 0.877 |
Gansu | W | 0.733 | 0.739 | 0.876 | 0.863 | 0.870 | 0.863 | 0.839 | 0.804 | 0.787 | 0.872 | 0.824 |
Qinghai | W | 0.667 | 0.671 | 0.684 | 0.750 | 0.780 | 0.753 | 0.614 | 0.680 | 0.681 | 0.690 | 0.697 |
Ningxia | W | 0.722 | 0.652 | 0.773 | 0.780 | 0.742 | 0.766 | 0.769 | 0.692 | 0.731 | 0.755 | 0.738 |
Xinjiang | W | 0.681 | 0.689 | 0.708 | 0.766 | 0.778 | 0.826 | 0.867 | 0.845 | 0.820 | 0.845 | 0.782 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Niu, D. Coupling and Coordination Analysis of Thermal Power Carbon Emission Efficiency under the Background of Clean Energy Substitution. Sustainability 2021, 13, 13221. https://doi.org/10.3390/su132313221
Liu Y, Niu D. Coupling and Coordination Analysis of Thermal Power Carbon Emission Efficiency under the Background of Clean Energy Substitution. Sustainability. 2021; 13(23):13221. https://doi.org/10.3390/su132313221
Chicago/Turabian StyleLiu, Yujing, and Dongxiao Niu. 2021. "Coupling and Coordination Analysis of Thermal Power Carbon Emission Efficiency under the Background of Clean Energy Substitution" Sustainability 13, no. 23: 13221. https://doi.org/10.3390/su132313221
APA StyleLiu, Y., & Niu, D. (2021). Coupling and Coordination Analysis of Thermal Power Carbon Emission Efficiency under the Background of Clean Energy Substitution. Sustainability, 13(23), 13221. https://doi.org/10.3390/su132313221